KR20050070372A - Method for measuring reduction degree of direct reduction iron using measured magnetic susceptibility - Google Patents

Method for measuring reduction degree of direct reduction iron using measured magnetic susceptibility Download PDF

Info

Publication number
KR20050070372A
KR20050070372A KR1020030099821A KR20030099821A KR20050070372A KR 20050070372 A KR20050070372 A KR 20050070372A KR 1020030099821 A KR1020030099821 A KR 1020030099821A KR 20030099821 A KR20030099821 A KR 20030099821A KR 20050070372 A KR20050070372 A KR 20050070372A
Authority
KR
South Korea
Prior art keywords
measuring
susceptibility
reduced iron
reduction rate
sample
Prior art date
Application number
KR1020030099821A
Other languages
Korean (ko)
Other versions
KR100534047B1 (en
Inventor
정병준
이덕원
이주혁
김완득
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2003-0099821A priority Critical patent/KR100534047B1/en
Publication of KR20050070372A publication Critical patent/KR20050070372A/en
Application granted granted Critical
Publication of KR100534047B1 publication Critical patent/KR100534047B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/16Measuring susceptibility

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

본 발명은 환원철 제조 공정에서 제조된 환원철의 환원율을 측정된 자화율을 이용하여 신속히 측정할 수 있는 자화율 측정에 의한 환원철의 환원율 측정 방법에 관한 것이다.The present invention relates to a method for measuring the reduction rate of reduced iron by measuring the reduction rate of the reduced iron produced in the reduced iron manufacturing process by using the measured susceptibility.

본 발명은 환원철의 환원율을 측정하는 방법에 있어서, (a) 자화율 측정 장치를 이용하여 환원철의 시료의 자화율을 측정하는 단계; (b) 상기 환원철의 시료와 동일한 성분을 가지는 환원철을 습식 분석 방법으로 미리 측정하여 얻은 습식 분석 환원율과 상기 (a) 단계에서 측정된 자화율의 상관 관계를 회귀 분석하여 정의된 회귀식에 상기 자화율을 대입하여 산출 환원율을 얻는 단계를 포함하는 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 방법을 제공한다.The present invention provides a method for measuring a reduction rate of reduced iron, the method comprising the steps of: (a) measuring the susceptibility of a sample of reduced iron using a magnetization rate measuring device; (b) regression analysis of the correlation between the wet analysis reduction rate obtained by previously measuring the reduced iron having the same component as the sample of the reduced iron by the wet analysis method and the magnetization rate measured in step (a), and the susceptibility to the regression equation defined. It provides a method for measuring the reduction rate of reduced iron by measuring the magnetization rate, comprising the step of obtaining a calculated reduction rate by substitution.

Description

자화율 측정에 의한 환원철의 환원율 측정 방법{Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility}Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility}

본 발명은 자화율 측정에 의한 환원철의 환원율 측정 방법에 관한 것으로, 보다 상세하게는 환원철 제조 공정에서 제조된 환원철의 환원율을 측정된 자화율을 이용하여 신속히 측정할 수 있는 자화율 측정에 의한 환원철의 환원율 측정 방법에 관한 것이다.The present invention relates to a method for measuring the reduction rate of reduced iron by measuring the magnetization rate, and more particularly, a method for measuring the reduction rate of reduced iron by the magnetization rate measurement that can be quickly measured by using the measured susceptibility of the reduced iron produced in the reduced iron manufacturing process It is about.

통상적으로 환원철(Direct Reduction Iron; 이하, "DRI"라 한다)의 환원율 측정에는 정확한 습식 분석 방법을 사용한다.Typically, an accurate wet analysis method is used to measure the reduction rate of direct reduction iron (hereinafter referred to as "DRI").

습식 분석 방법에 의한 환원율 측정 방법은 시료중의 T.Fe, FeO 및 M.Fe 함량을 분석한 후, 그 값으로부터 환원율을 계산하는 방식이다. 측정된 각각의 값으로부터 수학식 1을 활용하여 Fe2O3의 함량을 계산한다.Reduction rate measurement method by the wet analysis method is a method of calculating the reduction rate from the value after analyzing the T.Fe, FeO and M.Fe content in the sample. The content of Fe 2 O 3 is calculated using Equation 1 from the measured values.

환원율(reduction Degree, %)은 T.Fe가 모두 M.Fe 상태로 존재할 경우를 100%로 하여, 각 분석 시료에서 측정된 T.Fe 및 FeO 값과 계산에 의해 얻어진 Fe2O3 값을 활용하여 수학식 2에 의해 환원율을 산출한다.The reduction degree (%) is 100% when all T.Fe is present in the M.Fe state, and utilizes the T.Fe and FeO values measured in each analytical sample and the Fe 2 O 3 values obtained by the calculation. The reduction rate is calculated by the following equation.

환원철의 습식 분석을 행함에 있어 분석 시료의 평량에서부터 평량 시료의 용해, 용해 시료 중 SiO2 분해, 용해 시료의 환원, 환원 시료의 냉각 그리고 마지막으로 적정에 이르기까지의 일련의 단계를 거칠 경우 통상 소요 시간은 4시간 이상이 소요된다.It is usually necessary to perform wet analysis of reduced iron when it goes through a series of steps from the basis weight of the analyte to the dissolution of the basis weight sample, the decomposition of SiO 2 in the dissolved sample, the reduction of the dissolved sample, the cooling of the reduced sample, and finally the titration. The time is over 4 hours.

그밖에 핵 분석기(Nuclear Analyzer)를 활용하여 연속적으로 환원되는 동안의 Hot Ore로부터 철(Iron), 산소(Oxygen), 탄소(Carbon) 및 규소(Silicon) 함량을 측정하는 기술도 있으나, 핵 분석기의 특성상 조작에 특별한 주의를 요할 뿐만 아니라 장치 자체의 가격도 상당히 비싸다.In addition, there is a technology for measuring iron, oxygen, carbon, and silicon content from hot ore during continuous reduction by using a nuclear analyzer. Not only does the operation require special attention, but the price of the device itself is quite expensive.

따라서, 본 발명은 이러한 종래 기술의 문제점을 감안하여 안출된 것으로, 그 목적은 통상적으로 사용되는 습식 분석 방법에 의한 환원철의 환원율을 분석하는 대신에 자화율 측정 장치를 통하여 간편하게 측정된 환원철의 자화율을 이용하여 환원철의 환원율을 신속하게 측정할 수 있는 자화율 측정에 의한 환원철의 환원율 측정 방법을 제공하는데 있다.Therefore, the present invention has been devised in view of the problems of the prior art, and its object is to use the susceptibility of reduced iron easily measured through a susceptibility measuring device instead of analyzing the reduction rate of reduced iron by a commonly used wet analysis method. The present invention provides a method for measuring the reduction rate of reduced iron by measuring the susceptibility to reduce the reduction rate of reduced iron.

상기한 목적을 달성하기 위하여, 본 발명은 환원철의 환원율을 측정하는 방법에 있어서, (a) 자화율 측정 장치를 이용하여 환원철의 시료의 자화율을 측정하는 단계; (b) 상기 환원철의 시료와 동일한 성분을 가지는 환원철을 습식 분석 방법으로 미리 측정하여 얻은 습식 분석 환원율과 상기 (a) 단계에서 측정된 자화율의 상관 관계를 회귀 분석하여 정의된 회귀식에 상기 자화율을 대입하여 산출 환원율을 얻는 단계를 포함하는 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 방법을 제공한다.In order to achieve the above object, the present invention provides a method for measuring the reduction rate of reduced iron, (a) measuring the magnetization rate of the sample of reduced iron using a magnetization rate measuring device; (b) regression analysis of the correlation between the wet analysis reduction rate obtained by previously measuring the reduced iron having the same component as the sample of the reduced iron by the wet analysis method and the magnetization rate measured in step (a), and the susceptibility to the regression equation defined. It provides a method for measuring the reduction rate of reduced iron by measuring the magnetization rate, comprising the step of obtaining a calculated reduction rate by substitution.

상기 (a) 단계에서 자화율 측정에 사용되는 상기 환원철의 시료의 양은 25∼35g인 것이 적당하고, 상기 자화율 측정 장치와 상기 환원철의 시료의 간격(G)은 시료의 종류와 상관없이 일정한 간격으로 유지되어 측정되는 것이 바람직하다.The amount of the reduced iron sample used for measuring the susceptibility in step (a) is appropriately 25 to 35g, and the interval (G) between the susceptibility measuring device and the reduced iron sample is maintained at a constant interval regardless of the type of the sample. Preferably measured.

그리고, 상기 (b) 단계에서의 상기 회귀식은, 산출 환원율 = 1.13 × 자화율 + 33.3이다.The regression equation in the step (b) is calculated as a reduction rate = 1.13 x magnetization rate + 33.3.

(실시예)(Example)

상기와 같은 본 발명에 따른 자화율 측정에 의한 환원철의 환원율 측정 방법을 구현하기 위한 환원철의 자화율을 측정하기 위한 측정 원리는 다음과 같다.The measuring principle for measuring the susceptibility of the reduced iron to implement the method for measuring the reduced rate of reduced iron by the susceptibility measurement according to the present invention as described above is as follows.

자기적으로 투자성을 갖는 물질들은 자기장의 자속 밀도(Flux Density)를 변화시킬 수 있는 특성을 가지고 있다. 그리고, 광물, 환원철 혹은 환원 펠릿(Pellet)들은 지구 등과 같은 외부 자기장에 놓여 있을 경우 유도 자력(Induced Magnetism)을 얻게 되는데, 이들의 강도는 물질의 자화율(Magnetic Susceptibility; χ)에 의해 결정된다.Magnetically investable materials have the property of changing the flux density of a magnetic field. In addition, minerals, reduced iron, or reduced pellets (Pellets) are induced magnetism when placed in an external magnetic field such as the earth, their strength is determined by the magnetic susceptibility (χ) of the material.

이 때, 자화율(χ)은 수학식 3과 같이 정의된다.At this time, the susceptibility (χ) is defined as in Equation 3.

χ = M/Hχ = M / H

(여기서, M은 자화 강도(Induced Intensity of Magnetization), H는 외부 자기장 강도(External Magnetizing Force)이다.)(Where M is Induced Intensity of Magnetization and H is External Magnetizing Force.)

그리고, 각각의 물질들은 표 1에 나타난 것과 같은 고유한 자화율 값을 가지고 있다.Each material has its own susceptibility value as shown in Table 1.

물질별 자화율 측정값Susceptibility Measurement by Material 물질(Materials)Materials 투자율 범위(Susceptibility Range)(×10-3emu/cm3)Susceptibility Range (× 10 -3 emu / cm 3 ) 석회석(Limestones)Limestones 0.002 ~ 0.2800.002-0.280 사암(Sandstones)Sandstones 0.000 ~ 1.6600.000 to 1.660 혈암(Shales)Shales 0.005 ~ 1.4800.005-1.480 화강암(Granite)Granite 0.000 ~ 4.0000.000 to 4.000 현무암(Basalt)Basalt 0.020 ~ 14.500.020-14.50 황철광(Pyrite)Pyrite 0.004 ~ 0.4200.004-0.420 크롬철광(Chromite)Chromite 0.240 ~ 9.4000.240 ~ 9.400 Specular HematiteSpecular Hematite 2.600 ~ 10.502.600-10.50 Pyrrhotite(Fe1-XS)Pyrrhotite (Fe 1-X S) 0.100 ~ 500.00.100 to 500.0 MagnetiteMagnetite 100.0 ~ 1600.0100.0 to 1600.0

본 발명에 따라 환원철의 환원율을 측정하기 위하여 필요한 자화율을 측정하는데 사용되는 자화율 측정 장치는 도 1에 나타낸 바와 같이, 환원철의 시료(30)에 일정 거리(G)를 두고 접촉되는 "ㄷ"자형 코어(22), 상기 코어(22)에 권선되는 코일(24)로 이루어진 자화율 센서(20); 상기 자화율 센서(20)에 연결되어, 상기 자화율 센서(20)에 주파수 신호를 공급하여 자화율을 측정하는 자화율 측정부(10)로 구성되어 있는데, 상기 자화율 측정 장치는 기존의 것을 이용하여 측정하여도 무방하다.The magnetization rate measuring device used to measure the susceptibility required to measure the reduction rate of reduced iron according to the present invention is a "c" shaped core which is contacted with a predetermined distance G to the sample 30 of reduced iron, as shown in FIG. (22), susceptibility sensor (20) consisting of a coil (24) wound around the core (22); It is connected to the susceptibility sensor 20, the susceptibility measuring unit 10 for measuring the susceptibility by supplying a frequency signal to the susceptibility sensor 20, the susceptibility measuring device is measured using an existing It's okay.

상기와 같은 자화율 측정 장치에 사용되는 상기 코어(22)는 높은 투자성 물질로 형성되어 있으며, 통과하는 자속(Magnetic Flux; F)의 자기 저항(Reluctance)의 변화를 감지한다.The core 22 used in the susceptibility measuring device is formed of a high permeability material, and detects a change in magnetic resistance (Reluctance) of magnetic flux passing through the magnetic flux (F).

상기와 같은 자화율 측정 장치는 상기 자화율 센서(20)의 초기 인덕턴스(시료가 접촉되기 전의 인덕턴스)에 의하여 일정한 주파수를 발진한다.The susceptibility measuring apparatus as described above oscillates a constant frequency by the initial inductance (inductance before the sample is contacted) of the susceptibility sensor 20.

이러한 상태에서 일정 거리(G)를 두고 시료(30)가 접촉되면, 상기 시료(30)에 의하여 상기 자화율 센서(20)의 인덕턴스가 변화되어 결과적으로 발진 주파수가 변경되며, 발진 주파수의 차이는 인덕턴스의 변화에 대응하여 변화한다.In this state, when the sample 30 is contacted at a predetermined distance G, the inductance of the susceptibility sensor 20 is changed by the sample 30, and as a result, the oscillation frequency is changed, and the difference in the oscillation frequency is inductance. Change in response to the change of.

따라서, 시료(30)의 성분에 따라 자화율이 다르고, 각 시료별로 다른 자화율은 상기 자화율 센서(20)의 인덕턴스를 다르게 하기 때문에 발진 주파수도 각각 다르게 출력되므로, 각각 다른 주파수를 통하여 각 시료의 자화율을 측정할 수 있는 것이다.Therefore, since the susceptibility is different according to the components of the sample 30, and the different susceptibility for each sample varies the inductance of the susceptibility sensor 20, the oscillation frequency is also output differently, and thus the susceptibility of each sample through different frequencies. It can be measured.

상기와 같은 방식으로 각 물질의 자화율을 측정하는 자화율 측정 장치의 자화율 측정에 소요되는 시간은 1초 미만으로 빠르게 측정이 가능하고, 측정의 정밀성을 높이기 위해서 시료의 개수를 증가시켜 그 평균값으로부터 자화율 값을 용이하게 설정할 수 있다.The time required to measure the susceptibility of the susceptibility measuring device for measuring the susceptibility of each material in the above manner can be measured quickly in less than 1 second, and the number of samples is increased to increase the precision of the measurement. Can be easily set.

하지만 상기 자화율 측정 장치가 미칠 수 있는 자장의 범위가 한정되어 있으며, 이는 각 측정 장치의 고유 특성인데, 본 발명에 사용된 자화율 측정 장치의 경우 도 2에서 보여지는 것과 같이 시료 질량이 30g에 이르기까지는 시료 질량 증가에 따라 자화율 값이 비례하여 증가되는 경향을 나타내어 주고 있으나, 그 이상에서는 시료 질량의 증가에 의한 측정값의 변동폭은 크지 않다.However, the range of the magnetic field that the susceptibility measuring device may have is limited, which is a unique characteristic of each measuring device. In the case of the susceptibility measuring device used in the present invention, as shown in FIG. 2, the sample mass reaches 30 g. Although the susceptibility value increases in proportion to the sample mass, the variation of the measured value due to the increase of the sample mass is not large.

따라서, 자화율을 측정할 때에는 자화율 측정 장치의 특성에 따라 다르지만, 대체적으로 시료의 질량을 25∼35g으로 한정하여 측정하는 것이 비교적 정확한 자화율 측정값을 얻을 수 있다.Therefore, the measurement of the susceptibility depends on the characteristics of the susceptibility measuring device. However, it is generally possible to obtain a relatively accurate susceptibility measurement value by limiting the sample to 25 to 35 g.

상기와 같이 측정된 자화율 측정값만을 가지고 절대적인 환원율 값을 산출해 내는 것은 불가능하기 때문에 도 3에서 보여지는 것과 같이 습식 분석을 통해 계산된 환원율 값과 자화율 측정 장치를 통해 얻어진 자화율 값 사이에 회귀 분석을 행하여 회귀식을 구하였다.Since it is impossible to calculate an absolute reduction rate using only the measured susceptibility measurement values as described above, a regression analysis is performed between the reduction rate value calculated through wet analysis and the susceptibility value obtained through the susceptibility measurement device as shown in FIG. 3. And a regression equation was obtained.

상기와 같은 회귀 분석을 통해 얻어진 회귀식을 수학식 4에 나타내었다.The regression equation obtained through the regression analysis as described above is shown in Equation 4.

환원율 = 1.13 × 자화율 + 33.3Reduction rate = 1.13 × magnetization rate + 33.3

수학식 4를 활용하면, 상기 자화율 측정 장치에 의해 측정된 자화율 값을 이용하여 신속하게 환원율을 계산해 내는 것이 가능하였다.By utilizing Equation 4, it was possible to quickly calculate the reduction rate using the susceptibility value measured by the susceptibility measurement device.

상기와 같은 방식으로 본 발명을 활용하여 실질적으로 현장에서 생산되는 DRI의 환원율 측정에 적용하였으며, 그 결과를 표 2에 나타내었다.Using the present invention in the same manner as described above was applied to the reduction rate of the DRI produced in the field substantially, the results are shown in Table 2.

표 2에 잘 나타나 있듯이 본 발명에 따라, 자화율 측정 장치에 의해 측정된 자화율 측정값을 이용하여 환원율을 분석할 경우 ±7% 정도의 오차 범위 내에서 습식 분석에 의한 환원율 측정값과 상당히 잘 일치함을 알 수 있다.As shown in Table 2, according to the present invention, when the reduction rate is analyzed using the susceptibility measurement value measured by the susceptibility measurement device, the reduction rate by wet analysis is fairly well matched within an error range of ± 7%. It can be seen.

그리고, 상기와 같은 자화율 측정 장치를 활용하여 측정된 자화율 값을 활용하여 환원율을 분석할 경우 1회 분석에 소요되는 시간은 실질적으로 자화율을 측정하는 시간과 환원율 산출에 필요한 시간만 필요하기 때문에 통상적으로 사용되는 기존의 습식 분석에 의한 환원율 분석에 소요되는 최소 4시간과 비교하여 매우 신속한 환원율 분석이 가능하였다.In addition, when analyzing the reduction rate using the susceptibility value measured using the susceptibility measurement device as described above, since the time required for one-time analysis substantially requires only the time for measuring the susceptibility and the time required for calculating the reduction rate. Very fast reduction rate analysis was possible compared to the minimum 4 hours required for reduction rate analysis by conventional wet analysis.

자화율 측정법 및 습식 분석법에 의한 환원율 계산값 비교Comparison of calculated reduction rate by susceptibility measurement method and wet analysis method 시료번호Sample Number 습식분석환원율(%)Wet analysis reduction rate (%) 자화율 측정값에 의해계산된 환원율(%)% Reduction calculated by the susceptibility measurement 습식분석방법과자화율측정법에 따른환원율 차이(%)Reduction rate difference according to wet analysis method and susceptibility measurement method (%) 1One 47.5047.50 48.7748.77 1.271.27 22 48.2048.20 51.7551.75 3.553.55 33 52.0052.00 55.6755.67 3.673.67 44 54.7054.70 58.6558.65 3.953.95 55 63.0063.00 63.8863.88 0.880.88 66 89.1089.10 93.3693.36 4.264.26 77 54.0054.00 55.6755.67 1.671.67 88 55.9055.90 56.7956.79 0.890.89 99 51.5051.50 48.3948.39 -3.11-3.11 1010 49.5049.50 57.7257.72 8.228.22 1111 55.5055.50 54.1854.18 -1.32-1.32 1212 67.0767.07 65.7465.74 -1.33-1.33 1313 66.8266.82 59.7759.77 -7.05-7.05 1414 84.0584.05 87.7687.76 3.713.71 1515 77.4777.47 82.9182.91 5.445.44 1616 71.8871.88 71.5371.53 -0.35-0.35 1717 90.1690.16 83.2883.28 -6.88-6.88 1818 88.2388.23 88.6988.69 0.460.46 1919 68.2768.27 63.3263.32 -4.95-4.95 2020 64.5464.54 70.9770.97 6.436.43 2121 41.1441.14 44.1044.10 2.962.96 2222 43.0843.08 46.3446.34 3.263.26 2323 61.6461.64 61.8361.83 0.190.19 2424 78.9778.97 73.5873.58 -5.39-5.39 2525 64.7764.77 55.4855.48 -9.29-9.29 2626 65.8965.89 64.2564.25 -1.64-1.64 2727 86.2486.24 81.4281.42 -4.82-4.82 2828 55.5855.58 53.8053.80 -1.78-1.78 2929 49.1849.18 49.8949.89 0.710.71 3030 48.0448.04 48.3948.39 0.350.35

한편, 상기 수학식 4에 정의된 환원율 산출식은 사용되는 자화율 측정 장치 및 측정 환경에 따라 달라질 수 있는 것이므로, 자화율의 측정 조건에 따른 회귀식을 설정하여 산출하는 것이 바람직하다.On the other hand, since the reduction rate calculation formula defined in Equation 4 may vary depending on the magnetization rate measuring apparatus and the measurement environment used, it is preferable to calculate by setting a regression equation according to the measurement conditions of the susceptibility.

상기한 바와 같이 이루어진 본 발명은 자화율 측정 장치를 활용해 측정된 자화율 측정값을 사전에 습식 분석 방법에 의한 환원율과 자화율 측정값으로부터 구해진 회귀식에 대입하여 산출함으로써 기존의 습식 분석을 통한 환원율 분석할 때에 4시간 이상이 소요되는 것을 25분 이내의 신속한 환원율 측정이 가능케 하는 효과가 있다.According to the present invention made as described above, by measuring the susceptibility measured using a susceptibility measurement device by substituting the regression equation obtained from the reduction rate and the susceptibility measured by the wet analysis method in advance, the reduction rate through conventional wet analysis can be analyzed. When 4 hours or more is required, there is an effect of enabling rapid reduction rate measurement within 25 minutes.

이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.

도 1은 본 발명에 따른 자화율 측정에 의한 환원철의 환원율 측정 장치를 설명하기 위한 구성도.1 is a block diagram for explaining an apparatus for measuring the reduction rate of reduced iron by measuring the susceptibility according to the present invention.

도 2는 환원철 시료의 질량에 따른 자화율 측정값 그래프.Figure 2 is a graph of the susceptibility measurement value according to the mass of the reduced iron sample.

도 3은 자화율 측정값과 습식분석 측정에 의한 환원율간의 회귀 분석 그래프.3 is a graph of regression analysis between the susceptibility measurement value and the reduction rate by wet analysis measurement.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

10 : 자화율 측정부 20 : 자화율 센서10: susceptibility measuring unit 20: susceptibility sensor

22 : 코어 24 : 코일22 core 24 coil

30 : 시료30: sample

Claims (4)

환원철의 환원율을 측정하는 방법에 있어서,In the method of measuring the reduction rate of reduced iron, (a) 자화율 측정 장치를 이용하여 환원철의 시료의 자화율을 측정하는 단계;(a) measuring the susceptibility of the sample of reduced iron using a susceptibility measuring apparatus; (b) 상기 환원철의 시료와 동일한 성분을 가지는 환원철을 습식 분석 방법으로 미리 측정하여 얻은 습식 분석 환원율과 상기 (a) 단계에서 측정된 자화율의 상관 관계를 회귀 분석하여 정의된 회귀식에 상기 자화율을 대입하여 산출 환원율을 얻는 단계를 포함하는 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 방법.(b) regression analysis of the correlation between the wet analysis reduction rate obtained by previously measuring the reduced iron having the same component as the sample of the reduced iron by the wet analysis method and the magnetization rate measured in step (a), and the susceptibility to the regression equation defined. A method for measuring the reduction rate of reduced iron by measuring the magnetization rate, comprising the step of obtaining a calculated reduction rate by substitution. 제 1항에 있어서, 상기 (a) 단계에서 자화율 측정에 사용되는 상기 환원철의 시료의 양은 25∼35g인 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 방법.The method for measuring the reduction rate of reduced iron by measuring the magnetization rate according to claim 1, wherein the amount of the reduced iron sample used for measuring the susceptibility in step (a) is 25 to 35 g. 제 1항에 있어서, 상기 자화율 측정 장치와 상기 환원철의 시료의 간격(G)은 시료의 종류와 상관없이 일정한 간격으로 유지되어 측정되는 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 장치 방법.The method of claim 1, wherein the gap G between the magnetization rate measuring device and the sample of reduced iron is maintained at a constant interval regardless of the type of the sample. 제 1항에 있어서, 상기 (b) 단계에서의 상기 회귀식은, 산출 환원율 = 1.13 × 자화율 + 33.3인 것을 특징으로 하는 자화율 측정에 의한 환원철의 환원율 측정 방법.The method for measuring the reduction rate of reduced iron by measuring the magnetization rate according to claim 1, wherein the regression formula in the step (b) is calculated reduction rate = 1.13 x magnetization rate + 33.3.
KR10-2003-0099821A 2003-12-30 2003-12-30 Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility KR100534047B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0099821A KR100534047B1 (en) 2003-12-30 2003-12-30 Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0099821A KR100534047B1 (en) 2003-12-30 2003-12-30 Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility

Publications (2)

Publication Number Publication Date
KR20050070372A true KR20050070372A (en) 2005-07-07
KR100534047B1 KR100534047B1 (en) 2005-12-06

Family

ID=37260461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0099821A KR100534047B1 (en) 2003-12-30 2003-12-30 Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility

Country Status (1)

Country Link
KR (1) KR100534047B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225288B1 (en) * 2011-07-28 2013-01-22 현대제철 주식회사 M-fe analysis method in reduced iron
KR20190078253A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Apparatus for measurement of reduction degree of nickel ore
CN112946060A (en) * 2021-01-29 2021-06-11 西安热工研究院有限公司 Specific susceptibility method for measuring slagging performance of bituminous coal ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225288B1 (en) * 2011-07-28 2013-01-22 현대제철 주식회사 M-fe analysis method in reduced iron
KR20190078253A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Apparatus for measurement of reduction degree of nickel ore
WO2019132280A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Device for measuring reduction rate of nickel ore
CN112946060A (en) * 2021-01-29 2021-06-11 西安热工研究院有限公司 Specific susceptibility method for measuring slagging performance of bituminous coal ash
CN112946060B (en) * 2021-01-29 2023-10-20 西安热工研究院有限公司 Specific magnetization rate method for measuring slagging performance of bituminous coal ash

Also Published As

Publication number Publication date
KR100534047B1 (en) 2005-12-06

Similar Documents

Publication Publication Date Title
CA1282829C (en) Method and apparatus for generating and detecting magnetization response from ferromagnetic, ferrimagnetic paramagnetic, or diamagnetic materials
Vértesy et al. Nondestructive magnetic characterization of TRIP steels
CN103238064B (en) Depth of quenching assay method and depth of quenching determinator
Ducharne et al. Directional magnetic Barkhausen noise measurement using the magnetic needle probe method
Vértesy et al. Non-destructive indication of plastic deformation of cold-rolled stainless steel by magnetic adaptive testing
KR100534047B1 (en) Method for Measuring Reduction Degree of Direct Reduction Iron Using Measured Magnetic Susceptibility
Kostin et al. On new possibilities for making local measurements of the coercive force of ferromagnetic objects
JPH03255380A (en) Apparatus for measuring magnetic permeability
Kostin et al. On the advantages of local measurement of coercive force of ferromagnetic objects based on internal field
Otala et al. A new electronic grain-size analyser for technical steel
Moses et al. Iron loss in non-oriented electrical steels under distorted flux conditions
JPH06109412A (en) Method and apparatus for detecting deformation behavior at inside of metal material
Perevertov Measurement of the surface field on open magnetic samples by the extrapolation method
Ng et al. The effects of demagnetizing and stray fields on magnetoacoustic emission
Vértesy et al. Minor hysteresis loops measurements for characterization of cast iron
CN2296008Y (en) Non-damage probe for inspecting iron content
US3706028A (en) Method for determining the gram size distribution of ferromagnetic material
EA030754B1 (en) Mechanical stress measuring sensor
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
RU2005299C1 (en) Method of determination of temperature of curie points of microinclusions in ferromagnetic substances
SU1165970A1 (en) Method of structuroscopy of ferromagnetic articles
Saynajakangas Statistical properties of magnetization discontinuities in technical steels
JPS604856A (en) Method and apparatus for non-destructive testing of toughness and strength of ferromagnetic material by acoustic analysis
Stupakov Investigation of magnetic processes of structure-degraded ferromagnetic materials
JP2004518116A (en) Detector for non-destructive evaluation of steel structures or components

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121012

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131010

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141114

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee