KR20050122181A - Method for wastewater treatment - Google Patents

Method for wastewater treatment

Info

Publication number
KR20050122181A
KR20050122181A KR1020050112558A KR20050112558A KR20050122181A KR 20050122181 A KR20050122181 A KR 20050122181A KR 1020050112558 A KR1020050112558 A KR 1020050112558A KR 20050112558 A KR20050112558 A KR 20050112558A KR 20050122181 A KR20050122181 A KR 20050122181A
Authority
KR
South Korea
Prior art keywords
wastewater
nitrogen
denitrification
waste water
reaction
Prior art date
Application number
KR1020050112558A
Other languages
Korean (ko)
Other versions
KR100707476B1 (en
Inventor
이희관
Original Assignee
(주)명성환경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)명성환경 filed Critical (주)명성환경
Priority to KR1020050112558A priority Critical patent/KR100707476B1/en
Publication of KR20050122181A publication Critical patent/KR20050122181A/en
Application granted granted Critical
Publication of KR100707476B1 publication Critical patent/KR100707476B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 폐수처리방법 중에서 특히 폐수에 포함된 총질소(T-N)를 제거하는 방법에 관한 것으로, 최초 폐수 원수에 염화나트륨(NaCl)을 혼합함과 아울러 폐수의 알카리도가 pH 9 이상이 될 때까지 가성소다(NaOH)를 혼합하되 상기 염화나트륨(NaCl)과 가성소다(NaOH)가 혼합된 폐수를 40~50℃로 가열한 후, 상기 가열된 폐수를 전해산화하여 폐수에 포함된 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스로 1차 탈질하여 제거하고, 이후 티오황산나트륨(Na2S2O3)을 폐수에 주입하여 상기 전해산화시 생성된 하이포화염소산이온(OCl-)을 제거한 다음, 황산화 미생물이 식생하는 공지의 황담체가 수용된 반응조에 상기 폐수를 투과하여 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 질소가스로 2차 탈질하여 제거함으로써, 폐수에 포함된 총질소(T-N)를 더욱 완벽하게 제거할 수 있도록 한 폐수처리방법에 관한 것이다.The present invention relates to a method for removing total nitrogen (TN) contained in the wastewater, in particular among wastewater treatment methods, and mixing sodium chloride (NaCl) in the original wastewater and caustic until the alkalinity of the wastewater reaches pH 9 or more. Soda (NaOH) is mixed, but the wastewater mixed with sodium chloride (NaCl) and caustic soda (NaOH) is heated to 40-50 ° C, and the heated wastewater is electrolytically oxidized to form ammonia nitrogen (NH₃- N) (NH₄-N) was first denitrated with nitrogen gas, and then sodium thiosulfate (Na 2 S 2 O 3 ) was injected into the wastewater to remove hypochlorite ions (OCl ) generated during the electrolytic oxidation. Next, the wastewater is permeated through a reaction tank containing a known sulfur carrier in which sulfated microorganisms are grown, and secondary nitrite nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) are removed by nitrogen gas to remove the wastewater. More completely removes total nitrogen (TN) contained in The present invention relates to a wastewater treatment method.

Description

폐수처리방법{Method for wastewater treatment}Method for wastewater treatment

본 발명은 폐수처리방법 중에서 특히 폐수에 포함된 총질소(T-N)를 제거하는 방법에 관한 것으로, 보다 상세하게는 폐수에 염화나트륨(NaCl) 및 가성소다(NaOH)를 투입하여 알카리도를 pH 9 이상으로 조정함과 아울러 상기 폐수를 40~50℃로 가열한 후, 상기 폐수를 전해산화시켜 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스로 1차 탈질하여 제거하고, 티오황산나트륨(Na2S2O3)을 폐수에 주입하여 상기 전해산화시 생성된 하이포화염소산이온(OCl-)을 제거한 다음, 폐수에 포함된 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 공지된 황담체에 의한 황산화 탈질반응을 이용하여 질소가스로 2차 탈질 제거함으로써, 폐수에 포함된 총질소(T-N)를 더욱 완벽하게 제거할 수 있는 폐수처리방법에 관한 것이다.The present invention relates to a method for removing total nitrogen (TN) contained in the wastewater, in particular, wastewater treatment method, more specifically, sodium chloride (NaCl) and caustic soda (NaOH) in the wastewater to the alkalinity to pH 9 or more In addition, after heating the wastewater to 40 ~ 50 ℃, the wastewater is electrolytically oxidized to remove the first ammonia nitrogen (NH₃-N) (NH₄-N) by nitrogen gas denitrification, sodium thiosulfate (Na 2 S 2 O 3 ) is injected into the wastewater to remove hypochlorite ions (OCl ) generated during the electrolytic oxidation, and then nitrite nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) contained in the wastewater. By secondary denitrification by nitrogen gas using a known sulfur carrier desulfurization reaction by a sulfur carrier, it relates to a wastewater treatment method that can more completely remove the total nitrogen (TN) contained in the wastewater.

일반적으로 생활하수 및 산업폐수는 하천 및 해양을 오염시키는 각종 유해 물질을 포함하고 있는데, 그 중에서 암모니아성 질소(NH₃-N)(NH₄-N), 아질산성 질소(NO₂-N), 질산성 질소(NO₃-N)와 같은 형태로 존재하는 질소(N)의 경우 미생물의 중요한 먹이로 이용되는 반면, 지나치게 많은 질소(N)가 하천으로 유입될 경우 하천이나 호수가 부영양화되어 녹조가 발생하는 문제점이 있을 뿐만 아니라, 해양으로 유입될 경우에는 연근해의 적조현상을 유발하여 환경오염은 물론이고 바다양식과 같은 수산업에 막대한 지장을 초래한다.In general, domestic wastewater and industrial wastewater contain various harmful substances polluting rivers and oceans. Among them, ammonia nitrogen (NH₃-N) (NH₄-N), nitrite nitrogen (NO₂-N), and nitrate nitrogen Nitrogen (N), which is present in the same form as (NO₃-N), is used as an important food for microorganisms, but when too much nitrogen (N) is introduced into a stream, streams or lakes may be eutrophized and green algae may occur. In addition, when it is introduced into the ocean, it causes red tides of the near-shore seas, causing enormous disruption to fisheries such as marine farming as well as environmental pollution.

한편, 상기 폐수를 정화하는 통상적인 폐수처리방법을 살펴보면, 전기 에너지를 이용한 전해법(電解法)으로서 전기분해(electrolysis), 전기응집(electro-coagulation), 전기부상(electro-flotation) 등의 폐수처리방법과 함께 미생물을 이용한 생물학적 폐수처리방법 등이 공지되어 있는바, 상기 폐수에 포함된 질소를 제거하는 종래 폐수처리방법으로서는 종속영양탈질법과 같은 생물학적 탈질방법을 주로 사용하고 있으며, 상기 종속영양탈질법에 의한 탈질반응은 아래의 [반응식 1]과 같다.On the other hand, the conventional wastewater treatment method for purifying the wastewater, wastewater, such as electrolysis, electro-coagulation, electro-flotation as an electrolytic method using electrical energy (electrolysis) Biological wastewater treatment using microorganisms is known along with the treatment method. As a conventional wastewater treatment method for removing nitrogen contained in the wastewater, a biological denitrification method such as heterotrophic denitrification is mainly used. Denitrification by the method is shown in [Scheme 1] below.

NO3 - + 1.08CH3OH + 3H+ → 0.065C5H7O2N + 0.47N2 + + 0.76CO2 + 2.44H2O NO 3 - + 1.08CH 3 OH + 3H + → 0.065C 5 H 7 O 2 N + 0.47N 2 + + 0.76CO 2 + 2.44H 2 O

그러나 상기 종속영양탈질법의 경우, 메탄올과 같은 외부탄소원을 공급하여야 함과 아울러 상기 메탄올의 투여량을 조절하기 곤란하며, 한편으론 운전비용이 많이 들고 운전이 용이하지 못하여 경제성이 떨어지는 문제점이 있었다.However, in the case of the heterotrophic denitrification method, it is difficult to control the dosage of the methanol as well as to supply an external carbon source such as methanol, and on the other hand, there is a problem in that the operation cost is high and the operation is not easy and the economy is inferior.

상기와 같은 문제점을 보완하기 위하여 티오바실러스 데니트리피칸스(Thiobacillus denitrificans), 티오마이크로스피라 데니트리피칸스(Thiomicrospira denitrificans) 등의 황산화 미생물을 이용하여 여러 종류의 황 화합물(S0, S2-, S2O3 2-, S4O6 2-, SO3 2-)을 황산염이온(SO4 2-)으로 산화시키면서 동시에 질산성 질소를 질소가스로 전환시켜 제거하는 황산화 탈질반응을 이용한 독립영양탈질법이 제안된바, 상기 독립영양탈질법에 의한 황산화 탈질반응은 아래의 [반응식 2]와 같다.In order to solve the above problems, various types of sulfur compounds (S 0 , S 2 -S) using sulfated microorganisms such as Thiobacillus denitrificans and Thiomicrospira denitrificans are used. , S 2 O 3 2-, S 4 O 6 2-, SO 3 2-) , sulfate ion (SO 4 2-), while at the same time as the nitrate using a sulfated denitrification to remove nitrogen oxide gas was converted to Independent nutritional denitrification method has been proposed, the sulfated denitrification reaction by the autotrophic denitrification method is as shown in [Scheme 2].

NO3 - + 1.10S + 0.40CO2 + 0.76H2O + 0.08NH4 + → 0.5N2↑ + 1.10SO4 2- + 1.28H+ + 0.08C5H7O2N NO 3 - + 1.10S + 0.40CO 2 + 0.76H 2 O + 0.08NH 4 + → 0.5N 2 ↑ + 1.10SO 4 2- + 1.28H + + 0.08C 5 H 7 O 2 N

그러나 상기 독립영양탈질법의 경우에는, 메탄올 등의 외부 탄소원을 필요치 않고 상대적인 슬러지 발생량 또한 적은 장점이 있기는 하지만, 시동시간이 길고, 반응시간이 느리며, 알칼리도가 낮을 때에는 탈질이 곤란함과 아울러 고농도 탈질이 어렵고, 탈질시 생성되는 질소를 주기적으로 빼주어야 하는 불편이 있을 뿐만 아니라 알칼리도가 저하됨에 따라 석회석(limestone)을 투여해야 하는 불편함이 있었다.However, in the case of the autotrophic denitrification method, although the external sludge generation amount does not need to be used without the need for an external carbon source such as methanol, the starting time is long, the reaction time is slow, and when the alkalinity is low, denitrification is difficult and high concentration is achieved. Denitrification is difficult, and there is an inconvenience of periodically removing the nitrogen generated during denitrification, as well as the inconvenience of having to administer limestone (limestone) as the alkalinity is lowered.

상기와 같은 독립영양탈질법의 문제점을 해결하기 위하여 황탈질 미생물을 부착성장시킨 담체(擔體, carrier)를 이용한 폐수처리방법이 제안된바 있으며, 이때 상기 담체는 입자상 황과 석회석을 혼합 충진하거나, 입자상 황과 석회석을 혼합 용융하여 일정 크기로 냉각시킨 담체를 이용하는데, 상기의 경우 [반응식 2]와 같은 황산화 탈질반응을 얻을 수 있지만, 장기간 운전시 석회석에 의한 반응조의 막힘 현상이 발생하여 정기적인 역세척을 필요로 하는 문제점이 있었다.In order to solve the problems of the autotrophic denitrification method, a wastewater treatment method using a carrier in which denitrifying microorganisms are attached and grown has been proposed, wherein the carrier is filled with particulate sulfur and limestone, or In this case, the desulfurization and denitrification reaction as shown in [Scheme 2] can be obtained, but the blockage of the reaction tank caused by the limestone occurs during long-term operation. There was a problem requiring regular backwashing.

한편, 상기한 바와 같은 문제점을 해결한 폐수처리용 황담체가 공개특허공보 제10-2004-0016728호(2004.2.25.공개)로 제안된바 이를 하기에서 보다 상세히 살펴보면, 황(S)과 탄산칼슘(CaCO₃)과 산화마그네슘(MgO)을 중량비로 6:3:1의 비율로 혼합하여 150℃로 용융한 다음 냉각-건조-파쇄한 황담체를 황탈질 미생물에 순응된 미생물과 함께 반응조에 투입한 후, 운전이 안정적으로 이루어진 상태에서 폐수를 유입시켜 폐수를 처리하는 것을 특징으로 한다.On the other hand, the sulfur carrier for wastewater treatment that solves the problems as described above is proposed in Korean Patent Laid-Open Publication No. 10-2004-0016728 (published on February 22, 2004). Calcium (CaCO₃) and magnesium oxide (MgO) are mixed at a weight ratio of 6: 3: 1, melted at 150 ° C, and the cold-dried-crushed yellow carrier is added to the reactor together with the microorganisms acclimated to the denitrifying microorganisms. After that, it is characterized in that the wastewater is introduced to treat the wastewater in a stable operation.

상기와 같은 종래 황담체를 이용한 폐수처리방법에 의하면, 황(S)은 황산화 미생물의 탈질반응을 위한 기질로 작용하며, 탄산칼슘(CaCO₃)은 탈질반응이 진행됨에 따라 저하되는 알카리도를 보충하여 미생물들이 원활히 탈질을 일으킬 수 있는 pH 6~8의 알카리도를 유지하도록 한다. 상기 황담체에 의한 황산화 탈질반응은 상기 [반응식 2]와 같고, 상기 탄산칼슘(CaCO₃)이 수소이온을 중화시켜 알카리도를 보충하는 반응은 아래의 [반응식 3]과 같다.According to the wastewater treatment method using the conventional yellow carrier as described above, sulfur (S) acts as a substrate for denitrification of sulfated microorganisms, and calcium carbonate (CaCO₃) is supplemented with alkalinity deteriorated as the denitrification reaction proceeds. Maintain an alkalinity of pH 6-8, which can cause microbes to denitrate. Sulfation denitrification by the sulfur carrier is shown in [Scheme 2], and the reaction of calcium carbonate (CaCO₃) to neutralize hydrogen ions to supplement alkalinity is shown in [Scheme 3] below.

CaCO3 + H+ → Ca2+ + HCO3 - CaCO 3 + H + → Ca 2+ + HCO 3 -

한편, 상기한 바와 같은 황담체를 이용한 폐수처리방법의 경우, 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 질소가스로 탈질하여 제거하는 효과는 탁월한 반면, 암모니아성 질소(NH₃-N)(NH₄-N)의 경우 만족할 만한 탈질 효과를 얻지 못하였는바, 상기 황담체에 포함된 산화마그네슘(MgO)이 암모니아성 질소(NH₄-N)와 반응하여 스트러바이트(struvite, MgNH4PO4)를 생성하여 암모니아성 질소를 제거할 수 있기는 하지만, 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)에 비하여 암모니아성 질소(NH₃-N)(NH₄-N)가 월등히 많은 도금폐수와 같은 경우 등을 감안할 때, 상기 황담체에 포함된 산화마그네슘(MgO)에 의한 암모니아성 질소(NH₃-N)(NH₄-N)의 탈질은 실제 폐수처리 현장에서 만족할만한 탈질 효과를 기대할 수 없었다. 상기 황담체에 포함된 산화마그네슘(MgO)에 의한 마그네슘(Mg)과 암모니아성 질소(NH₄-N)의 반응은 아래의 [반응식 4]와 같다.On the other hand, in the case of the wastewater treatment method using the yellow carrier as described above, the effect of denitrifying and removing nitrite nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) by nitrogen gas is excellent, while ammonia nitrogen ( In the case of NH₃-N) (NH₄-N), a satisfactory denitrification effect was not obtained. Magnesium oxide (MgO) contained in the yellow carrier reacted with ammonia nitrogen (NH₄-N) to form struvite, MgNH 4 PO 4 ) can be produced to remove ammonia nitrogen, but ammonia nitrogen (NH₃-N) (NH₄-N) compared to nitrite nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) Considering such a case as much plating wastewater), denitrification of ammonia nitrogen (NH₃-N) (NH₃-N) by magnesium oxide (MgO) contained in the yellow carrier is satisfactory in the actual wastewater treatment site. No denitrification effect could be expected. The reaction of magnesium (Mg) and ammonia nitrogen (NH₄-N) by magnesium oxide (MgO) contained in the yellow carrier is shown in [Scheme 4] below.

Mg2+ + NH4 + + PO4 3- → MgNH4PO4 Mg 2+ + NH 4 + + PO 4 3- → MgNH 4 PO 4

상기한 바와 같은 종래 황담체를 이용한 폐수처리방법의 문제점을 해결하기 위한 본 발명의 목적은, 공지된 황담체에 의한 질산성 질소의 황산화 탈질공정에 앞서 폐수를 전해산화하여 암모니아성 질소를 선행하여 1차 탈질하되, 전해산화시 발생하는 하이포화염소산이온을 티오황산나트륨으로써 제거하여 상기 황산화 미생물에 의한 2차 탈질이 가능케 하는 것으로, 폐수에 염화나트륨과 함께 가성소다를 투입하여 폐수의 알카리도를 pH 9 이상으로 조정함과 아울러 폐수를 40~50℃로 가열한 후, 상기 폐수에 포함된 암모니아성 질소를 전해산화하여 질소가스로 1차 탈질 제거하고, 티오황산나트륨을 폐수에 주입하여 폐수를 전해산화 함에 따라 발생한 하이포화염소산이온을 제거한 다음, 폐수에 포함된 아질산성 질소 및 질산성 질소를 공지된 황담체에 의한 황산화 탈질반응을 이용하여 질소가스로 2차 탈질 제거함으로써, 폐수에 포함된 총질소를 보다 완벽하게 제거할 수 있는 폐수처리방법을 제공한다.An object of the present invention for solving the problems of the wastewater treatment method using the conventional yellow carrier as described above, prior to ammonia nitrogen by electrolytic oxidation of the wastewater prior to the sulphation denitrification process of nitrate nitrogen by the known yellow carrier. Primary denitrification, but the hypochlorite ion generated during electrolytic oxidation is removed by sodium thiosulfate to enable secondary denitrification by the sulfated microorganism, and caustic soda together with sodium chloride is added to the wastewater to pH After adjusting to 9 or more and heating the waste water to 40 ~ 50 ° C, electrolytic oxidation of the ammonia nitrogen contained in the waste water and the first denitrification by nitrogen gas, and injection of sodium thiosulfate into the waste water electrolytic oxidation of the waste water. After removing the hypochlorite ion generated in the waste water, the nitrite nitrogen and nitrate nitrogen contained in the waste water are known sulfur carriers. By removal of the secondary denitrification to nitrogen gas by using the sulfated denitrification, there is provided a waste water treatment method that can remove the total nitrogen than the fully contained in the waste water.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 따른 폐수처리방법은, 최초 폐수에 염화나트륨(NaCl) 및 가성소다(NaOH)를 주입함과 아울러 상기 폐수를 40~50℃로 가열하는 제1공정과, 상기 폐수를 전해산화하여 전기응집처리함으로써 폐수에 포함된 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스로 1차 탈질하는 제2공정과, 상기 전해산화에 의한 1차 탈질공정에서 발생한 하이포화염소산이온(OCl-)을 제거하기 위하여 티오황산나트륨(Na2S2O3)을 주입하는 제3공정과, 하이포화염소산이온(OCl-)이 제거된 폐수를 공지된 황담체를 이용하여 황산화 탈질반응을 일으켜 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 질소가스로 2차 탈질하는 제4공정을 포함하는 것을 특징으로 한다.Waste water treatment method according to the present invention for achieving the above object, the first step of injecting sodium chloride (NaCl) and caustic soda (NaOH) to the first waste water and heating the waste water to 40 ~ 50 ℃ and And a second step of primary denitrification of ammonia nitrogen (NH₃-N) (NH 수 -N) contained in the wastewater by electrolytic oxidation and electroaggregation by electrolytic oxidation, and a first denitrification step by the electrolytic oxidation. in order to remove sodium thiosulfate third step, a high saturation hypochlorite ion (OCl -) implanting (Na 2 S 2 O 3) - high saturation hypochlorite ion (OCl) generated from a known to the removed effluent sulfur carrier It is characterized in that it comprises a fourth step of causing a desulfurization denitrification reaction to secondary denitrification of nitrous nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) by nitrogen gas.

이하 본 발명에 따른 폐수처리방법의 바람직한 실시예를 하기에서 도 1 및 도 2를 참고하여 각 공정별로 순차적으로 상세히 살펴보는바, 도 1은 본 발명에 따른 폐수처리방법을 나타내는 공정도이고, 도 2는 본 발명의 바람직한 실시예에 따른 공정도이다.Hereinafter, a preferred embodiment of the wastewater treatment method according to the present invention will be described in detail with reference to FIGS. 1 and 2 in the following order. FIG. 1 is a process diagram showing a wastewater treatment method according to the present invention, and FIG. 2. Is a process chart according to a preferred embodiment of the present invention.

[제1공정][Step 1]

우선 본 발명의 제1공정인 염화나트륨(NaCl)·가성소다(NaOH) 주입 및 히팅공정을 살펴보면, 통상적인 히터가 구비된 수조(storage)에 폐수를 유입하여 염화나트륨(NaCl) 및 가성소다(NaOH)를 주입함과 아울러 상기 폐수를 40~50℃로 가열하는바, 염화나트륨(NaCl)은 폐수 유입량 90~99.5[중량%]에 대하여 0.5~10[중량%]를 주입하여 후술할 폐수의 전해산화 공정을 원활히 함과 아울러 전해산화에 의한 1차 탈질공정에 필요한 염소(Cl)를 공급하고, 가성소다(NaOH)는 후술할 황산화 탈질반응에 의한 2차 탈질공정시 알카리도가 저하되는 것을 감안하여 유입된 폐수의 양에 비례하여 폐수의 알카리도가 pH 9 이상이 될 때까지 주입함으로써 2차 탈질공정시 황산화 미생물들이 원활히 탈질반응을 일으킬 수 있도록 한다.First, the sodium chloride (NaCl) and caustic soda (NaOH) injection and heating process of the present invention, the waste water is introduced into the storage (storage) equipped with a conventional heater, sodium chloride (NaCl) and caustic soda (NaOH) In addition to heating the wastewater to 40 ~ 50 ℃ bar, sodium chloride (NaCl) is injected 0.5 ~ 10 [wt%] with respect to the wastewater inflow 90 ~ 99.5 [wt%] electrolytic oxidation process of the wastewater to be described later In addition to supplying chlorine (Cl) required for the first denitrification process by electrolytic oxidation, caustic soda (NaOH) is introduced in consideration of the decrease in alkalinity during the second denitrification process by the sulfated denitrification reaction described later. By injecting the alkalinity of the wastewater to pH 9 or more in proportion to the amount of wastewater used, the sulfated microorganisms can be smoothly denitrified during the secondary denitrification process.

그리고 폐수의 가열은 폐수에 열에너지를 공급하여 운동성을 향상함으로써 후술할 전해산화에 의한 1차 탈질공정의 능률을 향상하기 위한 것으로, 이때 가열온도가 40℃ 미만이면 기대효과가 미비하고, 50℃를 초과하면 운전비를 과다하게 소요하므로 폐수를 40~50℃로 가열하여 히팅공정을 수행함이 바람직하다.And the heating of waste water is to improve the efficiency of the primary denitrification process by electrolytic oxidation, which will be described later by supplying heat energy to the waste water to improve the motility, wherein the expected effect is insufficient if the heating temperature is less than 40 ℃, 50 ℃ If it exceeds, it takes too much operating cost, it is preferable to perform the heating process by heating the waste water to 40 ~ 50 ℃.

[제2공정][Step 2]

본 발명의 제2공정으로서 전해산화에 의한 1차 탈질공정을 살펴보면, 염화나트륨(NaCl)·가성소다(NaOH) 주입 및 히팅 공정을 거친 폐수를 전해산화에 의한 전기응집처리를 하여 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스(N₂)로 탈질 제거하는바, 하기에서 전해산화에 의한 1차 탈질공정을 더욱 구체적으로 살펴본다.Referring to the primary denitrification process by electrolytic oxidation as the second process of the present invention, wastewater that has undergone sodium chloride (NaCl) and sodium hydroxide (NaOH) injection and heating is subjected to electrocoagulation by electrolytic oxidation to ammonia nitrogen (NH₃). -N) (NH₄-N) is denitrified by nitrogen gas (N₂), look at in more detail the primary denitrification process by electrolytic oxidation in the following.

우선, 전해산화에 의한 유기물질의 제거원리를 살펴보면, 일반적으로 폐수에 포함된 유기 오염물질은 직접적인 양극산화반응 및 음극환원반응과 간접적인 산화반응에 의하여 전기 화학적으로 산화분해되는데, 직접산화반응은 오염물질이 양극 표면에서 흡착되어 양극전자의 이동반응에 의하여 산화하는 것이고, 간접산화반응은 발생기 산소(O₂), 하이포화염소산(HClO), 산화된 금속이온과 같은 강력한 산화제가 전기분해가 일어나는 동안에 전해액 내에서 전기 화학적인 반응을 하여 오염물질이 산화하는 것이다.First, the principle of elimination of organic substances by electrolytic oxidation is generally that organic pollutants contained in wastewater are electrochemically oxidatively decomposed by direct anodic oxidation reaction and cathodic reduction reaction and indirect oxidation reaction. Contaminants are adsorbed on the surface of the anode and oxidized by the movement of the cathode electrons. Indirect oxidation reactions occur during the electrolysis of strong oxidants such as generator oxygen (O₂), hypochlorous acid (HClO), and oxidized metal ions. Electrochemical reactions in an electrolyte cause oxidation of contaminants.

한편, 폐수 중에 함유되어 있는 대부분의 콜로이드(Colloid) 물질은 음전하를 띄고 있어 유사전하 사이의 반발력에 의해 부유물 상태로 존재하고, 폐수에 콜로이드 상태로 존재하는 오염물질은 전기 에너지에 의해 극판에서 용출되어진 금속양이온과 전기적으로 중화되는 응집반응과 함께 산화/환원 반응에 의하여 제거되며, 상기와 같이 양극에서 용출되는 금속의 가수분해에 의한 금속수산화물 생성에 의하여 오염물질을 침전시켜 제거하는 것을 전기응집(electro-coagulation)이라 하는바, 더욱 상세하게는 폐수에 전기를 가하면 양극에서는 양이온인 금속이온이 +2가 또는 +3가의 이온 상태로 산화됨과 아울러 음극에서는 발생된 히드록실 이온(OH-)이 산화되면서 산소가 발생되고, 이렇게 발생된 산소는 유기물의 산화에 관여하며 이와 동시에 음극에서는 환원반응이 일어나 중성의 조건에서는 히드록실기(OH-), 카르복실기(HCOO-), 인산기(PO4 3-), 슬폰기(SO4 2-) 등을 가지고 있어 수중에서 음전하를 생성하며, 이러한 작용기들은 다원자간의 금속이온들과 반응하여 가수분해 및 다양한 복합체를 형성한다. 그리고 수중의 pH 조건에 따라 산성 또는 중성의 조건에서 형성되어진 양전하를 띈 금속 수산화물 복합체는 음전하를 띈 유기오염 물질인 콜로이드의 표면전하를 전기적으로 중화시켜 이중층압축(Double layer compression)에 의한 응집을 통해 유기물이 응집/침전된다.On the other hand, most of the colloids contained in the wastewater have a negative charge, so they are suspended in repulsive state due to the repulsive force between similar charges, and the contaminants in the colloidal state in the wastewater are eluted from the plate by electric energy. It is removed by the oxidation / reduction reaction together with the aggregation reaction which is neutralized with the metal cation electrically, and the precipitation and removal of contaminants by the formation of metal hydroxide by the hydrolysis of the metal eluted at the anode as described above. In more detail, when electricity is applied to the waste water, the metal ions, which are cationic at the anode, are oxidized to +2 or + trivalent ions, and the hydroxyl ions (OH ) generated at the cathode are oxidized. Oxygen is generated, and this oxygen is involved in the oxidation of organic matter and at the same time at the cathode This reaction won up of neutral conditions hydroxyl groups (OH -), carboxyl (HCOO -), and generate a negative charge in water it has a phosphate group (PO 4 3-), dew Roppongi (SO 4 2-), etc., such The functional groups react with metal ions between polyatoms to form hydrolysis and various complexes. The positively charged metal hydroxide complex formed under acidic or neutral conditions according to the pH of the water electrically neutralizes the surface charge of the colloid, which is a negatively charged organic pollutant, by agglomeration by double layer compression. Organics are aggregated / precipitated.

상기한 바와 같은 전해산화에 의한 전기응집처리를 이용하면 폐수에 포함된 질소의 경우 전기적인 산화(Electrooxidation)에 의해서 질소가스와 물로 반응하여 제거되는바, 전해산화에 의한 1차 탈질공정시 암모니아성 질소(NH₃-N)(NH₄-N)는 아래의 [반응식 5]와 같이 질소가스(N₂)로 제거된다. [반응식 5]-(1)은 음극에서의 음극환원에 의한 탈질반응이고, [반응식 5]-(2)는 양극에서의 직접양극산화에 의한 탈질반응이며, [반응식 5]-(3) 및 [반응식 5]-(4)는 양극에서의 간접양극산화에 의한 탈질반응을 나타낸다.When the electroaggregation treatment by electrolytic oxidation as described above is used, the nitrogen contained in the waste water is removed by reacting with nitrogen gas and water by electrooxidation. Nitrogen (NH₃-N) (NH₄-N) is removed with nitrogen gas (N₂) as shown in Scheme 5 below. [Scheme 5]-(1) is the denitrification by cathodic reduction at the cathode, [Scheme 5]-(2) is the denitrification by direct anodic oxidation at the anode, [Scheme 5]-(3) and [Scheme 5]-(4) shows the denitrification reaction by indirect anodic oxidation at the positive electrode.

2NH4 + 2e → N2↑ + 4H2 ---------- (1)2NH 4 + 2e → N 2 ↑ + 4H 2 ---------- (1)

NH3 + 3OH- → 0.5N2↑ + 3H2O + 3e- ---------- (2) NH 3 + 3OH - → 0.5N 2 ↑ + 3H 2 O + 3e - ---------- (2)

2NH3 + 6Cl- → N2↑ + 6HCl + 6e- ---------- (3) 2NH 3 + 6Cl - → N 2 ↑ + 6HCl + 6e - ---------- (3)

2NH4 + + 3HOCl- → N2↑ + 3H2O + 5H- + 3Cl- ---------- (4) 2NH 4 + + 3HOCl - → N 2 ↑ + 3H 2 O + 5H - + 3Cl - ---------- (4)

그리고 상기의 반응과 함께 폐수에 포함된 염소(Cl)가 반응하여 차아염소산(HOCl)이 생성되는데 폐수에 포함된 암모니아성 질소(NH₃-N)(NH₄-N)가 제거됨에 따라 pH 가 낮아져 차아염소산(HOCl)의 분율이 증가하면 상기 차아염소산에 의한 간접산화반응이 촉진되는바, 차아염소산(HOCl)에 의한 간접산화반응은 아래의 [반응식 6]과 같다. [반응식 6]-(1),(2),(3),(4a) 또는 (4b)는 차아염소산(HOCl)에 의한 간접산화반응에 따른 암모니아성 질소(NH₄-N)가 질소가스(N₂)로 탈질 제거되는 탈산반응을 질소(N)의 이동경로에 따라 순차적으로 나타낸다.In addition to the above reaction, chlorine (Cl) contained in the waste water reacts to generate hypochlorous acid (HOCl), and the pH is lowered as the ammonia nitrogen (NH₃-N) (NH₄-N) contained in the wastewater is removed. Increasing the fraction of chloric acid (HOCl) promotes the indirect oxidation reaction by hypochlorous acid, the indirect oxidation reaction by hypochlorous acid (HOCl) is as shown in [Scheme 6]. [Scheme 6]-(1), (2), (3), (4a) or (4b) shows that ammonia nitrogen (NH₄-N) is a nitrogen gas (N₂) due to indirect oxidation by hypochlorous acid (HOCl). The deoxidation reaction denitrified by) is sequentially shown according to the migration route of nitrogen (N).

HOCl + NH4 + → NH2Cl + H2O + H+ ---------- (1)HOCl + NH 4 + → NH 2 Cl + H 2 O + H + ---------- (1)

HOCl + NH2Cl → NHCl2 + H2O ---------- (2)HOCl + NH 2 Cl → NHCl 2 + H 2 O ---------- (2)

NHCl2 + H2O → NOH + 2H+ + 2Cl- ---------- (3) NHCl 2 + H 2 O → NOH + 2H + + 2Cl - ---------- (3)

NOH + NH2Cl → N2↑ + H2O + H+ + Cl- ---------- (4a) NOH + NH 2 Cl → N 2 ↑ + H 2 O + H + + Cl - ---------- (4a)

NOH + NHCl2 → N2↑ + HOCl + H+ + Cl- ---------- (4b) NOH + NHCl 2 → N 2 ↑ + HOCl + H + + Cl - ---------- (4b)

한편, 폐수에 포함된 암모니아 성분 중 일부는 음극에서 발생되어지는 히드록시기(OH-)에 의하여 아질산성 질소(NO₂-N) 또는 질산성 질소(NO₃-N)로 질산화되어 후술할 황산화 탈질반응에 의한 2차 탈질공정에서 질소가스로 제거된다. 상기 암모니아성 질소(NH₃-N)의 질산화 반응은 아래의 [반응식 7]과 같다. [반응식 7]-(1)은 아질산성 질소(NO₂-N)로 탈질화하는 반응이고, [반응식 7]-(2)은 질산성 질소(NO₃-N)로 탈질화하는 반응이다.On the other hand, some of the ammonia contained in the waste water which is generated at the cathode hydroxy group (OH -) is nitrated to nitrite nitrogen (NO₂-N) or nitrate nitrogen (NO₃-N) by the sulfation denitrification will be described later Is removed with nitrogen gas in the secondary denitrification process. The nitrification reaction of the ammonia nitrogen (NH₃-N) is as shown in [Scheme 7]. [Scheme 7]-(1) is a reaction to denitrify with nitrite nitrogen (NO₂-N), and [Scheme 7]-(2) is a reaction to denitrify with nitrate nitrogen (NO₃-N).

NH3 + 7OH- → NO2 + 5H2O + 6e- ---------- (1) NH 3 + 7OH - → NO 2 + 5H 2 O + 6e - ---------- (1)

NH3 + 9OH- → NO3 + 6H2O + 8e- ---------- (2) NH 3 + 9OH - → NO 3 + 6H 2 O + 8e - ---------- (2)

본 발명의 제2공정인 전해산화에 의한 1차 탈질공정은 통상의 전해조(또는 전해관)를 사용하여 실시할 수 있는바, 상기 전해조(또는 전해관)는 현재 수많은 종류가 이미 공지되어 있으며, 본 발명에서는 도 2에 도시된 바와 같이 하나 또는 그 이상의 공지된 다른 전해조(또는 전해관)를 복합적으로 사용할 수 있다.The first step of denitrification by electrolytic oxidation, which is the second step of the present invention, can be carried out using a conventional electrolytic cell (or electrolytic tube), and many kinds of the electrolytic cell (or electrolytic tube) are already known at present. In the present invention, as shown in FIG. 2, one or more other known electrolytic cells (or electrolytic tubes) may be used in combination.

한편, 상기 전해산화에 의한 1차 탈질공정을 거친 폐수는 후술할 제3공정에 앞서 도 2의 도시와 같이 용기 내에서 질소가스(N2)를 방출시키는 것이 바람직하다.On the other hand, the wastewater undergoing the first denitrification step by the electrolytic oxidation is preferably discharged nitrogen gas (N 2 ) in the container as shown in Figure 2 prior to the third step to be described later.

[제3공정][Step 3]

본 발명의 제3공정으로서 티오황산나트륨(Na2S2O3) 주입공정을 살펴보면, 제2공정에 따른 폐수의 전해산화시 폐수에 하이포화염소산이온(OCl-)이 생성되는바, 상기 하이포화염소산이온(OCl-)은 강력한 살균력을 가지고 있어 후술할 황산화 탈질반응을 일으키는 황산화 미생물을 살균하게 되므로, 상기 황산화 미생물에 의한 황산화 탈질반응을 원활히 하기 위하여 상기 전해산화에 의한 1차 탈질공정을 거친 폐수를 수조에 유입하여 티오황산나트륨(Na2S2O3)을 주입함으로써 하이포화염소산이온(OCl-)을 제거하되, 상기 1차 탈질공정을 거쳐 수조에 유입되는 폐수 90~99.9[중량%]에 대하여 티오황산나트륨(Na2S2O3)을 0.1~10[중량%] 주입하여 상기 수조 내에서 24시간 내외를 경과함이 바람직하다. 상기 티오황산나트륨(Na2S2O3)과 하이포화염소산이온(OCl-)의 반응하여 황산나트륨(Na2S2O4)이 생성되는 반응은 아래의 [반응식 8]과 같다.A third step of the present invention Referring to sodium thiosulfate (Na 2 S 2 O 3) implantation process, the electrolytic high saturation hypochlorite ion in the waste water during the oxidation of waste water according to the second step (OCl -) are generated bar, the high saturation Chloric acid ions (OCl ) have a strong sterilizing ability to sterilize the sulfated microorganisms causing the sulfated denitrification reaction described later, so that the primary denitrification by the electrolytic oxidation to facilitate the sulfated denitrification reaction by the sulfated microorganisms. sodium thiosulfate by flowing the waste water subjected to the process in a water bath (Na 2 S 2 O 3) for injection by a high saturated hypochlorite ion (OCl -) a, wherein the first waste water flowing into the tank through the primary denitration step 90 to 99.9, but eliminate [ It is preferable to inject sodium thiosulfate (Na 2 S 2 O 3 ) in an amount of 0.1 to 10 [% by weight] with respect to the weight%, and then pass about 24 hours in the water bath. The reaction in which sodium sulfate (Na 2 S 2 O 4 ) is produced by the reaction of sodium thiosulfate (Na 2 S 2 O 3 ) with hypochlorite ion (OCl ) is shown in Scheme 8 below.

Na2S2O3 + OCl- → Na2SO4 + Cl Na 2 S 2 O 3 + OCl - → Na 2 SO 4 + Cl

[제4공정][Step 4]

상기한 바와 같이 전해산화에 의한 1차 탈질공정을 수행하여 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스(N₂)로 탈질하여 제거하거나 아질산성 질소(NO₂-N) 또는 질산성 질소(NO₃-N)로 질산화한 후 전해산화시 발생한 하이포화염소산(OCl-)이온을 제거한 다음에는, 제4공정으로서 공지된 황담체를 이용하여 상기 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 질소가스(N₂)로 탈질 제거하는 2차 탈질공정을 수행하는바, 상기 황담체를 이용한 황산화 탈질반응에 의한 2차 탈질공정을 하기에서 보다 상세히 살펴본다.As described above, ammonia nitrogen (NH₃-N) (NH₄-N) is removed by nitrogen gas (N₂) by performing a primary denitrification process by electrolytic oxidation, or nitrite nitrogen (NO₂-N) or nitric acid. nitrogen electrolytic high saturated acid generated during oxidation after nitrification in (NO₃-N) (OCl - ) after removing the ions, the fourth step by using a well-known sulfur carrier the nitrite nitrogen (NO₂-N) and nitrate as The secondary denitrification process of denitrification of nitrogen (NO₃-N) with nitrogen gas (N₂) is carried out. The secondary denitrification process by the sulfated denitrification using the sulfur carrier will be described in more detail below.

본 발명에 따른 2차 탈질공정은 공지된 황담체를 이용하는바, 상기 황담체는 황(S)과 탄산칼슘(CaCO₃)과 산화마그네슘(MgO)을 중량비로 6:3:1의 비율로 혼합하여 150℃로 용융한 다음 냉각-건조-파쇄한 것으로 앞서 언급한 바와 같이 이미 공지되어 있으며, 상기 공지의 황담체를 황탈질 미생물에 순응된 미생물과 함께 반응조에 투입한 후, 운전이 안정하게 이루어진 상태에서 1차 탈질공정 및 티오황산나트륨(Na2S2O3) 주입공정을 거친 폐수를 유입시켜 2차 탈질공정을 거치도록 함으로써, 폐수에 포함된 총질소(T-N)를 더욱 완벽히 제거할 수 있다.The secondary denitrification process according to the present invention uses a known yellow carrier, and the yellow carrier is mixed with sulfur (S), calcium carbonate (CaCO₃) and magnesium oxide (MgO) in a weight ratio of 6: 3: 1. It is already known as previously mentioned to melt at 150 ° C. and then cool-dry-crushed, and the known yellow carrier is added to the reactor together with the microorganisms acclimated to the denitrifying microorganisms, and then the operation is made stable. By introducing the wastewater that passed through the first denitrification process and the sodium thiosulfate (Na 2 S 2 O 3 ) injection process to undergo a second denitrification process, total nitrogen (TN) contained in the waste water can be more completely removed.

한편, 상기 황담체를 이용한 2차 탈질공정에서 황(S)은 황산화 미생물의 탈질반응을 위한 기질로 작용하고, 탄산칼슘(CaCO₃)은 탈질반응이 진행됨에 따라 저하되는 알카리도를 보충하여 미생물들이 원활히 황산화 탈질반응을 일으킬 수 있는 pH 6~8의 알카리도를 유지하도록 하며, 산화마그네슘(MgO)은 1차 탈질공정 후 잔류하는 미량의 암모니아성 질소(NH₄-N)를 탈질 제거하도록 하는바, 상기 황담체의 황산화 탈질반응은 앞서 언급한 [반응식 2]와 같고, 상기 탄산칼슘(CaCO₃)에 의한 반응은 알카리도의 보충은 [반응식 3]과 같으며, 산화마그네슘(MgO)에 의한 암모니아성 질소(NH₄-N)를 탈질반응은 [반응식 4]와 같다.On the other hand, in the secondary denitrification process using the yellow carrier, sulfur (S) acts as a substrate for denitrification of sulfated microorganisms, and calcium carbonate (CaCO₃) supplements alkalinity that is degraded as the denitrification reaction proceeds. Maintains an alkalinity of pH 6-8, which can cause sulfate denitrification, and magnesium oxide (MgO) denitrates traces of ammonia nitrogen (NH₄-N) remaining after the first denitrification process. The sulfated denitrification reaction of the yellow carrier is the same as in the above-mentioned [Scheme 2], the reaction by the calcium carbonate (CaCO₃) is the replenishment of alkalinity is the same as the [Scheme 3], and the ammonia by magnesium oxide (MgO) Denitrification of nitrogen (NH₄-N) is shown in [Scheme 4].

상기한 바와 같은 본 발명에 따른 폐수처리방법의 작용을 하기에서 살펴보면, 최초 처리하고자 하는 폐수의 유입량 90~99.5[중량%]에 대하여 0.5~10[중량%]의 염화나트륨(NaCl)을 주입함과 아울러 폐수의 알카리도가 pH 9가 될 때까지 가성소다(NaOH)를 주입하되 상기 폐수를 40~50℃로 가열하여 전해산화에 의한 탈질반응 및 황산화 탈질반응에 앞선 전처리(前處理) 공정을 수행한 후, 상기 폐수를 전해산화에 의한 전기응집처리하여 폐수에 포함된 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스(N₂)로 1차 탈질하여 제거한 다음, 티오황산나트륨(Na2S2O3)을 주입하여 상기 폐수의 전해산화시 발생한 하이포화염소산이온(OCl-)을 제거하고, 이후 황산화 미생물이 식생하는 공지의 황담체가 수용된 반응조에 상기 1차 탈질된 폐수를 투과하여 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)와 함께 잔류 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스(N₂)로 2차 탈질하여 제거함으로써, 폐수에 포함된 총질소(T-N)를 보다 완벽하게 제거할 수 있다.Looking at the action of the wastewater treatment method according to the present invention as described above, injecting 0.5-10 [wt%] of sodium chloride (NaCl) to the inflow of 90 ~ 99.5 [wt%] of the wastewater to be treated first; In addition, caustic soda (NaOH) is injected until the alkalinity of the wastewater reaches pH 9, and the wastewater is heated to 40 to 50 ° C. to carry out a pretreatment process prior to denitrification and sulfate denitrification by electrolytic oxidation. Then, the wastewater was electrocoagulated by electrolytic oxidation to remove firstly denitrified ammonia nitrogen (NH₃-N) (NH₄-N) contained in the wastewater with nitrogen gas (N₂), followed by sodium thiosulfate (Na 2). S 2 O 3 ) is injected to remove hypochlorite ions (OCl ) generated during electrolytic oxidation of the wastewater, and then permeate the primary denitrified wastewater into a reaction vessel containing a known yellow carrier, in which sulfated microorganisms are grown. Nitrite nitrogen (NO₂-N) and Residual ammonia nitrogen (NH₃-N) (NH₄-N) together with acidic nitrogen (NO₃-N) is removed by secondary denitrification with nitrogen gas (N₂) to more completely remove total nitrogen (TN) contained in the wastewater. Can be removed.

상기한 바와 같은 본 발명에 의하면, 폐수에 포함된 암모니아성 질소를 전해산화하여 탈질 제거함과 아울러 상기 폐수의 전해산화시 발생하는 하이포화염소산이온을 티오황산나트륨으로써 제거함에 따라 황탈질 미생물을 이용한 공지된 황담체로써 아질산성 질소 및 질산성 질소의 탈질이 가능하게 되므로, 결과적으로 폐수에 포함된 총질소를 더욱 완벽하게 탈질 제거할 수 있는 효과가 있다.According to the present invention as described above, the denitrification by electrolytic oxidation of the ammonia nitrogen contained in the wastewater and the removal of hypochlorite ions generated during the electrolytic oxidation of the wastewater with sodium thiosulfate is known using a denitrifying microorganism Denitrification of nitrite nitrogen and nitrate nitrogen is possible as the yellow carrier, and as a result, there is an effect of more completely denitrifying the total nitrogen contained in the waste water.

도 1은 본 발명에 따른 폐수처리방법을 나타내는 공정도1 is a process chart showing a wastewater treatment method according to the present invention

도 2는 본 발명의 바람직한 실시예에 따른 공정도2 is a process diagram according to a preferred embodiment of the present invention

Claims (3)

폐수 90~99.5[중량%]에 대하여 0.5~10[중량%]의 염화나트륨(NaCl)을 주입함과 아울러 폐수의 농도가 pH 9가 될 때까지 가성소다(NaOH)를 주입하되 상기 폐수를 40~50℃로 가열하는 제1공정과; 상기 폐수를 전해산화하여 폐수에 포함된 암모니아성 질소(NH₃-N)(NH₄-N)를 질소가스로 1차 탈질 제거하는 제2공정과; 제2공정에 따른 폐수의 전해산화시 발생한 하이포화염소산이온(OCl-)을 제거하기 위하여 티오황산나트륨이온(Na2S2O3)을 폐수에 주입하는 제3공정과; 상기 하이포화염소산이온(OCl-)이 제거된 폐수를 공지된 황담체에 의한 황산화 탈질반응을 이용하여 아질산성 질소(NO₂-N) 및 질산성 질소(NO₃-N)를 질소가스로 2차 탈질 제거하는 제4공정을 포함하는 것을 특징으로 하는 폐수처리방법.Inject 0.5 ~ 10 [wt%] of sodium chloride (NaCl) to 90 ~ 99.5 [wt%] of wastewater and add caustic soda (NaOH) until the concentration of wastewater reaches pH 9. A first step of heating to 50 ° C .; A second step of electrolytic oxidation of the wastewater to first denitrify and remove ammonia nitrogen (NH₃-N) (NH 수 -N) contained in the wastewater with nitrogen gas; A third step of injecting sodium thiosulfate ion (Na 2 S 2 O 3 ) into the waste water to remove hypochlorite ions (OCl ) generated during electrolytic oxidation of the waste water according to the second step; Secondary nitrite nitrogen (NO₂-N) and nitrate nitrogen (NO₃-N) are secondary to nitrogen gas by using a sulfidation denitrification reaction using a known sulfur carrier in the wastewater from which the hypochlorite ion (OCl ) is removed. A wastewater treatment method comprising a fourth step of denitrification. 제1항에 있어서;The method of claim 1; 상기 제4공정은, 황(S)과 탄산칼슘(CaCO₃)과 산화마그네슘(MgO)을 중량비로 6:3:1의 비율로 혼합하여 150℃로 용융한 다음 냉각-건조-파쇄한 황담체를 황탈질 미생물에 순응된 미생물과 함께 반응조에 투입한 후 폐수를 유입시켜 황산화 탈질반응 시키는 것을 특징으로 하는 폐수처리방법.In the fourth step, sulfur (S), calcium carbonate (CaCO₃) and magnesium oxide (MgO) are mixed at a weight ratio of 6: 3: 1, melted at 150 ° C, and then cooled, dried, and crushed sulfur carriers. Waste water treatment method characterized in that the desulfurization and denitrification by injecting the waste water into the reaction tank with the microorganisms adapted to the denitrification microorganisms. 제1항 또는 제2항에 있어서;The method of claim 1 or 2; 상기 3공정은, 제1공정과 제2공정을 거친 폐수 90~99.9[중량%]에 대하여 티오황산나트륨(Na2S2O3)을 0.1~10[중량%] 주입하여 수조 내에서 24시간 경과하는 것을 특징으로 하는 폐수처리방법.In step 3 , 0.1 to 10 [% by weight] of sodium thiosulfate (Na 2 S 2 O 3 ) was injected into the wastewater 90 to 99.9 [% by weight] which passed through the first and second steps, followed by 24 hours in a water tank. Wastewater treatment method characterized in that.
KR1020050112558A 2005-11-23 2005-11-23 Method for wastewater treatment KR100707476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050112558A KR100707476B1 (en) 2005-11-23 2005-11-23 Method for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050112558A KR100707476B1 (en) 2005-11-23 2005-11-23 Method for wastewater treatment

Publications (2)

Publication Number Publication Date
KR20050122181A true KR20050122181A (en) 2005-12-28
KR100707476B1 KR100707476B1 (en) 2007-04-16

Family

ID=37294120

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050112558A KR100707476B1 (en) 2005-11-23 2005-11-23 Method for wastewater treatment

Country Status (1)

Country Link
KR (1) KR100707476B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890605B1 (en) * 2007-05-23 2009-03-27 주식회사 마이크로포어 Microorganism media for treatment of wastewater and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431394B1 (en) * 2002-03-21 2004-05-14 한국과학기술연구원 In-situ and Ex-situ Remediation of Groundwater and Remediation of Meander filtrate Water Using Autotrophic Sulfur Oxidizing Bacteria
KR100467006B1 (en) * 2003-05-09 2005-01-24 (주)에이엠티기술 Method of removal a nitrogenous compound from waste water and apparatus thereof
KR100556686B1 (en) * 2005-08-29 2006-03-10 고등기술연구원연구조합 The method of nitrogen removal in plating wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100890605B1 (en) * 2007-05-23 2009-03-27 주식회사 마이크로포어 Microorganism media for treatment of wastewater and its manufacturing method

Also Published As

Publication number Publication date
KR100707476B1 (en) 2007-04-16

Similar Documents

Publication Publication Date Title
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
WO2006112521A1 (en) Method of electrolyzing wastewater containing ammonia nitrogen and apparatus therefor
CN107235537B (en) Electrochemical nitrogen and phosphorus removal method for sewage
KR20060130455A (en) Electrodialysis reversal and electrochemical wastewater treatment process of compound containing nitrogen
CN110902895A (en) Electrochemical membrane separation method for removing and recovering ammonia nitrogen in landfill leachate
KR101834438B1 (en) Apparatus and method for treating desulfurization waste water
KR101866425B1 (en) Apparatus for treatment of high concentration organic wastewater
CN107381892A (en) A kind of handling process of high-concentration ammonia nitrogenous wastewater
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
KR100492471B1 (en) A continuous electrical analytic oxidation reactor of waste water with high concentrated nitrogen compound
KR101533979B1 (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
KR101046942B1 (en) Water treatment method using electrolysis
KR100707476B1 (en) Method for wastewater treatment
JPH07100466A (en) Method for treating waste water
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
KR20060046358A (en) The method for electrochemical wastewater treatment using boron doped diamond electrodes
KR101420656B1 (en) Method for treatment of wastewater containing cyanide
CN104326607B (en) A kind of method processing coking nanofiltration strong brine
JP2009028629A (en) Treatment method of waste water containing nitrate nitrogen and calcium ion
KR0180898B1 (en) Waste water disposing method using electrolytic wet oximetry
JP2012040524A (en) Electrolytic treatment apparatus and electrolytic treatment method
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
JP2006272060A (en) Continuous treatment method and device for waste water containing nitrate nitrogen
CN210065445U (en) System for handle high toxicity high concentration organic waste water
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early publication
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130328

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160406

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170511

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180405

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 13

R401 Registration of restoration