KR20050069678A - Water flow sensor of cooling chamber - Google Patents

Water flow sensor of cooling chamber Download PDF

Info

Publication number
KR20050069678A
KR20050069678A KR1020030101987A KR20030101987A KR20050069678A KR 20050069678 A KR20050069678 A KR 20050069678A KR 1020030101987 A KR1020030101987 A KR 1020030101987A KR 20030101987 A KR20030101987 A KR 20030101987A KR 20050069678 A KR20050069678 A KR 20050069678A
Authority
KR
South Korea
Prior art keywords
permanent magnet
chamber
cooling
cooling chamber
cooling water
Prior art date
Application number
KR1020030101987A
Other languages
Korean (ko)
Other versions
KR101027626B1 (en
Inventor
김태훈
Original Assignee
동부아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부아남반도체 주식회사 filed Critical 동부아남반도체 주식회사
Priority to KR1020030101987A priority Critical patent/KR101027626B1/en
Publication of KR20050069678A publication Critical patent/KR20050069678A/en
Application granted granted Critical
Publication of KR101027626B1 publication Critical patent/KR101027626B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

본 발명은 반도체 공정장비들중에서 동작시 열을 식히기 위하여 냉각수를 사용하여 냉각을 하게 되는 쿨링챔버에 관한 것으로, 더욱 상세하게는 충분한 냉각을 위하여 일정한 유량과 압력이 필요하게 됨으로 영구자석, 동판과 저항의 구조를 이용하여 종래보다 정확한 유량측정과 압력측정을 도모할 수 있는 쿨링챔버의 냉각수흐름센서에 관한 것이다.The present invention relates to a cooling chamber that cools using cooling water to cool down heat during operation in semiconductor processing equipment. More specifically, a constant flow rate and pressure are required for sufficient cooling. By using the structure of the present invention relates to a cooling chamber flow sensor of the cooling chamber that can achieve a more accurate flow rate measurement and pressure measurement.

이를 위한 본 발명은, 냉각수라인의 수압이 영구자석에 전달하는 챔버와, 이 챔버의 영구자석에 의해 동시에 이동되는 또 다른 영구자석이 내장된 실린더형 가변저항부재와; 상기 영구자석은 샤프트를 감싼 스프링이 설치되어 상기 수압만큼 뒤로 이동되고, 상기 또 다른 영구자석의 샤프트를 감싼 스프링이 설치되어 챔버의 영구자석 이 움직이는 만큼 동판과 저항이 다른 가변저항위로 접촉하면서 이동하게 된 것을 특징으로 한다. To this end, the present invention provides a chamber for transmitting hydraulic pressure of a cooling water line to a permanent magnet, and a cylindrical variable resistance member having another permanent magnet that is simultaneously moved by the permanent magnet of the chamber; The permanent magnet is installed with a spring wrapped around the shaft and moved backward by the hydraulic pressure, and the spring wrapped around the shaft of the other permanent magnet is installed so that the copper plate and the resistance move in contact with another variable resistance as the permanent magnet of the chamber moves. It is characterized by.

Description

쿨링챔버의 냉각수 흐름센서{WATER FLOW SENSOR OF COOLING CHAMBER} WATER FLOW SENSOR OF COOLING CHAMBER}

본 발명은 반도체 공정장비들중에서 동작시 열을 식히기 위하여 냉각수 (Cooling water)를 사용하여 냉각을 하게 되는 쿨링챔버에 관한 것으로, 더욱 상세하게는 충분한 냉각을 위하여 일정한 유량과 압력이 필요하게 됨으로 영구자석, 동판과 저항의 구조를 이용하여 종래보다 정확한 유량측정과 압력측정을 도모할 수 있는 쿨링챔버의 냉각수 흐름센서에 관한 것이다.  The present invention relates to a cooling chamber in which cooling is performed by using cooling water to cool heat during operation in semiconductor processing equipment. More specifically, a permanent flow rate and pressure are required for sufficient cooling. In addition, the present invention relates to a cooling chamber flow sensor of a cooling chamber capable of more accurate flow rate measurement and pressure measurement using a copper plate and a resistance structure.

보통, 웨이퍼를 처리하는 타입에 따라 낱장으로 처리하는 타입과, 다수매의 웨이퍼를 동시에 처리하는 배치 타입(batch type)으로 구분한다. 여기서, 낱장 처리 타입은 장비 구성시 배치 타입보다는 공정이 다소 안정되어 있고, 그 처리가 손쉬우나 생산성 측면에서는 저조한 성능을 보인다. 따라서, 낱장 타입의 장비는 생산성 향상을 위해 다중으로 웨이퍼를 처리할 수 있는 멀티 타입(Multi-type)으로 구성된다. Usually, the wafer is classified into a type for processing a single sheet and a batch type for processing a plurality of wafers simultaneously, depending on the type of wafer being processed. Here, the sheet processing type is somewhat more stable in the process than the batch type when the equipment is configured, and the processing is easy, but shows poor performance in terms of productivity. Therefore, the sheet type equipment is composed of multi-types capable of processing wafers in multiple ways to improve productivity.

상기 멀티 타입으로써 예컨데 화학기상증착장치의 구조를 개략적으로 살펴보면, 일측에 설치된 복수의 엘리베이터를 통해 웨이퍼가 적재된 카세트를 세팅하고, 카세트의 웨이퍼는 중심부의 트랜스퍼에 의해 공정 챔버나 쿨링챔버의 내부로 로딩 또는 언로딩되도록 설계된다. 화학 기상증착이 종료된 웨이퍼는 쿨링 챔버의 내부로 로딩되어 상온까지 온도 강하가 이루어지게 되며, 이를 위하여 냉각라인이 설치된다. 이 냉각라인에 의해 냉각수(process cooling water, PCW)가 쿨링 챔버의 내부에 설치된 웨이퍼 장착대를 통과하면서 웨이퍼와 간접 접촉하여 고온인 웨이퍼를 상온까지 냉각시키게 된다. As a multi-type structure, for example, the structure of the chemical vapor deposition apparatus, a cassette in which a wafer is loaded is set through a plurality of elevators installed on one side, and the wafer of the cassette is transferred into the process chamber or the cooling chamber by a transfer in the center. It is designed to be loaded or unloaded. After the chemical vapor deposition is completed, the wafer is loaded into the cooling chamber and the temperature drops to room temperature, and a cooling line is installed for this purpose. By this cooling line, process cooling water (PCW) passes through the wafer mount installed inside the cooling chamber while indirectly contacting the wafer to cool the wafer at high temperature to room temperature.

그러나, 반도체 공정장비들중에서는 도 1 에 도시된 바와 같이, 쿨링챔버(1)의 냉각수 흐름을 파악하기 위하여 종래에는 로터(3)와 로터(3)에 붙어있는 영구자석(2)에 의해 발생되는 기전력의 전압을 측정하여 냉각수의 흐름을 파악하도록 되어 있다. 따라서, 상기 기전력의 전압은 도 2 에 도시된 바와 같이 코일(5)을 통한 전압메터(4)로 확인할 수 있다. However, in the semiconductor processing equipment, as shown in FIG. 1, it is conventionally generated by the rotor 3 and the permanent magnet 2 attached to the rotor 3 to grasp the flow of the cooling water of the cooling chamber 1. By measuring the voltage of the electromotive force is to determine the flow of the coolant. Therefore, the voltage of the electromotive force can be confirmed by the voltage meter 4 through the coil 5 as shown in FIG.

이와 같이 종래의 워터센서는 쿨링챔버(1)내에서 단순히 냉각수의 흐름에 따라 로터(3)가 회전하면서 냉각수가 흐르는지 여부를 측정하고 있으나, 이 냉각수의 흐름판단은 상기 로터(3)에 붙어 있는 영구자석(2)이 회전하면서 코일(5)에 기전력을 발생시키고, 여기서 발생하는 전압으로 전압메터(4)로 측정하도록 되어 있다. As described above, the conventional water sensor measures whether the coolant flows while the rotor 3 rotates in accordance with the flow of the coolant in the cooling chamber 1, but the flow judgment of the coolant is attached to the rotor 3. The permanent magnet 2 rotates to generate an electromotive force in the coil 5, and to measure the voltage generated by the voltage meter 4 with the generated voltage.

그러므로, 종래의 워터센서는 쿨링챔버내 로터의 영구자석와 같이 회전하거나 움직이는 부분이 있음으로 센싱오류가 발생할 염려가 있었다. Therefore, the conventional water sensor has a fear that a sensing error occurs because there is a part that rotates or moves, such as a permanent magnet of the rotor in the cooling chamber.

이에 본 발명은 상기와 같은 종래의 워터센서가 가지고 있는 단점을 해소하기 위해 발명한 것으로, 챔버의 영구자석을 냉각수라인에 직접 삽입하고 동판과 저항의 가변저항구조를 연결할 수 있음으로 전극부분이 냉각수에 노출되지 않기 때문에 매우 안정적이면서 수압의 변화정도를 쉽게 알 수 있는 쿨링챔버의 냉각수 흐름센서를 제공하고자 함에 그 목적이 있다. Accordingly, the present invention has been invented to solve the disadvantages of the conventional water sensor as described above, the electrode portion can be inserted into the permanent magnet of the chamber directly into the cooling water line and connect the variable resistance structure of the copper plate and the resistance It is an object of the present invention to provide a cooling chamber flow sensor of a cooling chamber that is very stable and easily knows the degree of change in water pressure because it is not exposed to the water.

상기 목적을 달성하기 위한 본 발명은, 냉각수라인의 수압이 영구자석에 전달하는 챔버와, 이 챔버의 영구자석에 의해 동시에 이동되는 또 다른 영구자석이 내장된 실린더형 가변저항부재와; 상기 영구자석은 샤프트를 감싼 스프링이 설치되어 상기 수압만큼 뒤로 이동되고, 상기 또 다른 영구자석의 샤프트를 감싼 스프링이 설치되어 챔버의 영구자석 이 움직이는 만큼 동판과 저항이 다른 가변저항위로 접촉하면서 이동하게 된 것을 특징으로 한다. The present invention for achieving the above object is a cylindrical variable resistance member having a chamber for transmitting the hydraulic pressure of the cooling water line to the permanent magnet, and another permanent magnet that is moved simultaneously by the permanent magnet of the chamber; The permanent magnet is installed with a spring wrapped around the shaft and moved backward by the hydraulic pressure, and a spring wrapped around the shaft of the other permanent magnet is installed so that the copper plate and the resistance move in contact with another variable resistance as the permanent magnet of the chamber moves. It is characterized by.

이하, 본 발명의 바람직한 실시예를 예시도면에 의거하여 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3 은 본 발명의 실시예에 관한 쿨링챔버의 냉각수 흐름센서를 작동설명하기 위한 상태도로서, 본 발명은 반도체 공정장비들중에서 동작시 열을 식히기 위하여 냉각수를 사용하여 냉각을 하게 되는 쿨링챔버인 바, 이는 충분한 냉각을 위하여 일정한 유량과 압력이 필요하게 됨으로 영구자석(10, 11), 동판과 저항의 가변저항(16)구조를 이용하여 종래보다 정확한 유량측정과 압력측정을 도모할 수 있는 쿨링챔버의 냉각수 흐름센서인 것이다. Figure 3 is a state diagram for explaining the operation of the cooling water flow sensor of the cooling chamber according to an embodiment of the present invention, the present invention is a cooling chamber that is cooled by using the cooling water to cool the heat during operation in the semiconductor processing equipment bar Since it requires constant flow rate and pressure for sufficient cooling, it is possible to use a permanent magnet (10, 11), copper plate and variable resistance (16) structure of the cooling chamber to achieve a more accurate flow rate measurement and pressure measurement than conventional ones. It is a coolant flow sensor of.

본 발명은 냉각수라인의 수압이 직접 영구자석 1(10)에 전달하는 챔버(18)와, 이 챔버(18)의 영구자석 1(10)에 의해 동시에 이동되는 영구자석 2(11)가 내장된 실린더형 가변저항부재(17), 그리고 이 실린더형 가변저항부재(17)에 연결된 DC 전원공급및 저항레더(19)등으로 구성되어져 있다. According to the present invention, a chamber 18 in which the hydraulic pressure of the cooling water line is directly transmitted to the permanent magnet 1 (10), and the permanent magnet 2 (11) simultaneously moved by the permanent magnet 1 (10) of the chamber 18 are embedded. The cylindrical variable resistance member 17, and the DC power supply and the resistance leather 19 connected to this cylindrical variable resistance member 17 are comprised.

상기 챔버(18)내로 냉각수가 흐르면 수압에 의해 영구자석 1(10)이 뒤로 밀려나게 되고, 이에 따라 실린더형 가변저항부재(17)의 영구자석 2(11)도 따라 움직이게 된다. 상기 실린더형 가변저항부재(17)의 영구자석 2(11)에 의해서 움직이면, DC가 투입되어 동판과 저항이 다른 가변저항(16)위로 접촉하며 움직이게 되고, 이 가변저항(16)에 따른 전압의 변화를 가져오게 된다. 이것을 수압으로 환산하여 압력을 측정할 수 있으며, 전압의 변화로 냉각수의 흐름도 자연스럽게 감지 할 수 있게 된다. When the coolant flows into the chamber 18, the permanent magnet 1 (10) is pushed back by the hydraulic pressure, and thus the permanent magnet 2 (11) of the cylindrical variable resistance member 17 also moves along. When moved by the permanent magnet 2 (11) of the cylindrical variable resistance member 17, the DC is introduced to move the copper plate and the resistance on the other variable resistor 16 to move, the voltage of the variable resistor 16 It makes a difference. The pressure can be measured by converting it into water pressure, and the flow of the coolant can be naturally detected by the change of voltage.

즉, 챔버(18)내로 화살표와 같이 냉각수가 흐르면 수압에 의해 영구자석 1(10)이 뒤로 밀려나게 되는 데, 이 영구자석 1(10)에는 샤프트(12)를 감싼 스프링(13)이 설치되어 상기 수압만큼 이동하게 된다. 상기 챔버(18)내 영구자석 1(10)의 상부에는 실린더형 가변저항부재(17)내의 영구자석 2(11)가 떨어져서 설치되어 있는 바, 상기 영구자석 1(10)이 이동됨에 따라 영구자석 2(11)도 동시에 움직이게 된다. That is, when the coolant flows in the chamber 18 as shown by the arrow, the permanent magnet 1 10 is pushed back by the hydraulic pressure, and the permanent magnet 1 10 is provided with a spring 13 wrapped around the shaft 12. The water pressure is moved. Permanent magnets 2 (11) in the cylindrical variable resistance member 17 are installed on the upper portion of the permanent magnets 1 (10) in the chamber 18, bar permanent magnets as the permanent magnets 1 (10) is moved 2 (11) also moves simultaneously.

상기 실린더형 가변저항부재(17)내 영구자석 2(11)에는 샤프트(14)를 감싼 스프링(15)이 설치되어 상기 영구자석 1(10)이 움직이는 만큼 이동하게 된다. 그리고, 상기 영구자석 1(10)은 영구자석 2(11)보다 큰직경의 크기로 되어 있고, 샤프트(14)는 샤프트(12)보다 길이가 길며 스프링(15)도 스프링(13)보다 길고 작은 직경의 크기로 되어 있다. 상기 실린더형 가변저항부재(17)의 영구자석 2(11)은 바깥 쪽으로 배열된 가변저항(16)을 통과하도록 되어 있고, 전선을 통해 외부로 DC 전원공급및 저항레더(19)가 설치되어 있다. Permanent magnet 2 (11) in the cylindrical variable resistance member 17 is provided with a spring 15 wrapped around the shaft 14 is moved as the permanent magnet 1 (10) moves. In addition, the permanent magnet 1 (10) has a larger diameter than the permanent magnet 2 (11), the shaft 14 is longer than the shaft 12 and the spring 15 is also longer and smaller than the spring 13 It is the size of the diameter. The permanent magnets 2 (11) of the cylindrical variable resistance member 17 pass through the variable resistors 16 arranged outwardly, and a DC power supply and a resistance leather 19 are provided to the outside through wires. .

따라서, 실린더형 가변저항부재(18)의 영구자석 2(11)이 챔버(18)의 영구자석 1(10)에 의해서 움직이면, DC가 입력되어진 동판과 저항이 다른 가변저항(16)위로 접촉하며 움직이게 되고, 이 가변저항(16)에 따른 전압의 변화를 가져오게 된다. 그러므로, 측정수단을 통해 이것을 수압으로 환산하여 압력을 측정할 수 있으며, 전압의 변화로 냉각수의 흐름도 자연스럽게 감지 할 수 있게 된다. Accordingly, when the permanent magnets 2 (11) of the cylindrical variable resistance member 18 are moved by the permanent magnets 1 (10) of the chamber 18, the copper plate inputted with DC and the resistance contact with the other variable resistor 16. It is moved, resulting in a change in voltage according to the variable resistor 16. Therefore, it is possible to measure the pressure by converting it into water pressure through the measuring means, and the flow of the coolant can be naturally detected by the change of the voltage.

상기한 바와 같이 본 발명은 가변저항을 이용한 센서형태 및 사용방법, 그리고 냉각수라인에 핏팅(fitting) 형태로 사용할 수 있는 형태를 제공할 수 있다.       As described above, the present invention can provide a sensor type and a method using the variable resistor, and a form that can be used in a fitting form in a cooling water line.

이상 설명한 바와 같이 본 발명에 의하면, 냉각수라인에 직접 삽입하여 연결할 수 있으면 전극 부분이 냉각수에 노출되지 않기 때문에 매우 안정적이면 수압의 변화 정도를 쉽게 알 수 있다.     As described above, according to the present invention, since the electrode portion is not exposed to the cooling water when it can be directly inserted into the cooling water line, it is easy to know the degree of change in the water pressure if it is very stable.

또한, 본 발명은 회전하거나 움직이는 부분이 없어 센서오류(sensor fail)가 날 염려가 없고, 라인크기에 상관없이 핏팅타입(fitting type)으로 만들 경우 냉각수라인의 어디에든 장착할 수 있는 잇점이 있다.       In addition, the present invention does not have a rotating or moving part, there is no fear of sensor failure (sensor fail), there is an advantage that can be installed anywhere in the cooling water line (fitting type) regardless of the line size.

본 발명의 쿨링챔버의 냉각수 흐름센서에 대한 기술사상을 예시도면에 의거하여 설명했지만, 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명의 특허청구범위를 한정하는 것은 아니다. 본 발명은 이 기술분야의 통상 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다. Although the technical concept of the cooling water flow sensor of the cooling chamber of the present invention has been described with reference to the drawings, this is illustrative of the best embodiment of the present invention and is not intended to limit the claims of the present invention. It is apparent that the present invention can be variously modified and imitated by those skilled in the art without departing from the scope of the technical idea of the present invention.

도 1 및 도 2 는 쿨링챔버에서 종래의 냉각수 흐름센서를 설명하기 위한 작동상태도, 1 and 2 is an operating state diagram for explaining a conventional coolant flow sensor in the cooling chamber,

도 3 은 본 발명의 실시예에 관한 쿨링챔버의 냉각수 흐름센서를 작동설명하기 위한 상태도이다. 3 is a state diagram for explaining the operation of the cooling water flow sensor of the cooling chamber according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10, 11 : 영구자석 12, 14 : 샤프트10, 11: permanent magnet 12, 14: shaft

13, 15 : 스프링 16 : 가변저항13, 15: spring 16: variable resistor

17 : 가변저항부재 18 : 챔버 17: variable resistance member 18: chamber

Claims (4)

냉각수라인의 수압이 영구자석에 전달하는 챔버와, 이 챔버의 영구자석에 의해 동시에 이동되는 또 다른 영구자석이 내장된 실린더형 가변저항부재와;A cylindrical variable resistance member having a chamber in which water pressure of the cooling water line is transferred to the permanent magnet, and another permanent magnet simultaneously moved by the permanent magnet of the chamber; 상기 영구자석은 샤프트를 감싼 스프링이 설치되어 상기 수압만큼 뒤로 이동되고, 상기 또 다른 영구자석의 샤프트를 감싼 스프링이 설치되어 챔버의 영구자석 이 움직이는 만큼 동판과 저항이 다른 가변저항위로 접촉하면서 이동하게 된 것을 특징으로 하는 쿨링챔버의 냉각수 흐름센서.The permanent magnet is installed with a spring wrapped around the shaft and moved backward by the hydraulic pressure, and a spring wrapped around the shaft of the other permanent magnet is installed so that the copper plate and the resistance move in contact with another variable resistance as the permanent magnet of the chamber moves. Cooling water flow sensor of the cooling chamber characterized in that. 제 1 항에 있어서, The method of claim 1, 상기 영구자석 1은 영구자석 2보다 큰직경의 크기로 되어 있는 것을 특징으로 하는 쿨링챔버의 냉각수 흐름센서.The permanent magnet 1 is a cooling water flow sensor of the cooling chamber, characterized in that the size of the diameter larger than the permanent magnet 2. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 영구자석 2는 샤프트가 영구자석 1의 샤프트보다 길이가 길며 스프링도 영구자석 1의 스프링보다 길고 작은 직경의 크기로 되어 있는 것을 특징으로 하는 쿨링챔버의 냉각수 흐름센서.The permanent magnet 2 has a longer shaft than the shaft of the permanent magnet 1, the spring is also longer than the spring of the permanent magnet 1, the cooling water flow sensor of the cooling chamber, characterized in that the size of the diameter. 제 1 항에 있어서, The method of claim 1, 상기 실린더형 가변저항부재의 영구자석 2가 챔버의 영구자석 1에 의해서 움직이면 DC가 입력되어진 동판과 저항이 다른 가변저항위로 접촉하며 움직이게 되고, 이 가변저항에 따른 전압의 변화를 가져오게 된 것을 특징으로 하는 쿨링챔버의 냉각수 흐름센서.When the permanent magnet 2 of the cylindrical variable resistance member is moved by the permanent magnet 1 of the chamber, the DC input copper plate and the resistance is moved in contact with the other variable resistor, it is characterized in that the change in voltage according to this variable resistance Cooling water flow sensor in the cooling chamber.
KR1020030101987A 2003-12-31 2003-12-31 Water flow sensor of cooling chamber KR101027626B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030101987A KR101027626B1 (en) 2003-12-31 2003-12-31 Water flow sensor of cooling chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030101987A KR101027626B1 (en) 2003-12-31 2003-12-31 Water flow sensor of cooling chamber

Publications (2)

Publication Number Publication Date
KR20050069678A true KR20050069678A (en) 2005-07-05
KR101027626B1 KR101027626B1 (en) 2011-04-08

Family

ID=37260043

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030101987A KR101027626B1 (en) 2003-12-31 2003-12-31 Water flow sensor of cooling chamber

Country Status (1)

Country Link
KR (1) KR101027626B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916519A (en) * 2018-05-28 2018-11-30 王惠俊 The intelligent compensation device of flow velocity alarm can be issued

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998889A (en) 1996-12-10 1999-12-07 Nikon Corporation Electro-magnetic motor cooling system
US6678628B2 (en) 2002-01-14 2004-01-13 William J. Ryan Apparatus and methods for monitoring and testing coolant recirculation systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108916519A (en) * 2018-05-28 2018-11-30 王惠俊 The intelligent compensation device of flow velocity alarm can be issued

Also Published As

Publication number Publication date
KR101027626B1 (en) 2011-04-08

Similar Documents

Publication Publication Date Title
JP4744382B2 (en) Prober and probe contact method
JP4657949B2 (en) Etching processing apparatus, self-bias voltage measuring method, and etching processing apparatus monitoring method
US5234527A (en) Liquid level detecting device and a processing apparatus
JPH11132867A (en) Temperature-monitoring device
JP5987977B2 (en) Electronic component testing equipment
KR101484956B1 (en) Thermoelectric device&#39;s test apparatus and test method for it
JPWO2016063676A1 (en) Electronic component testing equipment
US9345118B2 (en) Lamp failure detector
US11637035B2 (en) Substrate processing apparatus with moving device for connecting and disconnecting heater electrodes and substrate processing method thereof
JP2007155723A (en) Non-contact temperature measuring device in rotor
KR101027626B1 (en) Water flow sensor of cooling chamber
KR102659795B1 (en) Inspection system and inspection method
JPH10256325A (en) Temperature controlling plate for semiconductor wafer tester
US11510284B2 (en) Substrate processing apparatus
KR101121946B1 (en) Unit of Chuck in Prober for Wafer Test
CN109724712B (en) Temperature detection device, manufacturing method thereof and laser surface annealing equipment
JP2007134545A (en) Prober
KR20070068696A (en) Wafer chuck having temperature sensor and used for semiconductor equipment
JP2648871B2 (en) Heat treatment equipment
JP2007129090A (en) Wafer test system, prober, wafer test method and probe card
CN214422643U (en) Temperature detection mechanism and amplification instrument
JP2019507333A5 (en)
KR100503515B1 (en) Apparatus of temperature calibration and method of temperature calibration using the same
JP4732978B2 (en) Thermo chuck device and method of manufacturing thermo chuck device
JP2007129091A (en) Prober

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee