KR20050102532A - Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system - Google Patents
Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system Download PDFInfo
- Publication number
- KR20050102532A KR20050102532A KR1020040027945A KR20040027945A KR20050102532A KR 20050102532 A KR20050102532 A KR 20050102532A KR 1020040027945 A KR1020040027945 A KR 1020040027945A KR 20040027945 A KR20040027945 A KR 20040027945A KR 20050102532 A KR20050102532 A KR 20050102532A
- Authority
- KR
- South Korea
- Prior art keywords
- heat exchanger
- heat
- refrigerant
- transfer material
- heat transfer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
- F28D21/001—Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
본 발명은 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치에 관한 것으로, 본 발명은 실내열교환기와 압축기의 흡입측 사이 냉매관에서 분관하였다가 다시 합관하는 바이패스관과, 바이패스관의 사이에 설치하여 냉매를 예열하는 예열용 열교환기와, 발전유니트의 배기측열교환부 출구와 축열조 입구 사이 전열물질관에서 분관하여 상기한 예열용 열교환기에 연결하였다가 다시 배기측열교환부의 입구와 축열조의 출구 사이 전열물질관으로 합관하는 전열물질순환관과, 배기측열교환부의 출구측 전열물질관과 예열용 열교환기의 입구측 전열물질순환관 사이에 설치하여 전열물질의 유동방향을 제어하는 제1 전열물질절환밸브와, 예열용 열교환기의 출구측 전열물질순환관과 배기측열교환부의 입구측 전열물질관 사이에 설치하여 전열물질의 유동방향을 제어하는 제2 전열물질절환밸브로 구성함으로써, 냉방운전시 발전시스템에서 발생하는 배기가스와 열교환하여 얻은 온수를 실내열교환기를 거친 냉매와 열교환시켜 압축기로 흡입되는 냉매의 압력과 온도를 높여줌으로써 압축기의 소비전력을 현저하게 낮춰 발전 효율을 극대화 할 수 있다.The present invention relates to a refrigerant preheating device for an air conditioner using exhaust gas of a power generation system. The present invention relates to a bypass pipe between a bypass pipe and a bypass pipe which are branched from a refrigerant pipe between an indoor heat exchanger and a suction side of a compressor. Installed in the preheating heat exchanger for preheating the refrigerant, and connected to the preheating heat exchanger between the exhaust heat exchanger outlet of the power generation unit and the heat storage material inlet, connected to the preheater heat exchanger, and then between the inlet of the exhaust heat exchanger and the outlet of the heat storage tank. The first heat transfer material switching valve which is installed between the heat transfer material circulation pipe to be connected to the material pipe, the heat transfer material pipe at the outlet side of the exhaust side heat exchange unit, and the heat transfer material circulation pipe at the inlet side of the preheat heat exchanger to control the flow direction of the heat transfer material. And between the outlet heat transfer material circulation pipe of the preheating heat exchanger and the inlet heat transfer material pipe of the exhaust side heat exchanger. By configuring the second heat transfer material switching valve to control the flow direction of the quality, the hot water obtained by heat exchange with the exhaust gas generated in the power generation system during the cooling operation heat exchanged with the refrigerant passing through the indoor heat exchanger to control the pressure and temperature of the refrigerant sucked into the compressor By increasing the power consumption of the compressor significantly lowered to maximize the power generation efficiency.
Description
본 발명은 엔진 배열을 이용하여 압축기의 소비전력을 줄이는 에어콘의 냉매 예열 장치에 관한 것으로, 특히 여름철 축열조에 저장하는 열을 이용하여 에어콘의 냉매를 미리 예열하여 압축기의 소비전력을 줄이고자 하는 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치에 관한 것이다.The present invention relates to a refrigerant preheating device for an air conditioner that reduces power consumption of a compressor by using an engine arrangement. In particular, a power generation system for preheating the refrigerant of an air conditioner using heat stored in a heat storage tank in summer to reduce power consumption of a compressor. It relates to a refrigerant preheating device for an air conditioner using exhaust gas.
일반적으로 에어컨은 방, 거실 또는 사무실, 영업점포 등의 공간내에 배치되어 공기의 온도, 습도, 청정도 및 기류를 조절하여 쾌적한 실내환경을 유지할 수 있도록 한 공기조화기이다. In general, an air conditioner is an air conditioner that is disposed in a room, a living room or an office, or a space such as a business store to maintain a comfortable indoor environment by controlling air temperature, humidity, cleanliness, and airflow.
통상 에어컨은 하절기에 실내의 냉방을 목적으로 하는 냉방기를 일컬으며, 이러한 에어컨 중에서 일부는 냉동사이클의 냉매의 흐름을 역전시켜 냉방기능 및 난방기능을 선택적으로 수행할 수 있도록 한 것으로 소위 히트펌프(Heat Pump) 또는 사계절용 에어컨 등으로 불리는 냉난방 겸용 에어컨이 있다.In general, air conditioners are referred to as air conditioners for cooling indoors in summer. Some of these air conditioners reverse the flow of refrigerant in a refrigeration cycle to selectively perform cooling and heating functions, so-called heat pumps. There is a combined air-conditioning and cooling air conditioner called a pump or a four season air conditioner.
최근 자가용(自家用) 발전 시스템 분야에 대한 연구가 활발해지면서 여기서 발생하는 폐열을 효과적으로 활용하기 위한 방안들이 모색되고 있다.Recently, research on the field of power generation systems for home use has been actively conducted, and methods for effectively utilizing the waste heat generated therein have been sought.
도 1은 종래 에어콘을 연결한 발전 시스템의 계통도이다.1 is a system diagram of a power generation system connecting a conventional air conditioner.
이에 도시한 바와 같이 종래의 발전 시스템은, 액화석유가스(LNG)나 석탄가스 또는 천연가스 등과 같은 연료를 공급하는 연료공급부(1)와, 연료공급부(1)에 연결하여 연료의 연소시 발생하는 열에너지를 기계에너지로 전환하는 가스엔진부(2)와, 가스엔진부(2)에 연결하여 그 가스엔진부(2)에서 생성된 기계에너지를 전기에너지로 전환 발생하는 전기발생부(3)와, 전기발생부(3)의 출력측에 연결하여 그 전기발생부(3)에서 생성된 전기에너지에 의해 구동하면서 일을 하는 전력부하부(4)와, 가스엔진부(3)에 직접 열교환되도록 설치하여 그 가스엔진부(2)에서 발생하는 열을 방열시키는 엔진측열교환부(5)와, 가스엔진부(5)의 가스출구에 연결 설치하여 배출되는 가스의 배열을 열교환하는 배기측열교환부(6)와, 엔진측열교환부(6)와 배기측열교환부(6)에 각각 순환식으로 설치하여 각각의 열교환부(5,6)를 통해 열교환되어 전달되는 열을 축적하는 축열부(7)로 구성하고 있다.As shown in the drawing, the conventional power generation system is connected to the fuel supply unit 1 for supplying fuel such as liquefied petroleum gas (LNG), coal gas or natural gas, and the fuel supply unit 1 to generate the combustion of the fuel. A gas engine unit 2 for converting thermal energy into mechanical energy, and an electric generator 3 for connecting mechanical gas generated from the gas engine unit 2 to electrical energy by connecting to the gas engine unit 2; Is connected to the output side of the electricity generating unit 3 and installed to be directly heat-exchanged with the power load unit 4 and the gas engine unit 3, which are driven while being driven by the electric energy generated by the electricity generating unit 3. Engine side heat exchanger (5) for dissipating heat generated by the gas engine (2) and an exhaust side heat exchanger (10) for heat exchange between the exhaust gas array connected to the gas outlet of the gas engine (5). 6) and the engine side heat exchanger 6 and the exhaust side heat exchanger 6, respectively. Installed in a way to constitute a heat accumulator 7 for accumulating the heat transferred is heat exchange through the respective heat exchanger (5,6).
전력부하부(4)는 냉난방 겸용 에어콘으로서, 전기발생부(3)에 직적 연결하여 실외기에 설치하는 압축기(4a)와, 압축기(4a)의 출구측에 설치하여 냉매의 순환방향을 절환하도록 4방밸브로된 냉매절환밸브(4b)와, 냉매절환밸브(4b)의 일측에 연결 설치하여 실외공기와 열교환하는 실외열교환기(4c)와, 실외열교환기(4c)의 일측에 연결 설치하여 냉매를 감압 팽창시키는 팽창기구(4d)와, 팽창기구(4d)의 일측에 연결 설치하여 실내공기와 열교환하도록 실내기에 설치하는 실내열교환기(4e)로 이루어져 있다.The power load unit 4 is an air conditioner for both heating and cooling. The compressor 4a is directly connected to the electricity generating unit 3 and installed in the outdoor unit. The power load unit 4 is installed at the outlet side of the compressor 4a. Refrigerant switching valve (4b) made of a release valve, and connected to one side of the refrigerant switching valve (4b), the outdoor heat exchanger (4c) for heat exchange with the outdoor air, and connected to one side of the outdoor heat exchanger (4c) It is composed of an expansion mechanism (4d) for expanding under reduced pressure, and an indoor heat exchanger (4e) installed in the indoor unit to be connected to one side of the expansion mechanism (4d) to heat exchange with the indoor air.
상기와 같은 종래 발전시스템을 이용하여 냉난방 겸용 에어콘을 구동하는 과정은 다음과 같다.The process of driving the air-conditioning combined air conditioner using the conventional power generation system as described above is as follows.
즉, 연료공급부(1)에서 액화석유가스 등의 원료를 가스엔진부(2)에 공급하면, 이 가스엔진부(2)에서는 원료를 연소하면서 열에너지를 기계에너지로 전환하고, 이 기계에너지를 전기발생부(3)에서 다시 전기에너지로 전환하여 전력부하부(4)인 냉난방 겸용 에어콘을 구동한다.That is, when the fuel supply part 1 supplies raw materials, such as liquefied petroleum gas, to the gas engine part 2, this gas engine part 2 converts thermal energy into mechanical energy, burning a raw material, and converts this mechanical energy into electricity. The generator 3 converts the electrical energy back into electric energy to drive the air conditioner for cooling and heating, which is the power load unit 4.
이때, 가스엔진부(2)에서는 연료를 연소시킬 때 가스엔진부(2)에서는 엔진 자체에서의 열과 배기가스에 함유된 배열이 발생하나 이 열에너지는 각각 엔진측열교환부(5)와 배기측열교환부(6)에서 열교환되어 축열부(7)에 축적되고, 이 축열부(7)에 축적된 열에너지는 냉난방 겸용 에어콘의 난방운전시 실외측열교환기(4c)의 흡입공기를 예열하여 난방저온성능을 개선하는데 활용하고 있었다.At this time, when the fuel is combusted in the gas engine unit 2, the gas engine unit 2 generates heat contained in the engine itself and the exhaust gas, but the heat energy is respectively converted into the engine side heat exchange unit 5 and the exhaust side heat exchange. Heat exchanged in the section 6 and accumulated in the heat accumulator 7, the heat energy accumulated in the heat accumulator 7 preheats the suction air of the outdoor side heat exchanger (4c) during heating operation of the air-conditioning combined air conditioner, heating low temperature performance To improve it.
그러나, 상기와 같은 종래 냉난방 겸용 에어콘을 연결한 발전 시스템에 있어서는, 전술한 바와 같이 겨울철 난방운전을 실시할 때만 그 폐열을 이용할 수 있도록 구성하여 여름철에는 시스템의 효율이 크게 저하되는 문제점이 있었다.However, in the power generation system connected to the conventional air-conditioning and combined air conditioner as described above, there is a problem in that the waste heat can be used only when the heating operation is performed in winter, so that the efficiency of the system is greatly reduced in the summer.
본 발명은 상기와 같은 종래 냉난방 겸용 에어콘을 연결한 발전 시스템이 가지는 문제점을 감안하여 안출한 것으로, 겨울철 난방운전은 물론 여름철 냉방운전을 실시할 때도 폐열을 이용할 수 있도록 하여 시스템의 효율을 높일 수 있는 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치를 제공하려는데 본 발명의 목적이 있다.The present invention has been made in view of the problems that the power generation system is connected to the conventional air-conditioning combined air conditioning as described above, it is possible to increase the efficiency of the system by allowing the use of waste heat during winter heating operation as well as summer cooling operation An object of the present invention is to provide a refrigerant preheating device for an air conditioner using exhaust gas of a power generation system.
본 발명의 목적을 달성하기 위하여, 연료를 공급하는 연료공급부와, 연료의 연소시 발생하는 열에너지를 기계에너지로 전환하는 가스엔진부와, 가스엔진부의 기계에너지를 이용하여 전기 에너지를 발생하는 전기발생부와, 가스엔진부에서 발생하는 열을 방열시키는 엔진측열교환부와, 가스엔진부에서 배출되는 가스의 배열을 열교환하는 배기측열교환부와, 엔진측열교환부와 배기측열교환부에 각각 순환식으로 연결 설치하여 각각의 열교환부를 통해 열교환되는 열을 축적하는 축열부로 이루어진 발전유니트와; 발전유니트의 전기발생부에 전기적으로 연결하여 구동하면서 냉매를 압축하는 압축기와, 압축기의 토출측에 연결하여 실외공기와 열교환하면서 냉매를 응축하는 응축용 열교환기와, 응축용 열교환기에 개폐 가능하게 연결하여 냉매를 감압 팽창하는 팽창기구와, 팽창기구의 타측에 연결하여 실내공기와 열교환하면서 냉매를 증발하는 증발용 열교환기로 이루어진 냉난방기기;를 포함한 에어콘을 연결한 발전시스템에 있어서, 증발용 열교환기와 압축기의 흡입측 사이 냉매관에서 분관하였다가 다시 합관하는 바이패스관과, 바이패스관의 사이에 설치하여 냉매를 예열하는 예열용 열교환기와, 발전유니트의 배기측열교환부 출구와 축열조 입구 사이 전열물질관에서 분관하여 상기한 예열용 열교환기에 연결하였다가 다시 배기측열교환부의 입구와 축열조의 출구 사이 전열물질관으로 합관하는 전열물질순환관과, 배기측열교환부의 출구측 전열물질관과 예열용 열교환기의 입구측 전열물질순환관 사이에 설치하여 전열물질의 유동방향을 제어하는 제1 전열물질절환밸브와, 예열용 열교환기의 출구측 전열물질순환관과 배기측열교환부의 입구측 전열물질관 사이에 설치하여 전열물질의 유동방향을 제어하는 제2 전열물질절환밸브로 구성한 것을 특징으로 하는 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치를 제공한다.In order to achieve the object of the present invention, a fuel supply unit for supplying a fuel, a gas engine unit for converting the thermal energy generated during combustion of the fuel into mechanical energy, and electricity generation to generate electrical energy using the mechanical energy of the gas engine unit Section, an engine side heat exchanger for dissipating heat generated by the gas engine unit, an exhaust side heat exchanger for exchanging an arrangement of gases discharged from the gas engine unit, an engine side heat exchanger and an exhaust side heat exchanger, respectively. A power generation unit comprising a heat storage unit connected to and installed to accumulate heat exchanged through each heat exchange unit; A compressor that compresses the refrigerant while driving by being electrically connected to the electricity generating unit of the power generation unit, a heat exchanger for condensing the refrigerant while condensing the refrigerant while exchanging heat with outdoor air by connecting to the discharge side of the compressor, In the power generation system connected to the air conditioner including an expansion mechanism for expanding the decompression expansion and an evaporation heat exchanger for evaporating the refrigerant while heat exchange with the indoor air by connecting to the other side of the expansion mechanism, the suction of the evaporation heat exchanger and the compressor The bypass pipe is separated from the refrigerant pipe between the sides, and the pipe is connected again, the preheat heat exchanger is installed between the bypass pipes, and the heat transfer material pipe is connected between the outlet of the exhaust side heat exchange part of the power generation unit and the inlet of the heat storage tank. Connected to the preheating heat exchanger described above, and the It is installed between the heat transfer material circulation pipe which is connected to the heat transfer material pipe between the outlet of the heat tank and the heat transfer material pipe at the inlet side of the preheat heat exchanger and the outlet heat transfer material pipe at the exhaust side heat exchanger to control the flow direction of the heat transfer material. 1, a heat transfer material switching valve and a second heat transfer material switching valve installed between the outlet heat transfer material circulation pipe of the preheating heat exchanger and the inlet heat transfer material pipe of the exhaust side heat exchanger to control the flow direction of the heat transfer material. Provided is a refrigerant preheating device for an air conditioner using exhaust gas of a power generation system.
또, 연료를 공급하는 연료공급부와, 연료의 연소시 발생하는 열에너지를 기계에너지로 전환하는 가스엔진부와, 가스엔진부의 기계에너지를 이용하여 전기 에너지를 발생하는 전기발생부와, 가스엔진부에서 발생하는 열을 방열시키는 엔진측열교환부와, 가스엔진부에서 배출되는 가스의 배열을 열교환하는 배기측열교환부와, 엔진측열교환부와 배기측열교환부에 각각 순환식으로 설치하여 각각의 열교환부를 통해 열교환되어 전달되는 열을 축적하는 축열부로 이루어진 발전유니트와; 발전유니트의 전기발생부에 전기적으로 연결하여 구동하면서 냉매를 압축하는 압축기와, 압축기에서 토출된 냉매의 순환방향을 절환하는 냉매절환밸브와, 냉매절환밸브의 실내측에 연결하여 실내공기와 열교환하는 실내열교환기와, 실내열교환기의 타측에 개폐 가능하게 연결하여 냉매를 감압 팽창하는 팽창기구와, 팽창기구의 타측에 연결하여 실외공기와 열교환하는 실외열교환기로 이루어진 냉난방기기;를 포함한 에어콘을 연결한 발전시스템에 있어서, 실내열교환기와 압축기의 흡입측 사이 냉매관에서 분관하였다가 다시 합관하는 바이패스관과, 바이패스관의 사이에 설치하여 냉매를 예열하는 예열용 열교환기와, 발전유니트의 배기측열교환부 출구와 축열조 입구 사이 전열물질관에서 분관하여 상기한 예열용 열교환기에 연결하였다가 다시 배기측열교환부의 입구와 축열조의 출구 사이 전열물질관으로 합관하는 전열물질순환관과, 배기측열교환부의 출구측 전열물질관과 예열용 열교환기의 입구측 전열물질순환관 사이에 설치하여 전열물질의 유동방향을 제어하는 제1 전열물질절환밸브와, 예열용 열교환기의 출구측 전열물질순환관과 배기측열교환부의 입구측 전열물질관 사이에 설치하여 전열물질의 유동방향을 제어하는 제2 전열물질절환밸브로 구성한 것을 특징으로 하는 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치를 제공한다.In addition, a fuel supply unit for supplying fuel, a gas engine unit for converting thermal energy generated during combustion of the fuel into mechanical energy, an electric generator unit for generating electrical energy using the mechanical energy of the gas engine unit, and a gas engine unit An engine side heat exchanger for dissipating the generated heat, an exhaust side heat exchanger for exchanging the heat of the gas discharged from the gas engine unit, and an engine side heat exchanger and an exhaust side heat exchanger are respectively circulated in a circulating manner. A power generation unit comprising a heat storage unit for accumulating heat transferred through heat exchange; A compressor that compresses the refrigerant while driving by being electrically connected to the electricity generating unit of the power generation unit, a refrigerant switching valve for switching the circulation direction of the refrigerant discharged from the compressor, and a heat exchanger with the indoor side of the refrigerant switching valve. Powered by connecting an air conditioner including an indoor heat exchanger, an expansion mechanism for opening and closing the other side of the indoor heat exchanger so as to open and close the refrigerant under reduced pressure, and an outdoor heat exchanger connected to the other side of the expansion mechanism for heat exchange with outdoor air. In the system, a bypass tube is piped between the indoor heat exchanger and the suction side of the compressor, and then re-engaged, a preheating heat exchanger installed between the bypass pipes, and a preheater of the refrigerant, and an exhaust side heat exchanger of the power generation unit. The pipe is connected to the preheating heat exchanger by branching from the heat pipe between the outlet and the heat storage inlet. It is installed between the inlet of the heat exchange material and the heat transfer material pipe between the inlet of the exhaust side heat exchanger and the outlet of the heat storage tank, and between the outlet of the heat exchange material and the inlet of the heat exchanger. The second heat transfer material for controlling the flow direction of the heat transfer material is installed between the first heat transfer material switching valve for controlling the flow direction and the heat transfer material circulation pipe of the outlet side of the preheat heat exchanger and the inlet heat transfer material pipe of the exhaust side heat exchanger. Provided is a refrigerant preheating device for an air conditioner using exhaust gas of a power generation system, comprising a switching valve.
이하, 본 발명에 의한 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치를 첨부도면에 도시한 일실시예에 의거하여 상세하게 설명한다.Hereinafter, a refrigerant preheating device for an air conditioner using exhaust gas of a power generation system according to the present invention will be described in detail with reference to an embodiment shown in the accompanying drawings.
도 2는 본 발명 에어콘을 연결한 발전 시스템의 계통도이고, 도 3은 본 발명 에어콘을 연결한 발전 시스템에서 냉방운전시 냉매를 예열하는 과정을 보인 계통도이다.2 is a system diagram of a power generation system connecting the air conditioner of the present invention, and FIG. 3 is a system diagram showing a process of preheating the refrigerant during cooling operation in the power generation system of the present invention.
이에 도시한 바와 같이 본 발명의 냉난방 겸용 에어콘을 연결한 발전시스템은, 액화석유가스(LNG)나 석탄가스 또는 천연가스 등과 같은 연료를 공급하는 연료공급부(1)와, 연료공급부(1)에 연결하여 연료의 연소시 발생하는 열에너지를 기계에너지로 전환하는 가스엔진부(2)와, 가스엔진부(2)에 연결하여 그 가스엔진부(2)에서 생성된 기계에너지를 전기에너지로 전환 발생하는 전기발생부(3)와, 전기발생부(3)의 출력측에 연결하여 그 전기발생부(3)에서 생성된 전기에너지에 의해 구동하면서 일을 하는 전력부하부(10)와, 가스엔진부(2)에 직접 열교환되도록 설치하여 그 가스엔진부(2)에서 발생하는 열을 방열시키는 엔진측열교환부(5)와, 가스엔진부(2)의 가스출구에 연결 설치하여 배출되는 가스의 배열을 열교환하는 배기측열교환부(6)와, 엔진측열교환부(5)와 배기측열교환부(6)에 각각 순환식으로 설치하여 각각의 열교환부(5,6)를 통해 열교환되어 전달되는 열을 축적하는 축열부(7)로 구성하고 있다.As shown in the drawing, the power generation system connecting the air-conditioning and cooling system of the present invention includes a fuel supply unit 1 for supplying fuel such as liquefied petroleum gas (LNG), coal gas or natural gas, and a fuel supply unit 1. To convert the thermal energy generated during combustion of the fuel into mechanical energy and the gas engine 2 to convert the mechanical energy generated by the gas engine 2 into electrical energy. A power load unit 10 and a gas engine unit which are connected to the electricity generation unit 3, the output side of the electricity generation unit 3, and work while being driven by the electric energy generated by the electricity generation unit 3; 2) an engine side heat exchanger (5) for dissipating heat generated by the gas engine (2) and a heat dissipation connected to the gas outlet of the gas engine (2). Exhaust-side heat exchanger 6 for heat exchange and engine-side heat exchanger 5 ) And the heat storage unit 7 which is installed in the exhaust side heat exchange unit 6 in a circulating manner and accumulates heat transferred by heat exchange through the heat exchange units 5 and 6, respectively.
전력부하부(10)는 냉난방 겸용 에어콘으로서, 전기발생부(3)에 직적 연결하여 실외기에 설치하는 압축기(11)와, 압축기(11)의 출구측에 설치하여 냉매의 순환방향을 절환하도록 4방밸브로된 냉매절환밸브(12)와, 냉매절환밸브(12)의 일측에 연결 설치하여 실외공기와 열교환하는 실외열교환기(13)와, 실외열교환기(13)의 일측에 연결 설치하여 냉매를 감압 팽창시키는 팽창기구(14)와, 팽창기구(14)의 일측에 연결 설치하여 실내공기와 열교환하도록 실내기에 설치하는 실내열교환기(15)와, 실내열교환기(15)와 압축기(11)의 흡입측 사이 냉매관(P1)에서 분관하였다가 다시 합관하는 바이패스관(16)과, 바이패스관(16)의 사이에 설치하여 냉매를 예열하는 예열용 열교환기(17)와, 발전유니트의 배기측열교환부(6) 출구와 축열부(7) 입구 사이 전열물질관(P2)에서 분관하여 상기한 예열용 열교환기(17)에 연결하였다가 다시 배기측열교환부(6)의 입구와 축열부(7)의 출구 사이 전열물질관(P2)으로 합관하는 전열물질순환관(18)과, 배기측열교환부(6)의 출구측 전열물질관(P2)과 예열용 열교환기(17)의 입구측 전열물질순환관(18) 사이에 설치하여 전열물질의 유동방향을 제어하도록 4방밸브로 된 제1 전열물질절환밸브(19A)와, 예열용 열교환기(17)의 출구측 전열물질순환관(18)과 배기측열교환부(6)의 입구측 전열물질관(P2) 사이에 설치하여 전열물질의 유동방향을 제어하도록 4방밸브로 된 제2 전열물질절환밸브(19B)로 이루어진다.The power load unit 10 is a combined air-conditioning and air conditioning unit, which is directly connected to the electricity generating unit 3 and installed in the outdoor unit, and installed at the outlet side of the compressor 11 to switch the circulation direction of the refrigerant. Refrigerant switching valve 12 made of a release valve, and connected to one side of the refrigerant switching valve 12, the outdoor heat exchanger (13) for heat exchange with the outdoor air, and connected to one side of the outdoor heat exchanger (13) An expansion mechanism 14 for expanding the pressure under reduced pressure, an indoor heat exchanger 15 installed at an indoor unit so as to exchange heat with the indoor air by being installed at one side of the expansion mechanism 14, an indoor heat exchanger 15, and a compressor 11; And a preheating heat exchanger (17) installed between the bypass pipe (16), which is piped from the suction side of the suction side of the suction side, to be re-coupled, and between the bypass pipe (16), to preheat the refrigerant. Is piped from the heat transfer material pipe (P2) between the exhaust side heat exchanger (6) outlet and the heat storage (7) inlet A heat transfer material circulation pipe 18 connected to the preheat heat exchanger 17 and then coupled to the heat transfer material pipe P2 between the inlet of the exhaust side heat exchanger 6 and the outlet of the heat storage unit 7, and A four-way valve is installed between the outlet side heat transfer material pipe (P2) of the exhaust side heat exchange part (6) and the inlet heat transfer material circulation pipe (18) of the preheat heat exchanger (17) to control the flow direction of the heat transfer material. Between the first heat transfer material switching valve 19A and the inlet heat transfer material pipe P2 of the outlet heat transfer material circulation pipe 18 of the preheating heat exchanger 17 and the exhaust side heat exchanger 6, A second heat transfer material switching valve (19B) consisting of a four-way valve to control the flow direction of the heat transfer material.
예열용 열교환기(17)의 출구측 바이패스관(16)에는 냉매가스의 역류를 방지하는 체크밸브(19C)를 설치하는 것이 바람직하다.It is preferable to provide a check valve 19C in the outlet side bypass pipe 16 of the preheating heat exchanger 17 to prevent the backflow of the refrigerant gas.
도면중 종래와 동일한 부분에 대하여는 동일한 부호를 부여하였다.In the drawings, the same reference numerals are given to the same parts as in the prior art.
상기와 같은 본 발명 냉난방 겸용 에어콘을 연결한 발전시스템은 다음과 같은 작용 효과를 갖는다.As described above, the power generation system connecting the present invention air-conditioning combined air conditioner has the following effects.
즉, 연료공급부(1)에서 액화석유가스 등의 원료를 가스엔진부(2)에 공급하면, 이 가스엔진부(2)에서는 원료를 연소하면서 열에너지를 기계에너지로 전환하고, 이 기계에너지를 전기발생부(3)에서 다시 전기에너지로 전환하여 전력부하부(10)인 냉난방 겸용 에어콘을 구동한다.That is, when the fuel supply part 1 supplies raw materials, such as liquefied petroleum gas, to the gas engine part 2, this gas engine part 2 converts thermal energy into mechanical energy, burning a raw material, and converts this mechanical energy into electricity. The generator 3 converts the electrical energy back into electric energy to drive the air conditioner for cooling and heating, which is the power load unit 10.
이를 보다 상세히 살펴보면, 난방운전시에는 냉매절환밸브(12)가 압축기(11)와 실내열교환기(15)를 연통시키고, 이와 함께 팽창기구(14)가 냉매를 감압 팽창시킬 수 있는 적정 개도로 유지한다. 이 상태에서 전기발생부(3)를 통해 전달되는 전원에 의해 압축기(11)가 구동하면 냉매는 냉매절환밸브(12)를 통과하여 실내열교환기(15)를 거치면서 응축되어 더운 공기를 생성하고, 이어 팽창기구(14)를 거치면서 감압 팽창되어 실외열교환기(13)를 거치면서 증발된 후 압축기(11)로 복귀하는 일련의 과정을 반복한다.In more detail, during the heating operation, the refrigerant switching valve 12 communicates the compressor 11 and the indoor heat exchanger 15, and together with the expansion mechanism 14, maintains the proper opening degree to expand and expand the refrigerant under reduced pressure. do. In this state, when the compressor 11 is driven by the power transmitted through the electricity generating unit 3, the refrigerant passes through the refrigerant switching valve 12 and condenses while passing through the indoor heat exchanger 15 to generate hot air. After the expansion mechanism 14 is expanded under reduced pressure and evaporated while passing through the outdoor heat exchanger 13, a series of processes of returning to the compressor 11 are repeated.
또, 냉방운전시에는 냉매절환밸브(12)가 압축기(11)와 실외열교환기(13)를 연통시키고, 이와 함께 팽창기구(14)가 냉매를 감압 팽창시킬 수 있는 적정 개도로 유지한다. 이 상태에서 전기발생부(3)를 통해 전달되는 전원에 의해 압축기(11)가 구동하면 냉매는 냉매절환밸브(12)를 통과하여 실외열교환기(13)를 거치면서 응축된 후 팽창기구(14)를 통과하면서 감압 팽창되고, 이어 실내열교환기(15)에서 증발되면서 냉기를 발생한 후 압축기로 복귀하는 일련의 과정을 반복한다.In addition, during the cooling operation, the refrigerant switching valve 12 communicates the compressor 11 with the outdoor heat exchanger 13, and the expansion mechanism 14 maintains the proper opening degree to expand the refrigerant under reduced pressure. In this state, when the compressor 11 is driven by the power transmitted through the electricity generating unit 3, the refrigerant passes through the refrigerant switching valve 12 and condenses while passing through the outdoor heat exchanger 13, and then the expansion mechanism 14 After expanding under reduced pressure and then evaporating in the indoor heat exchanger (15), a series of processes of returning to the compressor after generating cold air are repeated.
이때, 제1 전열물질절환밸브와 제2 전열물질절환밸브를 각각 조절하여 배기가스와 열교환하여 얻은 온수를 도면의 점선방향으로 순환시키면서 실내열교환기(15)를 거친 냉매와 열교환시킴으로써 압축기로 흡입되는 냉매의 압력과 온도를 높여 압축기(11)의 소비전력을 현저하게 낮추고 이를 통해 발전 효율을 극대화 할 수 있다.At this time, the hot water obtained by heat-exchanging with the exhaust gas by adjusting the first heat transfer material switching valve and the second heat transfer material switching valve, respectively, is circulated in the dotted line direction in the drawing, and is sucked into the compressor by heat exchange with the refrigerant passing through the indoor heat exchanger 15. Increasing the pressure and temperature of the refrigerant significantly lowers the power consumption of the compressor (11), thereby maximizing power generation efficiency.
한편, 본 발명에 의한 발전시스템을 냉난방 겸용 에어콘 뿐만이 아니라 냉방 전용 에어콘에 적용할 수도 있다.On the other hand, the power generation system according to the present invention can be applied not only to the air-conditioning combined air conditioner, but also the air-conditioning dedicated air conditioner.
이 경우에도 전술한 일실시예에서와 같이, 여름철 냉방운전을 할 때 배기가스와 열교환하면서 얻은 온수를 이용하여 증발과정을 마친 냉매를 소정의 온도와 압력으로 높여줌으로써 냉방 전용 에어콘에 구비한 압축기의 소비전력을 낮추고 이를 통해 냉방 전용 에어콘을 연결한 발전시스템의 효율을 현저하게 높일 수 있다. In this case, as in the above-described embodiment, during the summer cooling operation, the refrigerant having been evaporated using the hot water obtained by heat-exchanging with the exhaust gas is increased to a predetermined temperature and pressure, thereby providing a By lowering the power consumption, it is possible to significantly increase the efficiency of the power generation system connected to the cooling air conditioner.
본 발명에 의한 발전시스템의 배기가스를 이용한 에어콘의 냉매 예열 장치는, 냉방운전시 발전시스템에서 발생하는 배기가스와 열교환하여 얻은 온수를 실내열교환기를 거친 냉매와 열교환시켜 압축기로 흡입되는 냉매의 압력과 온도를 높여줌으로써 압축기의 소비전력을 현저하게 낮춰 발전 효율을 극대화 할 수 있다.The refrigerant preheater of the air conditioner using the exhaust gas of the power generation system according to the present invention, the heat exchanged with the exhaust gas generated in the power generation system during the cooling operation heat exchanged with the refrigerant passing through the indoor heat exchanger and the pressure of the refrigerant sucked into the compressor By increasing the temperature, the power consumption of the compressor can be significantly lowered to maximize the power generation efficiency.
도 1은 종래 에어콘을 연결한 발전 시스템의 계통도,1 is a system diagram of a power generation system connecting a conventional air conditioner,
도 2는 본 발명 에어콘을 연결한 발전 시스템의 계통도,2 is a system diagram of a power generation system connected to the present invention air conditioner,
도 3은 본 발명 에어콘을 연결한 발전 시스템에서 냉방운전시 냉매를 예열하는 과정을 보인 계통도.Figure 3 is a system diagram showing a process of preheating the refrigerant during the cooling operation in the power generation system connected to the air conditioner of the present invention.
** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **
1 : 연료공급부 2 : 가스엔진부1: fuel supply part 2: gas engine part
3 : 전기발생부 5 : 엔진측 열교환부3: electricity generation part 5: engine heat exchange part
6 : 배기측 열교환부 7 : 축열부6 exhaust side heat exchanger 7 heat storage unit
10 : 전력부하부 11 : 압축기10: power load unit 11: compressor
12 : 냉매절환밸브 13 : 실외열교환기12: refrigerant switching valve 13: outdoor heat exchanger
14 : 팽창기구 15 : 실내열교환기14 expansion device 15 indoor heat exchanger
16 : 바이패스관 17 : 예열측 열교환기16 bypass tube 17 preheating side heat exchanger
18 : 전열물질순환관 19A,19B : 제1,제2 전열물질절환밸브18: Heat transfer material circulation pipe 19A, 19B: 1st, 2nd heat transfer material switching valve
19C : 체크밸브 P1 : 냉매관19C: Check valve P1: Refrigerant pipe
P2 : 전열물질관P2: Heat pipe
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040027945A KR100677245B1 (en) | 2004-04-22 | 2004-04-22 | Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040027945A KR100677245B1 (en) | 2004-04-22 | 2004-04-22 | Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050102532A true KR20050102532A (en) | 2005-10-26 |
KR100677245B1 KR100677245B1 (en) | 2007-02-02 |
Family
ID=37280720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040027945A KR100677245B1 (en) | 2004-04-22 | 2004-04-22 | Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100677245B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100550576B1 (en) * | 2004-08-17 | 2006-02-10 | 엘지전자 주식회사 | Electric generation air condition system having dehumidifier |
-
2004
- 2004-04-22 KR KR1020040027945A patent/KR100677245B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100550576B1 (en) * | 2004-08-17 | 2006-02-10 | 엘지전자 주식회사 | Electric generation air condition system having dehumidifier |
Also Published As
Publication number | Publication date |
---|---|
KR100677245B1 (en) | 2007-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7170191B2 (en) | Electricity generating and air conditioning system with water heater | |
LU102468B1 (en) | Total heat recovery type integrated gas heat pump heat supply unit and application thereof | |
US7275382B2 (en) | Cogeneration system | |
EP1669701A2 (en) | Cogeneration system | |
KR101270616B1 (en) | Co-generation | |
US20060037352A1 (en) | Cogeneration system | |
US20060037347A1 (en) | Electricity generating and air conditioning system | |
US20060123823A1 (en) | Cogeneration system | |
GB2503781A (en) | Hybrid heat pump boiler system | |
US20180087786A1 (en) | Energy management apparatus, system and method | |
US7243504B2 (en) | Cogeneration system | |
US20070012058A1 (en) | Cogeneration system | |
US20060242977A1 (en) | Cogeneration system | |
EP3809050B1 (en) | Hybrid heating system using geothermal heat | |
KR100677245B1 (en) | Refrigerants preheating apparatus for airconditioner using exhaust gas of generation of electric power system | |
JP4660908B2 (en) | Air conditioner | |
CA2970144A1 (en) | Energy management apparatus, system and method | |
CN2763729Y (en) | Boiler and air conditioner set combined system | |
JP2004293881A (en) | Engine driven heat pump device | |
CN1172240A (en) | Refrigerating and heating air conditioner system | |
CN111503922A (en) | Multi-energy complementary triple supply device | |
KR20070008889A (en) | The control method and the cogeneration method of electric generation air condition system | |
JP4983954B2 (en) | Air conditioner | |
JP4546188B2 (en) | Waste heat utilization air conditioning system | |
JP2002349995A (en) | Heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |