KR20050106825A - Recovery of phosphoric acid from semiconductor waste etchant - Google Patents

Recovery of phosphoric acid from semiconductor waste etchant Download PDF

Info

Publication number
KR20050106825A
KR20050106825A KR1020040031870A KR20040031870A KR20050106825A KR 20050106825 A KR20050106825 A KR 20050106825A KR 1020040031870 A KR1020040031870 A KR 1020040031870A KR 20040031870 A KR20040031870 A KR 20040031870A KR 20050106825 A KR20050106825 A KR 20050106825A
Authority
KR
South Korea
Prior art keywords
phosphoric acid
etching solution
waste
crystal layer
semiconductor
Prior art date
Application number
KR1020040031870A
Other languages
Korean (ko)
Other versions
KR100593833B1 (en
Inventor
김광주
김수연
김재경
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020040031870A priority Critical patent/KR100593833B1/en
Publication of KR20050106825A publication Critical patent/KR20050106825A/en
Application granted granted Critical
Publication of KR100593833B1 publication Critical patent/KR100593833B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Weting (AREA)

Abstract

본 발명은 반도체 폐에칭액으로부터 초고순도 인산의 분리ㆍ회수방법에 관한 것으로서, 더욱 상세하게는 반도체 에칭공정에서 배출되는 폐에칭액을 재활용하는 방법으로서, 실리콘 웨이퍼의 질화규소막(Si3N4)에칭공정에서 배출되는 폐에칭액으로부터 첨가제나 용매의 첨가 없이 경막 용융 결정화 과정을 수행함으로써 초고순도 인산을 각각 분리ㆍ회수하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering ultra-high purity phosphoric acid from a semiconductor waste etching solution, and more particularly, to a method of recycling waste etching liquid discharged from a semiconductor etching process, wherein a silicon nitride film (Si 3 N 4 ) etching process for a silicon wafer is performed. The present invention relates to a method for separating and recovering ultrahigh-purity phosphoric acid, respectively, by performing a film-melt crystallization process without adding an additive or a solvent from the waste etching solution discharged from the wastewater.

Description

반도체 폐에칭액으로부터 초고순도 인산의 분리ㆍ회수방법{Recovery of phosphoric acid from semiconductor waste etchant} Separation and recovery method of ultra high purity phosphoric acid from semiconductor waste etching solution

본 발명은 반도체 폐에칭액으로부터 초고순도 인산의 분리ㆍ회수방법에 관한 것으로서, 더욱 상세하게는 반도체 에칭공정에서 배출되는 폐에칭액을 재활용하는 방법으로서, 실리콘 웨이퍼의 질화규소막(Si3N4) 에칭공정에서 배출되는 폐에칭액으로부터 첨가제나 용매의 첨가 없이 경막 용융 결정화 과정을 수행함으로써 초고순도의 인산을 각각 분리ㆍ회수하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering ultrapure phosphoric acid from a semiconductor waste etching solution, and more particularly, to a method of recycling waste etching liquid discharged from a semiconductor etching process, wherein a silicon nitride film (Si 3 N 4 ) etching process of a silicon wafer is performed. The present invention relates to a method for separating and recovering ultra-high purity phosphoric acid by performing a film-melt crystallization process without addition of an additive or a solvent from the waste etching solution discharged from the reactor.

불산(HF), 질산(HNO3), 초산(CH3COOH), 인산(H3PO4), 황산(H 2SO4) 등의 고순도 무기산은 반도체 제조공정에서 습식 에칭액(wet etchant)으로서 광범위하게 사용되고 있다. 에칭공정 이후 폐기되는 상기 무기산은 pH가 매우 낮은 강산이며, 에칭액 내부에 포함된 금속 불순물은 웨이퍼(기판)상의 여러 막과 전극을 구성하는 성분으로서 환경에 매우 유해한 물질이다. 상기 유해성 폐산의 통상적인 처리방법으로서 중화, 소각, 역삼투, 증발법 등이 알려져 있다.High purity inorganic acids such as hydrofluoric acid (HF), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), phosphoric acid (H 3 PO 4 ) and sulfuric acid (H 2 SO 4 ) are widely used as wet etchant in semiconductor manufacturing processes. Is being used. The inorganic acid discarded after the etching process is a strong acid having a very low pH, and the metal impurities contained in the etching solution are substances that constitute various films and electrodes on the wafer (substrate) and are very harmful to the environment. As a conventional treatment method for the hazardous waste acid, neutralization, incineration, reverse osmosis, evaporation, and the like are known.

중화법(neutralization)은 폐산의 처리방법으로서 일반적으로 이용되고 있다. 폐산을 중화하기 위해서 여러 가지 염기(base)가 중화시점에 도달할 때까지 계속 투입된다. 상기방법의 단점은 폐산을 처리하기 위해서 통상 처리 폐산양에 비해 과량의 염기가 필요하며 동시에 중화반응에 동반되는 과도한 중화열과 부산물로서 다량의 염이 발생되는 점이다[미국 특허 제5,603,812호, 미국 특허 제4,540,512호, 미국 특허 제4,222,997호].Neutralization is generally used as a method for treating waste acid. In order to neutralize the waste acid, various bases are continuously added until the point of neutralization is reached. The disadvantage of this method is that excessive base is required to treat the waste acid, compared to the treated waste goat, and at the same time, excessive heat of neutralization accompanied with the neutralization reaction and a large amount of salt are generated as a by-product [US Patent No. 5,603,812, US Patent] 4,540,512, US Pat. No. 4,222,997].

역삼투법(reverse osmosis)은 역삼투압에 의하여 폐산을 여과시스템에 통과시켜 유출액 내의 산농도를 통상적인 처리가 가능한 수준으로 감소시키는 방법이다. 상기 방법은 설치 및 유지관리가 어려운 고가의 여과시스템이 필요하며 소량의 저농도 폐기물 처리에 효과가 있다[대한민국 공개 특허 제2003-53247호, 대한민국 공개 특허 제2002-51206호].Reverse osmosis is a method by which waste acid is passed through a filtration system by reverse osmosis to reduce the acid concentration in the effluent to a level capable of normal treatment. The method requires an expensive filtration system that is difficult to install and maintain and is effective in treating a small amount of low concentration waste (Korean Patent Publication No. 2003-53247 and Korean Patent Publication No. 2002-51206).

증발법(evaporation)은 수용성 폐산 용액으로부터 물을 제거하기 위하여 과도한 에너지소모를 요구한다[미국 특허 제4,980,032호, 미국 특허 제4,197,139호, 미국 특허 제5,082,645호].Evaporation requires excessive energy consumption to remove water from aqueous waste acid solutions (US Pat. No. 4,980,032, US Pat. No. 4,197,139, US Pat. No. 5,082,645).

소각(incineration)은 증발법과 유사하게 과도한 에너지소모가 필요하며 폐산의 분해로부터 발생되는 SOx 및 NOx에 의해서 산성비(acid rain)의 발생이 우려되며 환경적으로 부적절한 방법이다[미국 특허 제4,490,347호, 미국 특허 제4,376,107호, 미국 특허 제3,635,664호].Incineration requires excessive energy consumption, similar to the evaporation method, and is an environmentally inadequate method due to the concern of acid rain caused by SO x and NO x generated from decomposition of waste acid [US Pat. No. 4,490,347]. , US Pat. No. 4,376,107, US Pat. No. 3,635,664.

현재의 폐산 처리방법에 대한 한계성으로 인해서 저렴하고, 환경 친화적으로 산 폐기물의 발생량 감소 및 재활용을 위한 기술이 요구되고 있다. Due to the limitations of current waste acid treatment methods, there is a need for a technology that is inexpensive, environmentally friendly, and reduces the amount of acid waste generated and recycled.

본 발명의 처리 및 재활용 대상인 반도체 에칭액은 실리콘 웨이퍼 에칭과정에서 발생된다. 반도체 소자 제조공정 중 포토리소그래피 공정은 포토레지스트를 웨이퍼(기판)에 도포하고 패턴을 형성하는 공정에 이어 에칭(etching)공정으로 마무리된다. 반도체 폐에칭액(waste etchant)은 습식 에칭공정(wet acid etching)에서 배출된다. NMOS(N-metal-oxide-semiconductor)의 경우 웨이퍼 표면에 형성된 여러 막으로부터 선택한 부분이외의 것을 제거하는 과정으로서, 즉 회로를 형성시키는 공정으로 포토레지스터 패턴을 마스크로 이용하여 불필요한 부분이 에칭액에 의해서 제거된다. 일반적으로 사용되는 에칭액을 웨이퍼 표면막 재질에 따라 다음 표 1에 나타내었다.The semiconductor etching solution, which is the object of processing and recycling of the present invention, is generated during the silicon wafer etching process. The photolithography process of the semiconductor device manufacturing process is completed by the process of applying a photoresist to a wafer (substrate) and forming a pattern, followed by an etching process. Semiconductor waste etchant is discharged from wet acid etching. In the case of N-metal-oxide-semiconductor (NMOS), a process of removing other than selected portions from various films formed on the wafer surface, that is, forming circuits, is performed by using a photoresist pattern as a mask. Removed. In general, the etching solution used is shown in Table 1 according to the wafer surface film material.

막 재질Membrane material 에칭액Etching solution 산화막(SiO2)Oxide (SiO 2 ) HF, HF+NH4FHF, HF + NH 4 F 질화규소(Si3N4), 산화질화막(SiON)Silicon Nitride (Si 3 N 4 ), Nitride Oxide (SiON) H3PO4, HFH 3 PO 4 , HF 실리콘(Poly-Si)Silicon (Poly-Si) HF/HNO3, KOHHF / HNO 3 , KOH 알루미늄(Al(Si)Cu)Aluminum (Al (Si) Cu) 혼합산Mixed acid

상기 표 1로부터 본 발명의 처리대상인 반도체 폐에칭액 성분의 대부분을 차지하는 인산(H3PO4)은 질화규소막(Si3N4)의 에칭공정에 이용되고 있음을 알 수 있다.From Table 1, it can be seen that phosphoric acid (H 3 PO 4 ), which occupies most of the semiconductor waste etching solution component of the present invention, is used in the etching process of the silicon nitride film (Si 3 N 4 ).

질화규소막(Si3N4)은 낮은 열 팽창율과 높은 강도 때문에 현재 사용되고 있는 세라믹 재료 중에서 열ㆍ충격에 가장 강한 재료이며 구성되어 있는 원자간의 강한 공유결합에서 기인된 높은 유전상수로 인해서 뛰어난 기계적 내변형, 화학적 내부식성을 보이며 LOCOS(local oxidation of silicon)의 마스크 층, 집적회로(integrated circuit)의 보호층으로 이용된다. 결과적으로, SiO2의 보호막 역할과 동시에 마스크(mask)역할을 하여 게이트 패턴 회로(gate pattern circuit)를 형성한다.Silicon nitride film (Si 3 N 4 ) is the most resistant to thermal and impact among the ceramic materials currently used because of its low thermal expansion rate and high strength, and its excellent mechanical resistance due to its high dielectric constant resulting from the strong covalent bonds between its atoms. It exhibits chemical corrosion resistance and is used as a mask layer of local oxidation of silicon (LOCOS) and a protective layer of integrated circuit. As a result, a gate pattern circuit is formed by acting as a mask at the same time as the protective film of SiO 2 .

질화규소막(Si3N4)은 HF, 완충 HF(buffered HF), 인산(H3PO4)으로 에칭될 수 있으며 SiO2에 대한 선택적 에칭특성 때문에 일반적으로 고온 인산이 주로 사용된다. 질화규소막(silicon nitride)과 인산과의 반응식은 다음과 같다.Silicon nitride films (Si 3 N 4 ) can be etched with HF, buffered HF (phosphorused HF), phosphoric acid (H 3 PO 4 ) and high temperature phosphoric acid is generally used because of the selective etching characteristics for SiO 2 . The reaction formula of silicon nitride and phosphoric acid is as follows.

3Si3N4 + 27H2O + 4H3PO4 ---> 4(NH4) 3PO4 + 9H2SiO3 3Si 3 N 4 + 27H 2 O + 4H 3 PO 4 ---> 4 (NH 4 ) 3 PO 4 + 9H 2 SiO 3

반응식으로부터 질화규소의 질소는 인산암모늄, 규소는 규산으로 존재하였으며 르샤틀리에 원리(Le Chatelier's principle)에 의해 규산(H2SiO3)성분은 웨이퍼상의 SiO2 에칭을 저해하는 것으로 판단된다.From the reaction scheme, nitrogen of silicon nitride was present as ammonium phosphate and silicon as silicic acid, and according to Le Chatelier's principle, silicic acid (H 2 SiO 3 ) component was judged to inhibit SiO 2 etching on the wafer.

Si3N4의 습식 에칭공정에서 배출되는 반도체 폐에칭액은 함유되어 있는 산을 금속 불순물과 염으로부터 분리ㆍ회수할 경우 고부가가치 제품으로서 재활용될 수 있는 전자산업의 대량 부산물로서 관심이 집중되고 있다. The semiconductor waste etching solution discharged from the wet etching process of Si 3 N 4 is attracting attention as a large by-product of the electronic industry that can be recycled as a high value-added product when the acid contained therein is separated and recovered from metal impurities and salts.

대한민국 공개 특허 제2004-10825호는 인산, 질산 및 초산으로 이루어진 반도체 에칭폐액을 고온에서 1차 농축시켜 인산 함량 70 ∼ 80중량%의 정제 폐액으로 제조시킨 후 암모니아와 반응시켜 98% 제1인산 암모늄 제조기술에 관해서 공지하였다. Korean Laid-Open Patent No. 2004-10825 discloses a semiconductor etching waste liquid consisting of phosphoric acid, nitric acid and acetic acid, which is first concentrated at a high temperature to prepare a purified waste liquid having a phosphoric acid content of 70 to 80 wt%, and then reacted with ammonia to react 98% ammonium phosphate. Known production techniques.

금속 성분 및 다량의 염, 산을 포함한 폐 에칭액으로부터 유용한 성분의 회수 방법으로서 다음과 같은 기술이 공지되어 있다. As a method for recovering a useful component from a waste etching solution containing a metal component and a large amount of salts and acids, the following techniques are known.

미국 특허 제5,149,515호는 Fe, Cr, Ni, Al, Zr 등 금속이온을 함유한 표면 처리 폐수(세정, 에칭)로부터 300 ∼ 400 ℃에서 스프레이와 응축을 통해서 질산(HNO3) 또는 질산과 불산(HF)의 혼합물 회수에 관한 기술을 공지하고 있다.U.S. Patent No. 5,149,515 discloses nitric acid (HNO 3 ) or nitric acid and hydrofluoric acid through spraying and condensation at surface treatment wastewater (cleaning, etching) containing metal ions such as Fe, Cr, Ni, Al, Zr (300 ° C). Techniques for recovering mixtures of HF) are known.

일본 특허 공개 평4-101912호는 FeCl3 용액에 의한 Ni-Fe 합금 에칭에서 배출된 폐 에칭용액과 O3 가스를 반응시켜 MnO2, FeCl2ㆍ4H2O을 회수하였으며, FeCl3 용액은 에칭용액으로서 재활용하였다.Japanese Patent Publication No. Hei 4-101912 discloses by reacting the waste etching solution and the O 3 gas ejected from the Ni-Fe alloy etching with FeCl 3 solution was recovered MnO 2, FeCl 2 and 4H 2 O, FeCl 3 solution was etched Recycled as a solution.

일본 특허 공개 평4-346680호는 Al foil 에칭과정에서 발생되는 폐액으로부터 고순도 AlCl3ㆍ6H2O와 HCl를 회수하였으며 잔여액은 에칭액으로 재활용되었다.Japanese Patent Application Laid-Open No. 4-346680 recovered high-purity AlCl 3 .6H 2 O and HCl from the waste liquid generated during the Al foil etching process, and the remaining liquid was recycled into the etching liquid.

그러나, 지금까지 반도체 폐에칭액에 포함되어 있는 금속 불순물의 제거 및 인산의 고순도 분리ㆍ회수방법이 공지된 바는 없다. However, there is no known method for removing metal impurities contained in the semiconductor waste etching solution and separating and recovering the high purity of phosphoric acid.

이에, 본 발명자들은 반도체 폐에칭액으로부터 인산을 고순도로 분리, 회수하기 위하여 연구한 결과, 특별한 용매나 장치가 필요하지 않은 경막 용융 결정화 조작을 거쳐 높은 순도를 지닌 인산을 분리ㆍ회수하는 방법을 개발함으로써 본 발명을 완성하였다.Therefore, the present inventors have studied to separate and recover phosphoric acid from the semiconductor waste etching solution with high purity. As a result, by developing a method for separating and recovering high purity phosphoric acid through a film-melt crystallization operation requiring no special solvent or device, The present invention has been completed.

따라서, 본 발명은 반도체 폐에칭액을 재활용하는 방법으로서, 상기 폐에칭액으로부터 초고순도 인산을 분리ㆍ회수하는 방법을 제공하는 데 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for recycling a semiconductor waste etching solution, wherein the ultrapure phosphoric acid is separated and recovered from the waste etching solution.

본 발명은 The present invention

1) 실리콘 웨이퍼의 질화규소막(Si3N4) 에칭공정에서 배출되는 인산이 포함된 폐에칭액을 -20 ∼ 30 ℃로 유지시킨 후, 인산 종(seed) 결정을 접종하고, 상기 폐에칭액을 0.1 ∼ 10 K/min의 냉각속도로 -40 ∼ 20 ℃까지 냉각시켜 인산 결정층을 형성시키는 단계; 및1) After maintaining the waste etching solution containing phosphoric acid discharged from the silicon nitride film (Si 3 N 4 ) etching process of the silicon wafer at -20 ~ 30 ℃, inoculated seed crystals and inoculated the waste etching solution 0.1 Cooling to −40 to 20 ° C. at a cooling rate of ˜10 K / min to form a phosphate crystal layer; And

2) 상기 인산 결정층을 0.01 ∼ 10 K/min의 속도로 0 ∼ 40 ℃까지 부분 용융시켜 결정층의 불순물을 제거하여 정제하는 단계2) partially melting the phosphate crystal layer to 0-40 ° C. at a rate of 0.01-10 K / min to remove impurities from the crystal layer to purify

를 포함하여 이루어진 반도체 폐에칭액으로부터 초고순도 인산을 분리ㆍ회수하는 방법에 그 특징이 있다.It is characterized by a method of separating and recovering ultra-high purity phosphoric acid from a semiconductor waste etching solution comprising a.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 실리콘 웨이퍼의 질화규소막(Si3N4) 에칭공정에서 배출되는 인산이 포함된 폐에칭액으로부터 첨가제나 용매의 첨가 없이 결정층을 형성시키는 경막 용융 결정화 과정과 결정층을 부분용융하여 정제하는 과정을 수행함으로서 초고순도의 인산을 각각 분리, 회수하는 방법에 관한 것이다.The present invention relates to a film-melt crystallization process for forming a crystal layer without addition of an additive or a solvent from a waste etching solution containing phosphoric acid discharged from a silicon nitride film (Si 3 N 4 ) etching process of a silicon wafer, and partially melting and refining the crystal layer. The present invention relates to a method for separating and recovering ultrapure phosphoric acid, respectively.

본 발명에 사용한 반도체 폐에칭액의 금속 불순물은 Al 1 ∼ 1,000 ppb, As 1 ∼ 3,000 ppb, Ca 1 ∼ 4,000 ppb, Cd 1 ∼ 100 ppb, Cu 1 ∼ 100 ppb, Fe 1 ∼ 1,000 ppb, K 1 ∼ 1,000 ppb, Li 1 ∼ 50 ppb, Na 1 ∼ 100,000 ppb, Ni 1 ∼ 10 ppb, Pb 1 ∼ 50 ppb, Si 1 ∼ 20,000 ppb Sn 1 ∼ 50 ppb, Mo 1 ∼ 1,000 ppb가 함유되어 있으며, 폐에칭액을 구성하는 주요 산성분은 인산이다. Metal impurities of the semiconductor waste etching solution used in the present invention are Al 1 to 1,000 ppb, As 1 to 3,000 ppb, Ca 1 to 4,000 ppb, Cd 1 to 100 ppb, Cu 1 to 100 ppb, Fe 1 to 1,000 ppb, K 1 to 1,000 ppb, Li 1 to 50 ppb, Na 1 to 100,000 ppb, Ni 1 to 10 ppb, Pb 1 to 50 ppb, Si 1 to 20,000 ppb Sn 1 to 50 ppb, Mo 1 to 1,000 ppb, waste etching solution The main acid component constituting is phosphoric acid.

먼저, 도 1에 나타낸 바와 같이, 경막 용융 결정화 조작을 거쳐 반도체 폐에칭액으로부터 초고순도 인산을 분리, 회수하는 방법은 다음과 같다.First, as shown in FIG. 1, the method of separating and recovering ultra-high-purity phosphoric acid from a semiconductor waste etching liquid through a film | membrane melt crystallization operation is as follows.

상기 1) 단계는 초고순도 인산을 분리, 회수하기 위해 인산 종결정을 투입하여 인산 결정층을 형성시키는 단계로서, 먼저 반도체 폐에칭액을 경막 용융 결정화기에 공급하여 -20 ∼ 30 ℃로 유지시킨다. 이때, 상기온도를 유지시키기 위하여 냉매로서 에틸렌 글리콜과 물의 혼합물을 사용하는 것이 바람직하다. Step 1) is a step of forming a phosphate crystal layer by injecting phosphate seed crystals to separate and recover ultra-high purity phosphoric acid. First, the semiconductor waste etching solution is supplied to a film molten crystallizer and maintained at -20 to 30 ° C. At this time, it is preferable to use a mixture of ethylene glycol and water as the refrigerant to maintain the temperature.

고순도 인산을 제조하기 위한 경막 용융 결정화 조작에서는 결정층을 형성하기 위한 냉각표면의 온도와 과냉각도가 결정의 순도를 결정하게 되는 가장 중요한 변수가 된다. 따라서, 통상 반도체 웨이퍼 질화규소막의 에칭용액으로 사용되는 인산의 농도범위를 고려해서 인산용액의 유지 온도는 대략 포화온도보다 0 ∼ 10 ℃ 정도 낮은 -20 ∼30 ℃이 바람직하다.In the film melt crystallization operation for producing high purity phosphoric acid, the temperature and subcooling of the cooling surface for forming the crystal layer are the most important variables that determine the purity of the crystal. Therefore, in consideration of the concentration range of phosphoric acid normally used as the etching solution of the semiconductor wafer silicon nitride film, the holding temperature of the phosphoric acid solution is preferably -20 to 30 ° C, which is approximately 0 to 10 ° C lower than the saturation temperature.

이후 인산 종(seed) 결정은 경막 용융 결정화기에 투입된다. 반도체 폐에칭액으로부터 초고순도 인산의 분리, 회수에서 인산 종(seed)결정이 투입되는 이유는 실리콘 웨이퍼를 구성하는 여러 금속 불순물, 염과 낮은 온도에서의 높은 점성으로 인해서 자발적인 핵 생성을 유도하기 어렵기 때문이다. 따라서, 자발적인 핵생성 유도와 미세결정의 급격한 생성을 유도하여 잔류액과의 분리 문제를 야기하는 2차 핵생성 억제 때문에 인산 종(seed) 결정의 양은 폐에칭액에 대하여 1 ∼ 10 중량%가 바람직하다. Phosphoric acid seed crystals are then introduced into the dura melt crystallizer. The reason why phosphate seed crystals are introduced in the separation and recovery of ultra-high purity phosphoric acid from semiconductor waste etching solution is that it is difficult to induce spontaneous nucleation due to various metal impurities, salts and high viscosity at low temperature which constitute silicon wafer. Because. Therefore, the amount of phosphate seed crystals is preferably 1 to 10% by weight with respect to the waste etching solution due to the suppression of secondary nucleation which induces spontaneous nucleation and rapid formation of microcrystals, causing separation problems with the residual liquid. .

또한, 인산 종결정의 형상과 입도범위는 평균입경 0.1 ∼ 3 mm인 침상형 결정인 것이 바람직하다. 이렇게 투입된 인산 종결정은 경막 용융 결정화기내에서 핵 생성 및 결정 성장을 유도하여 침상형의 인산 결정층을 형성시킨다. 상기 인산 종(seed)결정 투입 후 0.1 ∼10 K/min의 속도로 -40 ∼ -20 ℃ 까지 냉각시켜 인산 결정층을 형성시킨다. 일반적으로 종 결정화에서 냉각속도가 빠를 경우, 매우 엉성한 작은 결정의 대량 생성 및 응집에 의해서 불순물을 다량 포함한 결정층 생성이 일어나며 냉각속도가 느릴 경우, 결정성장속도 및 핵생성 속도가 느려지기 때문에 순수한 결정을 제조할 수 있지만, 경제성 측면에서 비교적 적은 생산량이 문제점으로 대두된다. 따라서, 상기 두 가지 점을 절충할 수 있는 범위에서 냉각속도를 결정하는 것이 바람직하다. In addition, the shape and particle size range of the phosphate seed crystal are preferably needle-shaped crystals having an average particle diameter of 0.1 to 3 mm. The phosphate seed crystals thus injected induce nucleation and crystal growth in the duramelt crystallizer to form acicular phosphate crystal layers. After the seed phosphate seed crystal is charged, the phosphoric acid crystal layer is formed by cooling to -40 to -20 ° C at a rate of 0.1 to 10 K / min. In general, when the cooling rate is high in species crystallization, the formation of crystal layers containing a large amount of impurities occurs by mass formation and aggregation of very small small crystals, and when the cooling rate is slow, the crystal growth rate and nucleation rate are slowed down. Can be produced, but in terms of economy, relatively low yields are a problem. Therefore, it is desirable to determine the cooling rate in a range where the two points can be compromised.

상기 2) 단계는 성장된 인산 결정층을 밀도차에 의해 잔류액으로부터 분리하고, 상기 인산 결정층을 0.01 ∼ 10 K/min의 가열속도로 0 ∼ 40 ℃까지 부분 용융시켜 정제한 후 남은 결정층을 녹여서 초고순도 인산을 분리ㆍ회수한다. In step 2), the grown phosphate crystal layer is separated from the residual liquid by the density difference, and the phosphate crystal layer is partially melted and purified to 0 to 40 ° C. at a heating rate of 0.01 to 10 K / min. Dissolve and recover ultra-high purity phosphoric acid.

부분 용융(sweating)조작은 잔류액이 부착된 결정표면을 일부 용융시켜 결정내부와 잔류액의 불순물을 제거하는 것이다. 결정의 부분 용융 온도는 회수되는 인산 결정의 농도와 상평형상의 인산 용융점 데이터로부터 0 ∼10 ℃ 정도 높은 범위인 0 ∼ 40 ℃으로 설정한다. 주로 불순물이 결정표면에 존재할 경우, 유사한 결정층 생성조건에서 부분 용융 온도와 생성된 결정의 용융 온도차이가 커질수록, 불순물의 제거효율은 높아지게 된다.Partial sweating is the removal of impurities in the crystals and the residual liquid by partially melting the crystal surface to which the residual liquid adheres. The partial melting temperature of the crystal is set to 0 to 40 ° C., which is a range as high as 0 to 10 ° C. from the concentration of the phosphate crystal recovered and the phase equilibrium phosphoric acid melting point data. In the case where impurities are mainly present on the crystal surface, as the difference between the partial melting temperature and the melting temperature of the produced crystal becomes larger under similar crystal layer formation conditions, the removal efficiency of the impurity becomes higher.

부분 용융시의 가열속도는 생성된 인산 결정층의 구조 및 결정층 내에서의 불순물 이동속도와 밀접한 관련이 있다. 즉, 냉각속도가 빠른 조건에서 결정층은 다공성의 매우 엉성한 양상을 보이며 높은 불순물 함량을 보인다. 이 경우 빠른 가열속도로서 부분 용융 조작이 될 경우, 생성된 결정층의 높은 순도 향상효과를 기대할 수 있다. 본 발명에서는 부분 용융양, 불순물 함유량 및 수율 고려하여 가열속도를 0.01 ∼ 10 K/min 범위로 설정하는 것이 바람직하다. 부분 용융 및 경막 결정화 조작을 거친 잔류모액은 회수하여 공급물로서 재순환된다. The heating rate during partial melting is closely related to the structure of the resulting phosphoric acid crystal layer and the rate of impurity movement in the crystal layer. In other words, under fast cooling conditions, the crystal layer shows very poor shape of porosity and high impurity content. In this case, when the partial melting operation is performed at a high heating rate, a high purity improvement effect of the resulting crystal layer can be expected. In the present invention, it is preferable to set the heating rate in the range of 0.01 to 10 K / min in consideration of the partial melting amount, the impurity content and the yield. The remaining mother liquor, which has undergone partial melting and dura-crystallization, is recovered and recycled as a feed.

따라서, 본 발명에 따른 반도체 폐에칭액으로부터 고순도 인산을 분리, 회수하는 방법은 특별한 장치나 운전 없이 간단하게 수행되는 과정이며, 첨가제 및 용매 사용이 없는 폐에칭액 재활용 방법으로서, 이렇게 얻어진 인산은 금속 알루미늄 에칭액, 세라믹용 알루미나 에칭액, 반도체 에칭액, 무기염 인산염 제조, 의약품, 분석시약 등에 재활용이 가능하다.Therefore, the method of separating and recovering high-purity phosphoric acid from the semiconductor waste etching solution according to the present invention is a simple process without a special device or operation, and is a waste etching solution recycling method without the use of additives and solvents. It can be recycled to ceramic alumina etching solution, semiconductor etching solution, inorganic salt phosphate production, medicines, analytical reagents, etc.

이하, 본 발명은 다음 실시예 및 비교예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples, but the present invention is not limited thereto.

실시예 1Example 1

인산(68 중량%)이 포함된 500 g의 반도체 폐에칭액을 경막 용융 결정화기에서 -5 ℃로 유지시킨 후, 침상형의 평균 입경 0.5 mm인 인산 종 결정을 폐에칭액에 대하여 4 중량%을 투입하였다. 인산 종 결정 투입 후에 1 K/min의 냉각속도로 -15 ℃까지 냉각하였다. 인산 종 결정에 의해서 핵 생성과 결정성장이 이루어지며 인산 결정층이 형성되었다. 잔류액과 인산 결정층은 2시간 후 밀도차에 의해 분리되었다. 얻어진 인산 결정층의 양은 350 g이었다. 상기 인산 결정층은 0.5 K/min의 가열속도로 30 ℃까지 용융시켜 초고순도 인산을 분리, 회수하였다. 또한, 상기 잔류액은 공급물로서 재순환시켜 사용하였다. 부분 용융 조작 후 얻어진 인산 결정층의 양은 306 g이다. 회수된 초고순도 인산의 농도와 금속 불순물의 함유량을 다음 표 2 및 표 3에 나타내었다.500 g of semiconductor waste etching solution containing phosphoric acid (68% by weight) was maintained at -5 ° C in a duramelt crystallizer, and then 4% by weight of phosphoric acid seed crystal having an average particle diameter of 0.5 mm was added to the waste etching solution. It was. After adding the phosphate seed crystals, the mixture was cooled to −15 ° C. at a cooling rate of 1 K / min. Phosphoric acid species crystallization led to nucleation and crystal growth, forming a phosphate crystal layer. The residual liquid and the phosphate crystal layer were separated by a density difference after 2 hours. The amount of the obtained phosphoric acid crystal layer was 350 g. The phosphoric acid crystal layer was melted to 30 ° C. at a heating rate of 0.5 K / min to separate and recover ultra high purity phosphoric acid. The residue was also recycled and used as feed. The amount of the phosphate crystal layer obtained after the partial melting operation is 306 g. The concentration of recovered ultra high purity phosphoric acid and the content of metal impurities are shown in Tables 2 and 3 below.

실시예 2Example 2

상기 실시예 1과 동일한 조건 하에서 냉각온도를 -30 ℃로 변화시켰다. 제조된 인산 결정층의 양은 382.02 g 이었다. 부분 용융 조작을 거쳐 회수된 인산 결정층의 양은 321.5 g이다. 회수된 초고순도 인산의 농도와 금속 불순물의 함유량을 다음 표 2 및 표 3에 나타내었다.Under the same conditions as in Example 1, the cooling temperature was changed to -30 ° C. The amount of the phosphate crystal layer prepared was 382.02 g. The amount of the phosphate crystal layer recovered through the partial melting operation is 321.5 g. The concentration of recovered ultra high purity phosphoric acid and the content of metal impurities are shown in Tables 2 and 3 below.

실시예 3Example 3

상기 실시예 1과 동일한 조건 하에서 인산 결정층 부분 용융을 위한 가열속도를 10 K/min으로 변화시켰다. 제조된 인산 결정층의 양은 376.9 g 이었다. 부분 용융 조작을 거쳐 회수된 인산 결정층의 양은 263.82 g이다. 회수된 초고순도 인산의 농도와 금속 불순물의 함유량을 다음 표 2 및 표 3에 나타내었다.Under the same conditions as in Example 1, the heating rate for partial melting of the phosphoric acid crystal layer was changed to 10 K / min. The amount of the phosphate crystal layer prepared was 376.9 g. The amount of the phosphate crystal layer recovered through the partial melting operation is 263.82 g. The concentration of recovered ultra high purity phosphoric acid and the content of metal impurities are shown in Tables 2 and 3 below.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 조건하에 인산 종(seed)결정의 접종을 실시하지 않았다. 회수된 인산 결정층의 양은 390.8 g이다. 부분 용융 조작을 거쳐 회수된 인산 결정층의 양은 312.6 g이다. 회수된 초고순도 인산의 농도와 금속 불순물의 함유량을 다음 표 2 및 표 3에 나타내었다.Phosphoric acid seed crystals were not inoculated under the same conditions as in Example 1. The amount of phosphate crystal layer recovered was 390.8 g. The amount of the phosphate crystal layer recovered through the partial melting operation is 312.6 g. The concentration of recovered ultra high purity phosphoric acid and the content of metal impurities are shown in Tables 2 and 3 below.

회수된 초고순도 인산의 금속성분 함량(단위: ppb)Metal Content of Ultra-Pure Phosphoric Acid Recovered (Unit: ppb) 금속 불순물Metallic impurities 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 AlAl 5.515.51 11.611.6 1.651.65 232.4232.4 AsAs 4.294.29 10.210.2 1.31.3 431431 CaCa 5.075.07 11.111.1 1.521.52 321.7321.7 CdCD 44.6144.61 5959 13.413.4 35.735.7 CuCu 16.9416.94 25.3325.33 5.15.1 20.620.6 FeFe 0.570.57 5.75.7 00 506.6506.6 KK 15.4015.40 23.523.5 4.64.6 113.7113.7 LiLi 11.1111.11 18.318.3 3.33.3 29.629.6 NaNa 32.7332.73 44.2844.28 9.829.82 3650.73650.7 NiNi 6.056.05 12.312.3 1.821.82 8.58.5 PbPb 7.657.65 14.214.2 2.32.3 2424 SiSi 21.8321.83 73.473.4 15.915.9 1170.61170.6 SnSn 5.465.46 11.611.6 1.641.64 23.523.5 MoMo 1.531.53 6.846.84 00 136.7136.7

회수된 초고순도 인산 농도(단위: 중량%)Recovered ultra high purity phosphoric acid concentration (unit: wt%) 성분ingredient 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 인산Phosphoric Acid 88.8188.81 8989 90.2190.21 8787 수분moisture 12.1912.19 1111 9.799.79 1313

이상에서 상술한 바와 같이, 본 발명에 따른 반도체 폐에칭액으로부터 초고순도 인산의 분리ㆍ회수방법은 냉각표면에 결정층을 형성시키는 경막 용융 결정화 조작과 생성된 결정층을 부분 용융하여 정제함으로써 초고순도 인산의 분리 및 회수가 가능하다. 또한, 본 발명에서 얻어진 초고순도 인산은 금속 알루미늄 에칭액, 세라믹용 알루미나 에칭액, 무기 인산염 제조, 식품용, 의약품, 분석시약으로서 재활용이 가능하다. 아울러, 반도체 공정에서 대량 배출되는 에칭액의 효율적인 재활용 방법을 제시함으로써 폐기처리에 소요되는 위탁 처리비용 감소, 폐자원의 활용, 환경오염 방지 등 여러 가지 긍정적인 효과가 기대된다.As described above, the ultrapure phosphoric acid separation and recovery method of the ultra-high purity phosphoric acid from the semiconductor waste etching solution according to the present invention is performed by a film-melt crystallization operation for forming a crystal layer on the cooling surface, and the resulting crystal layer is partially melted and purified to obtain ultrapure phosphoric acid. Can be separated and recovered. In addition, the ultra-high purity phosphoric acid obtained in the present invention can be recycled as a metal aluminum etching solution, alumina etching solution for ceramics, inorganic phosphate production, food, medicine, analytical reagents. In addition, by presenting an efficient recycling method of the etching liquid discharged in a large amount of semiconductor process, various positive effects such as reducing the consignment processing cost, utilization of waste resources, prevention of environmental pollution are expected.

도 1은 반도체 폐에칭액으로부터 초고순도 인산을 분리ㆍ회수하는 과정을 나타낸 개략도이다. 1 is a schematic diagram showing a process of separating and recovering ultrahigh purity phosphoric acid from a semiconductor waste etching solution.

Claims (2)

1) 실리콘 웨이퍼의 질화규소막(Si3N4) 에칭공정에서 배출되는 폐에칭액을 -20 ∼ 30 ℃로 유지시킨 후, 인산 종(seed) 결정을 접종하고, 상기 폐에칭액을 0.1 ∼ 10 K/min의 냉각속도로 -40 ∼ 20 ℃까지 냉각시켜 인산 결정층을 형성시키는 단계; 및1) After the waste etching solution discharged from the silicon nitride film (Si 3 N 4 ) etching process of the silicon wafer is maintained at -20 to 30 ° C, phosphoric acid seed crystals are inoculated, and the waste etching solution is 0.1 to 10 K /. cooling to −40 to 20 ° C. at a cooling rate of min to form a phosphate crystal layer; And 2) 상기 인산 결정층을 0.01 ∼ 10 K/min의 속도로 0 ∼ 40 ℃까지 부분 용융시켜 결정층에 포함된 불순물을 제거하는 정제 단계2) A purification step of partially melting the phosphate crystal layer to 0 to 40 ℃ at a rate of 0.01 to 10 K / min to remove impurities contained in the crystal layer 를 포함하여 이루어지는 것을 특징으로 하는 반도체 폐에칭액으로부터 초고순도 인산의 분리ㆍ회수방법.Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching liquid comprising a. 제 1 항에 있어서, 상기 인산 종(seed) 결정은 0.1 ∼ 3 mm인 침상형의 결정이며, 상기 폐에칭액에 대하여 1 ∼ 10 중량% 범위로 투입하는 것을 특징으로 하는 초고순도 인산의 분리ㆍ회수방법 The ultra-pure phosphoric acid separation and recovery of claim 1, wherein the seed crystal is a needle-shaped crystal having a thickness of 0.1 to 3 mm, and is added in a range of 1 to 10% by weight based on the waste etching solution. Way
KR1020040031870A 2004-05-06 2004-05-06 Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching solution KR100593833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040031870A KR100593833B1 (en) 2004-05-06 2004-05-06 Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040031870A KR100593833B1 (en) 2004-05-06 2004-05-06 Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching solution

Publications (2)

Publication Number Publication Date
KR20050106825A true KR20050106825A (en) 2005-11-11
KR100593833B1 KR100593833B1 (en) 2006-06-28

Family

ID=37283531

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040031870A KR100593833B1 (en) 2004-05-06 2004-05-06 Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching solution

Country Status (1)

Country Link
KR (1) KR100593833B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116837466A (en) * 2023-08-31 2023-10-03 合肥晶合集成电路股份有限公司 Phosphoric acid etching solution recovery method and etching method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804197B1 (en) * 2007-03-21 2008-02-20 한밭대학교 산학협력단 Purification of wastewater containing acetic acid by using ice plate crystallizer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237625B1 (en) * 1996-11-20 2000-01-15 김영환 Chemical retrieval device for semiconductor wafer's nitride layer removal device
EP1000904B1 (en) * 1998-11-11 2005-05-04 Mitsubishi Materials Corporation Method for recovering phosphate from sludge and system therefor
JP3743185B2 (en) 1998-12-11 2006-02-08 住友化学株式会社 Method for producing phosphoric acid
JP2003049285A (en) 2001-08-08 2003-02-21 Mitsubishi Chemicals Corp Etching method, quantitative analysis method for etching solution and method for recovering phosphoric acid from etching solution
JP2003112190A (en) 2001-10-09 2003-04-15 Nippon Chem Ind Co Ltd Method for treating waste liquid containing phosphorous acid component
KR100454101B1 (en) * 2002-03-15 2004-10-26 한국화학연구원 Purification method and equipment for phosphoric acid
KR100582525B1 (en) * 2003-06-09 2006-05-22 류광현 A method of recycling used etchant containing phosphoric acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116837466A (en) * 2023-08-31 2023-10-03 合肥晶合集成电路股份有限公司 Phosphoric acid etching solution recovery method and etching method
CN116837466B (en) * 2023-08-31 2023-12-08 合肥晶合集成电路股份有限公司 Phosphoric acid etching solution recovery method and etching method

Also Published As

Publication number Publication date
KR100593833B1 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US3400027A (en) Crystallization recovery of spent hydrogen peroxide etchants
US4981664A (en) Method of production of high purity silica and ammonium fluoride
US20080203060A1 (en) Etching method and etching composition useful for the method
JP5800436B2 (en) Boric acid recovery method and recovery apparatus
JP2008047796A (en) Etching composition and etching method
KR101871178B1 (en) Manufacturing method for high purity lithium carbonate from solution containing lithium by evaporation concentration
US5362461A (en) Method for recovering calcium fluoride from fluoroetchant
CN113045089B (en) Method for refining and purifying etching waste liquid
US5165907A (en) Method of production of high purity silica and ammonium fluoride
CN111574326A (en) Purification method of semiconductor grade isopropanol
KR102190985B1 (en) Method of recovering high purity calcium difluoride particles with large particle size from waste water including fluorine compounds with ammonium ions by using organic acids
KR20050106825A (en) Recovery of phosphoric acid from semiconductor waste etchant
JP2017137221A (en) Recovery method of hydrofluoric acid and nitric acid
JP3131433B2 (en) Method for producing high-purity phosphoric acid
JP2905353B2 (en) Purification method of metallic silicon
KR100454101B1 (en) Purification method and equipment for phosphoric acid
KR100567447B1 (en) Recovery of phosphoric acid, nitric acid and acetic acid from waste TFT-LCD aluminium etchant
JPS61151002A (en) Method of purifying hydrofluoric acid
US6277349B1 (en) Tridymite-based processing for high purity quartz
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
US3000702A (en) Manufacture of sodium fluoride
CN114929836B (en) Buffer etching solution for non-metal oxide film
JP2003212533A (en) Method for purifying silicon for solar cell
KR930007411B1 (en) Method of treatment of waste water containing flurorine compounds and process for making ammonium fluoride
WO2003072503A1 (en) Method of purifying niobium compound and/or tantalum compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee