KR20050064055A - Batch composition of blow pipe refractories - Google Patents
Batch composition of blow pipe refractories Download PDFInfo
- Publication number
- KR20050064055A KR20050064055A KR1020030095327A KR20030095327A KR20050064055A KR 20050064055 A KR20050064055 A KR 20050064055A KR 1020030095327 A KR1020030095327 A KR 1020030095327A KR 20030095327 A KR20030095327 A KR 20030095327A KR 20050064055 A KR20050064055 A KR 20050064055A
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- particle size
- titanium oxide
- ceramic fiber
- chromium oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 송풍관 내화물 조성물에 관한 것으로, 입도가 0.5 내지 3mm인 무라이트 28 내지 39중량%, 입도가 3 내지 10mm인 무라이트 22 내지 25중량%, 소결알루미나 미분 17 내지 22중량%, 산화티탄 5 내지 8중량%, 산화크롬 6 내지 8중량%, 알루미나시멘트 4 내지 6중량% 및 세라믹 화이바 7 내지 10중량%를 포함하여 이루어지며, 본 발명에 의한 송풍관 내화물 조성물은 골재로서 무라이트와 결합부의 소결 촉진제로서 산화티탄 및 산화크롬을 채택함으로써 단열성 및 내침식성이 우수한 효과가 있다.The present invention relates to a blow pipe refractory composition, wherein the particle size is 0.5 to 3 mm, 28 to 39% by weight of lite, 22 to 25% by weight of lite with a particle size of 3 to 10 mm, 17 to 22% by weight of sintered alumina powder, titanium oxide 5 It comprises 8 to 8% by weight, 6 to 8% by weight of chromium oxide, 4 to 6% by weight of alumina cement and 7 to 10% by weight of ceramic fiber, the blast pipe refractory composition according to the invention is sintered the mullite and the bonding portion as aggregate By employing titanium oxide and chromium oxide as accelerators, there is an effect excellent in heat insulation and corrosion resistance.
Description
본 발명은 송풍관 내화물 조성물에 관한 것이다. 더욱 상세하게는 골재로서 무라이트와 결합부의 소결 촉진제로서 산화티탄 및 산화크롬을 채택함으로써 단열성 및 내침식성이 우수한 송풍관 내화물 조성물에 관한 것이다.The present invention relates to a blowpipe refractory composition. More specifically, the present invention relates to a blower pipe refractory composition having excellent heat insulation and erosion resistance by adopting titanium oxide and chromium oxide as sintering accelerators of mullite as the aggregate.
고로에 공급되는 열풍은 열풍로에서 생산되어 송풍관을 거쳐 풍구를 통하여 고로내부에 공급되어지며, 송풍관은 고온의 열풍을 계속 공급해야하므로 철피적열의 위험이 많아서 이를 방지하기 위하여 사용재질에 대한 단열성과 팽창수축에 의한 균열발생이 없이 고온에서 안정해야된다. 그리고 때로는 고로내의 미분탄, 슬랙, 용선 등이 침투하여 내화물을 손상시키는 경우가 빈번하므로 내침식성 또한 요구된다.The hot air supplied to the blast furnace is produced in the hot blast furnace and supplied to the inside of the blast furnace through the blowhole, and since the blower tube must continuously supply high temperature hot air, there is a high risk of heat accumulation. It should be stable at high temperature without cracking caused by expansion and contraction. And sometimes pulverized coal, slack, molten iron, etc. in the blast furnace often penetrates and damages the refractory, so corrosion resistance is also required.
종래에 일본국 특허공개공보 공개번호 제 평9-157045 호에서는 고내화성 세라믹스의 중공립을 골재로 사용하여 제조되는 단열캐스타블에 관한 것이 게재되어 있다.Japanese Patent Laid-Open Publication No. Hei 9-157045 discloses a heat insulating castable manufactured by using hollow particles of highly refractory ceramics as aggregate.
또한, 일본국 특허공개공보 공개번호 제 평10-1373 호에서는 알루미나 및 무라이트의 내화성골재와 천이알루미나의 주원료에 소석회, 실리카초미분, 세라믹섬유(fiber) 및 발포제를 첨가하여 제조되는 단열캐스타블에 관한 것이 게재되어 있다.In addition, Japanese Patent Laid-Open Publication No. Hei 10-1373 discloses an insulating caster prepared by adding calcined lime, ultrafine silica powder, ceramic fiber, and foaming agent to the main raw materials of alumina and Murite refractory aggregate and transition alumina. On the blog is published.
그러나, 이들은 모두 공업로 및 용강과 접촉하는 연속주조용의 턴디쉬와 용강운반용기인 래들의 보열카바(cover)에 사용되는 단열내화물에 관한 것으로, 단열효과는 좋지만 침식에는 취약하므로 미분탄, 슬랙 및 용선의 혼합물에 대한 내침식성이 요구되는 부위의 내화물 손상억제에는 근본적인 해결방법이 되지못하는 문제점이 있었다.However, these are all related to the insulation refractory used in the tread dish for continuous casting and the cover of the ladle which is the molten steel transportation container in contact with the industrial furnace and molten steel. There was a problem in that refractory damage suppression at the site where erosion resistance of the mixture is required is not a fundamental solution.
상기와 같은 문제점을 해결하기 위하여 본 발명은, 골재로서 열전도율이 비교적 작으면서 단열효과가 좋은 무라이트를 사용하고 결합부의 소결 촉진제로서 산화티탄 및 산화크롬을 소량 첨가하여 강고한 치밀조직을 형성하여 침식을 억제함으로써 단열성 및 내침식성이 우수한 송풍관 내화물 조성물을 제공하는 것을 목적으로 한다.The present invention to solve the above problems, Blower refractory composition with excellent heat insulation and erosion resistance by using mulite which has relatively low thermal conductivity and good thermal insulation effect as aggregate, and adding a small amount of titanium oxide and chromium oxide as sintering accelerator of joint to form strong dense structure to suppress erosion. The purpose is to provide.
본 발명의 상기 목적 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
상기 목적을 달성하기 위하여 본 발명은, 입도가 0.5 내지 3mm인 무라이트 28 내지 39중량%; 입도가 3 내지 10mm인 무라이트 22 내지 25중량%; 소결알루미나 미분 17 내지 22중량%; 산화티탄 5 내지 8중량%; 산화크롬 6 내지 8중량%; 알루미나시멘트 4 내지 6중량%; 및 세라믹 화이바 7 내지 10중량%;를 포함하여 이루어지는 것을 특징으로 하는 송풍관 내화물 조성물을 제공한다.In order to achieve the above object, the present invention is a particle size of 0.5 to 3mm 28 to 39% by weight; 22 to 25% by weight of lite, having a particle size of 3 to 10 mm; 17 to 22% by weight of sintered alumina fine powder; Titanium oxide 5 to 8% by weight; Chromium oxide 6-8 wt%; 4 to 6% by weight of alumina cement; And 7 to 10% by weight of ceramic fiber; provides a refrigeration tube refractory composition comprising a.
상기 세라믹 화이바의 길이는 3 내지 5mm일 수 있다.The length of the ceramic fiber may be 3 to 5mm.
이하, 본 발명에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명의 송풍관 내화물 조성물은 골재로서 열전도율이 비교적 작으면서 단열효과가 좋은 입도가 0.5 내지 3mm인 무라이트 28 내지 39중량% 및 입도가 3 내지 10mm인 무라이트 22 내지 25중량%를 사용하고, 결합부에 소결알루미나 미분 17 내지 22중량% 뿐만 아니라 결합부의 소결 촉진제로서 산화티탄 5 내지 8중량% 및 산화크롬 6 내지 8중량%를 첨가하여 강고한 치밀조직을 형성하여 침식을 억제하고, 결합강도를 높이기 위하여 알루미나 시멘트 4 내지 6중량%를 첨가하고, 팽창수축에 의한 균열을 방지하기 위하여 인성이 좋은 세라믹 화이바 7 내지 10중량%를 첨가하여 제조한다.Blowing pipe refractory composition of the present invention is used as the aggregate using a relatively low thermal conductivity and a good thermal insulation effect of 28 to 39% by weight of the Mourite of 0.5 to 3mm and 22 to 25% by weight of the Mourite of 3 to 10mm 17 to 22% by weight of sintered alumina fine powder as well as 5 to 8% by weight of titanium oxide and 6 to 8% by weight of chromium oxide are added as a sintering accelerator of the bonding part to form a firm dense structure to suppress erosion and to increase the bond strength. 4 to 6% by weight of alumina cement is added to increase, and 7 to 10% by weight of good toughness ceramic fiber is added to prevent cracking caused by expansion and contraction.
본 발명에서 사용되는 무라이트(Mullite, 3Al2O3.2SiO2)는 알루미나 보다는 침식에 약하지만 내화성이 좋고 열전도율이 작으므로 골재로 사용된다. 상기 무라이트가 최적의 내침식성 등의 물성을 나타내기 위해서는 시공체의 조직이 최밀충진구조가 되어야 하며, 이 경우 슬랙 및 용선과 같은 용융물이 침투하기 어렵게된다. 그러나 상기와 같이 시공체의 조직을 최밀충진구조로 하면 내침식성은 양호해지지만 단열성은 저하된다.Mullite (Mullite, 3Al 2 O 3 .2SiO 2 ) used in the present invention is more resistant to erosion than alumina, but is used as aggregate because of its fire resistance and low thermal conductivity. In order for the lite to exhibit physical properties such as optimum corrosion resistance, the structure of the construction body should be the closest packing structure, in which case it becomes difficult for molten material such as slag and molten iron to penetrate. However, as described above, when the structure of the construction body is made of the closest packing structure, the erosion resistance is improved, but the heat insulation is lowered.
따라서, 상기 무라이트는 입도별로 적당한 사용량을 사용하여야 하며, 예를들어 입도가 0.5 내지 3mm인 무라이트 28 내지 39중량% 및 입도가 3 내지 10mm인 무라이트 22 내지 25중량%를 사용하는 것이 바람직하다. 각 입도별로 사용량 미만이거나 초과할 경우 열전도율이 커져 단열성이 떨어지거나 내침식성이 저하되어서 양 특성을 모두 만족할 수 없다는 문제점이 있다.Therefore, the appropriate amount of the lite should be used according to the particle size, for example, it is preferable to use 28 to 39% by weight of the Moulite of 0.5 to 3mm and 22 to 25% by weight of the Mourite of 3 to 10mm Do. If the particle size is less than or exceeded, there is a problem that the thermal conductivity is increased, so that the thermal insulation is poor or the erosion resistance is lowered so that both characteristics cannot be satisfied.
본 발명에서 사용되는 고순도의 소결알루미나 미분은 내화물의 결합부를 치밀하게 하여 용선 및 슬랙의 침투를 억제하는 역할을 한다. 또한, 제조방법에 따라 소결알루미나, 전융질알루미나, 하소알루미나 등의 인조 알루미나를 사용할 있다. 또한, 상기 소결알루미나의 입도가 0.044mm인 것을 사용할 수 있다.High purity sintered alumina fine powder used in the present invention serves to suppress the penetration of molten iron and slack by densifying the bonding portion of the refractory. In addition, artificial alumina such as sintered alumina, electrolytic alumina, calcined alumina or the like may be used depending on the production method. In addition, the particle size of the sintered alumina can be used that is 0.044mm.
상기 소결알루미나 미분은 17 내지 22중량%로 사용하는 것이 바람직하며, 사용량이 17중량% 미만일 경우 시공체의 조직이 치밀하지 못해 강도가 작고 내침식성이 저하되는 문제점이 있으며, 22중량%를 초과할 경우 원료의 분산효과가 좋아져 수분첨가량이 적어지므로 치밀한 조직이 얻어져서 내침식성이 양호해지나 열전도율은 오히려 높아져 단열성이 저하되는 문제점이 있다.The fine sintered alumina powder is preferably used in an amount of 17 to 22% by weight. When the amount of the sintered alumina powder is less than 17% by weight, the structure of the construction body is not dense, so that the strength is small and erosion resistance is lowered. In this case, since the dispersion effect of the raw material is improved and the amount of water added is reduced, a dense structure is obtained, so that the corrosion resistance is good, but the thermal conductivity is rather high, resulting in a decrease in thermal insulation.
본 발명에서 사용되는 산화티탄(TiO2)은 결합부 구성원료들의 소결을 촉진시켜 강고한 조직을 만드는 역할을 하며, 입도는 0.044mm인 것을 사용할 수 있다. 상기 산화티탄은 5 내지 8중량%로 사용하는 것이 바람직하며, 그 사용량이 5중량% 미만일 경우 사용량이 적어 소결촉진효과가 떨어져 내침식성이 저하되는 문제점이 있으며, 8중량%를 초과할 경우 팽창이 커져 골재와 결합부간에 균열을 발생시키는 문제점이 있다.Titanium oxide (TiO 2 ) used in the present invention serves to promote the sintering of the joining member materials to create a firm structure, the particle size of 0.044mm can be used. The titanium oxide is preferably used in an amount of 5 to 8% by weight, and when the amount is less than 5% by weight, the amount of the titanium oxide is less, so that the sintering promoting effect is lowered. There is a problem that the crack is generated between the aggregate and the coupling portion.
본 발명에서 사용되는 산화크롬(Cr2O3)은 상기 산화티탄과 마찬가지로 결합부의 소결을 촉진시켜 골재와 결합부를 강고하게 결합시키는 역할을 하며, 입도는 0.044mm인 것을 사용할 수 있다. 상기 산화크롬은 6 내지 8중량%로 사용하는 것이 바람직하며, 그 사용량이 6중량% 미만일 경우 소결촉진에 의한 강도증가 효과가 작아져 내침식성이 저하되는 문제점이 있으며, 8중량%를 초과할 경우 소결촉진효과가 오히려 지나치게 커져서 결합부의 팽창을 유발하므로 골재와 결합부간에 균열을 발생시키는 문제점이 있다.Chromium oxide (Cr 2 O 3 ) used in the present invention promotes the sintering of the bonding portion like titanium oxide, and serves to firmly bond the aggregate and the bonding portion, and a particle size of 0.044 mm may be used. The chromium oxide is preferably used in 6 to 8% by weight, when the amount of the chromium oxide is less than 6% by weight, there is a problem in that the strength increase effect due to sintering is reduced and the erosion resistance is lowered. Rather, the sintering promotion effect is too large to cause expansion of the coupling portion, there is a problem that generates a crack between the aggregate and the coupling portion.
본 발명에서 사용되는 알루미나 시멘트는 내화물의 상온 및 1000℃부근에서의 결합강도를 높이는 역할을 한다. 상기 알루미나 시멘트는 4 내지 6중량%로 사용하는 것이 바람직하며, 그 사용량이 4중량% 미만일 경우 상온결합강도가 저하되는 문제점이 있으며, 6중량%를 초과할 경우 상온결합강도는 향상되나 알루미나 성분중에 함유되어있는 산화칼슘(CaO) 성분의 영향으로 침식이 심해지고 조직이 치밀해지며 열전도율도 커져 단열성이 떨어지는 문제점이 있다.Alumina cement used in the present invention serves to increase the bonding strength at room temperature and 1000 ℃ around the refractory. Preferably, the alumina cement is used in an amount of 4 to 6% by weight, and if the amount of the alumina cement is less than 4% by weight, there is a problem that the room temperature bonding strength is lowered. Due to the effect of the calcium oxide (CaO) component contained in the erosion is severe, the structure becomes dense, the thermal conductivity is large, there is a problem that the thermal insulation is inferior.
본 발명에서 사용되는 세라믹 화이바(ceramic fiber)는 알루미나(Al2O3)와 실리카(SiO2)로 구성되며, 상기 세라믹 화이바들이 서로 얽혀서 시공체의 결합력을 높이고, 균열발생을 억제시키며, 미세기공을 형성하여 수증기 유출을 향상시키는 역할을 한다.Ceramic fiber (ceramic fiber) used in the present invention is composed of alumina (Al 2 O 3 ) and silica (SiO 2 ), the ceramic fibers are entangled with each other to increase the bonding strength of the construction body, to suppress the occurrence of cracks, micropores It forms a role to improve the steam outflow.
상기 세라믹 화이바는 소량 첨가되므로 시공체에 크게 영향을 미치지 못하나, 세라믹 화이바의 길이는 작업성에 영향을 미친다. 상기 세라믹 화이바의 길이는 3 내지 5mm가 바람직하며, 3mm 미만일 경우 길이가 짧아서 시공체의 결합력 증진효과가 저하되는 문제점이 있으며, 5mm를 초과할 경우 길이가 길어 서로 얽혀서 형성된 기공경이 커지는 문제점이 있다.Since the ceramic fibers are added in small amounts, they do not significantly affect the construction body, but the length of the ceramic fibers affects workability. The length of the ceramic fiber is preferably 3 to 5mm, and if the length is less than 3mm, there is a problem that the effect of improving the bonding force of the construction body is lowered.
상기 세라믹 화이바의 사용량은 7 내지 10중량%가 바람직하며, 7중량% 미만일 경우 사용량이 적어 결합력 증진효과가 저하되는 문제점이 있으며, 10중량%를 초과할 경우 사용량이 많아서 섬유 상호간에 얽혀서 시공체의 조직이 치밀해지지 못해 내침식성이 저하되는 문제점이 있다.The amount of the ceramic fiber is preferably 7 to 10% by weight, and less than 7% by weight of the ceramic fiber has a problem in that the amount of the binding force is reduced. There is a problem that the erosion resistance is reduced because the tissue is not compact.
이하 하기의 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범위가 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the examples.
[실시예 1]Example 1
입도가 0.5 내지 3mm인 무라이트 28중량%, 입도가 3 내지 10mm인 무라이트 25중량%, 입도가 0.044mm인 소결알루미나 미분 22중량%, 입도가 0.044mm인 산화티탄 5중량%, 입도가 0.044mm인 산화크롬 7중량%, 알루미나시멘트 6중량% 및 세라믹 화이바 7중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.28% by weight Murite with a particle size of 0.5 to 3mm, 25% by weight Murite with a particle size of 3 to 10mm, 22% by weight of sintered alumina fine powder with a particle size of 0.044mm, 5% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 7 wt% of chromium oxide, 6 wt% of alumina cement, and 7 wt% of ceramic fiber.
[실시예 2]Example 2
입도가 0.5 내지 3mm인 무라이트 31중량%, 입도가 3 내지 10mm인 무라이트 22중량%, 입도가 0.044mm인 소결알루미나 미분 19중량%, 입도가 0.044mm인 산화티탄 7중량%, 입도가 0.044mm인 산화크롬 8중량%, 알루미나시멘트 5중량% 및 세라믹 화이바 8중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.31% by weight Murite with a particle size of 0.5 to 3mm, 22% by weight Murite with a particle size of 3 to 10mm, 19% by weight of sintered alumina fine powder with a particle size of 0.044mm, 7% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 8 wt% of chromium oxide, 5 wt% of alumina cement, and 8 wt% of ceramic fiber.
[실시예 3]Example 3
입도가 0.5 내지 3mm인 무라이트 39중량%, 입도가 3 내지 10mm인 무라이트 22중량%, 입도가 0.044mm인 소결알루미나 미분 17중량%, 입도가 0.044mm인 산화티탄 5중량%, 입도가 0.044mm인 산화크롬 6중량%, 알루미나시멘트 4중량% 및 세라믹 화이바 7중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.39% by weight Murite with a particle size of 0.5 to 3mm, 22% by weight Murite with a particle size of 3 to 10mm, 17% by weight of sintered alumina fine powder with a particle size of 0.044mm, 5% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 6 wt% chromium oxide, 4 wt% alumina cement, and 7 wt% ceramic fiber.
[실시예 4]Example 4
입도가 0.5 내지 3mm인 무라이트 28중량%, 입도가 3 내지 10mm인 무라이트 24중량%, 입도가 0.044mm인 소결알루미나 미분 17중량%, 입도가 0.044mm인 산화티탄 8중량%, 입도가 0.044mm인 산화크롬 8중량%, 알루미나시멘트 5중량% 및 세라믹 화이바 10중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.28% by weight Murite with a particle size of 0.5 to 3mm, 24% by weight Murite with a particle size of 3 to 10mm, 17% by weight of sintered alumina fine powder with a particle size of 0.044mm, 8% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 8 wt% chromium oxide, 5 wt% alumina cement, and 10 wt% ceramic fiber.
[비교예 1]Comparative Example 1
입도가 0.5mm 미만인 무라이트 8중량%, 입도가 0.5 내지 3mm인 무라이트 30중량%, 입도가 3 내지 10mm인 무라이트 50중량%, 입도가 0.044mm인 소결알루미나 미분 5중량% 및 알루미나시멘트 7중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.8% by weight Murite having a particle size of less than 0.5 mm, 30% by weight Murite having a particle size of 0.5 to 3 mm, 50% by weight Murite having a particle size of 3 to 10 mm, 5% by weight of sintered alumina powder having a particle size of 0.044 mm and alumina cement 7 The weight percent was mixed to prepare a blowpipe refractory composition.
[비교예 2]Comparative Example 2
입도가 0.5 내지 3mm인 무라이트 40중량%, 입도가 3 내지 10mm인 무라이트 18중량%, 입도가 0.044mm인 소결알루미나 미분 15중량%, 입도가 0.044mm인 산화티탄 7중량%, 입도가 0.044mm인 산화크롬 9중량%, 알루미나시멘트 6중량% 및 세라믹 화이바 5중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.40% by weight of lite with a particle size of 0.5 to 3 mm, 18% by weight of lite with a particle size of 3 to 10 mm, 15% by weight of sintered alumina fine powder with a particle size of 0.044mm, 7% by weight of titanium oxide with a particle size of 0.044mm, and particle size of 0.044 A blowdown tube refractory composition was prepared by mixing 9 wt% chromium oxide, 6 wt% alumina cement, and 5 wt% ceramic fiber.
[비교예 3]Comparative Example 3
입도가 0.5 내지 3mm인 무라이트 26중량%, 입도가 3 내지 10mm인 무라이트 26중량%, 입도가 0.044mm인 소결알루미나 미분 24중량%, 입도가 0.044mm인 산화티탄 4중량%, 입도가 0.044mm인 산화크롬 7중량%, 알루미나시멘트 7중량% 및 세라믹 화이바 6중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.26% by weight Murite with a particle size of 0.5 to 3mm, 26% by weight Murite with a particle size of 3 to 10mm, 24% by weight of sintered alumina fine powder with a particle size of 0.044mm, 4% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 7 wt% of chromium oxide, 7 wt% of alumina cement, and 6 wt% of ceramic fiber.
[비교예 4][Comparative Example 4]
입도가 0.5 내지 3mm인 무라이트 29중량%, 입도가 3 내지 10mm인 무라이트 22중량%, 입도가 0.044mm인 소결알루미나 미분 20중량%, 입도가 0.044mm인 산화티탄 9중량%, 입도가 0.044mm인 산화크롬 9중량%, 알루미나시멘트 4중량% 및 세라믹 화이바 7중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.29% by weight Murite with a particle size of 0.5 to 3mm, 22% by weight Murite with a particle size of 3 to 10mm, 20% by weight of sintered alumina powder with a particle size of 0.044mm, 9% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 9 wt% of chromium oxide, 4 wt% of alumina cement, and 7 wt% of ceramic fiber.
[비교예 5][Comparative Example 5]
입도가 0.5 내지 3mm인 무라이트 29중량%, 입도가 3 내지 10mm인 무라이트 23중량%, 입도가 0.044mm인 소결알루미나 미분 24중량%, 입도가 0.044mm인 산화티탄 7중량%, 입도가 0.044mm인 산화크롬 5중량%, 알루미나시멘트 3중량% 및 세라믹 화이바 9중량%를 혼합하여 송풍관 내화물 조성물을 제조하였다.29% by weight Murite with a particle size of 0.5 to 3mm, 23% by weight Murite with a particle size of 3 to 10mm, 24% by weight of sintered alumina powder with a particle size of 0.044mm, 7% by weight of titanium oxide having a particle size of 0.044mm, and a particle size of 0.044 A blow tube refractory composition was prepared by mixing 5 wt% chromium oxide, 3 wt% alumina cement, and 9 wt% ceramic fiber.
[실험예]Experimental Example
상기 실시예 1 내지 4 및 비교예 1 내지 5에서 제조한 하기 표 1과 같은 조성비를 가진 송풍관 내화물 조성물을 평량한 후, 만능혼련기에서 건식으로 혼련하고 수분 7중량%를 첨가하여 10분간 혼련하였다. 시편의 제조는 40x40x160mm 크기의 형틀에서 성형하여 공기중에서 24시간 자연건조시킨 후, 건조기에서 110℃로 24시간 건조하였다. 상기 시편을 이용하여 하기와 같은 시험방법으로 물성을 측정하였다.After blowing the refractory tube refractory composition having a composition ratio as shown in Table 1 prepared in Examples 1 to 4 and Comparative Examples 1 to 5, and kneaded dry in a universal kneading machine and kneaded for 10 minutes by adding 7% by weight of moisture. . The specimens were molded in a mold of size 40x40x160mm, naturally dried in air for 24 hours, and then dried at 110 ° C. for 24 hours in a dryer. Physical properties of the specimens were measured by the following test methods.
비중, 선변화율 및 곡강도는 건조된 시편을 전기로에서 1000℃로 3시간 소성하여 측정하였다.Specific gravity, linearity and bending strength were measured by firing the dried specimens at 1000 ° C. for 3 hours in an electric furnace.
내침식성은 소형고주파 유도용해로(용량 3kg)에서 고로 슬랙을 사용하여 1500℃에서 1시간 유지시킨 후 출선하여 시편의 잔존두께를 측정하였다.Erosion resistance was maintained at 1500 ° C. for 1 hour using blast furnace slag in a small high frequency induction furnace (capacity 3kg), and then the wire was measured to measure the remaining thickness of the specimen.
열전도율은 1200℃에서 소성한 시편(병형연와 3매)을 사용하여 열선법으로 1000℃에서 측정하였다.Thermal conductivity was measured at 1000 ° C. by the hot wire method using specimens calcined at 1200 ° C. (bottle shaped lead and 3 sheets).
작업성은 혼련이 된 시료를 유동성시험기의 형틀에 투입하여 30회 타격한 후 형틀을 제거했을 때 시료의 퍼짐상태를 측정하였고, 양호할 경우 ◎로, 불량할 경우 ×로 표시하였다.The workability was measured by spreading the kneaded sample into the mold of the fluidity tester and striking it 30 times, and then removing the mold.
상기 실시예 1 내지 4 및 비교예 1 내지 5에 대한 물성측정결과를 하기의 표 1에 정리하였다.Physical property measurement results for Examples 1 to 4 and Comparative Examples 1 to 5 are summarized in Table 1 below.
상기의 표 1에서 알 수 있는 바와 같이, 본 발명에 따라 골재로서 무라이트와 결합부의 소결 촉진제로서 산화티탄 및 산화크롬을 사용하여 제조된 실시예 1 내지 4의 송풍관 내화물 조성물은 본 발명과 달리 결합부의 소결 촉진제로서 산화티탄 및 산화크롬을 사용하지 않은 비교예 1 및 본 발명의 사용범위를 벗어나는 비교예 2 내지 5의 송풍관 내화물 조성물에 비해 작업성 및 강도가 우수하고, 부피비중 및 침식깊이가 작으며, 열전도율이 낮음을 알 수 있었다. 즉, 단열성 뿐만 아니라 내침식성이 우수함을 알 수 있었다.As can be seen in Table 1 above, the air pipe refractory compositions of Examples 1 to 4 prepared using titanium oxide and chromium oxide as aggregates and sintering accelerators of the mullite according to the present invention are bonded differently from the present invention. Excellent workability and strength, and relatively low volume specific gravity and erosion depth, compared to Comparative Example 1, which does not use titanium oxide and chromium oxide as negative sintering accelerators, and the blowing tube refractory compositions of Comparative Examples 2 to 5, which are outside the scope of the present invention. It was found that the thermal conductivity was low. That is, it was found that not only the thermal insulation but also the erosion resistance was excellent.
이상에서 설명한 바와 같이 본 발명에 의한 송풍관 내화물 조성물은 단열성 및 내침식성이 우수하여 장기간 사용에도 철피적열이 없고 미분탄, 슬랙 및 용선에 의한 침식손상을 저감시키는 효과가 있는 유용한 발명인 것이다.As described above, the blower pipe refractory composition according to the present invention has excellent thermal insulation and erosion resistance, and thus is a useful invention having an effect of reducing erosion damage caused by pulverized coal, slack, and molten iron, even in long-term use.
상기에서 본 발명은 기재된 구체예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.While the invention has been described in detail above with reference to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope and spirit of the invention, and such modifications and variations fall within the scope of the appended claims. It is also natural.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030095327A KR100562991B1 (en) | 2003-12-23 | 2003-12-23 | Batch Composition of Blow Pipe Refractories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030095327A KR100562991B1 (en) | 2003-12-23 | 2003-12-23 | Batch Composition of Blow Pipe Refractories |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050064055A true KR20050064055A (en) | 2005-06-29 |
KR100562991B1 KR100562991B1 (en) | 2006-03-23 |
Family
ID=37255703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030095327A KR100562991B1 (en) | 2003-12-23 | 2003-12-23 | Batch Composition of Blow Pipe Refractories |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100562991B1 (en) |
-
2003
- 2003-12-23 KR KR1020030095327A patent/KR100562991B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100562991B1 (en) | 2006-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016029012A (en) | Shaped or unshaped refractory or kiln furniture composition | |
JP2007303011A (en) | Inorganic fiber and monolithic refractory using the same | |
CN113968745A (en) | Refractory castable for predecomposition system of co-processing solid waste cement kiln | |
AU2008333636B2 (en) | Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof | |
KR100562991B1 (en) | Batch Composition of Blow Pipe Refractories | |
JP2874831B2 (en) | Refractory for pouring | |
KR100910530B1 (en) | Batch composition of basic gunning refractories having excellent resistance of erosion and adhesive properties | |
JP2008247720A (en) | Monolithic refractory forming material and monolithic refractory formed body | |
KR100342390B1 (en) | Castable batch composition for blow pipe of blast furnace | |
KR100491123B1 (en) | High intensity castable refractories with good adiabatic and high thermal shock resistance | |
KR101262077B1 (en) | Low Cement Corrosion-Resistive Unshaped Refractories | |
JP2021147275A (en) | Magnesia-spinel refractory brick | |
JPH0243701B2 (en) | ||
JP3949408B2 (en) | Silica brick for hot repair and its manufacturing method | |
KR100373702B1 (en) | Block Molding Using Alumina-Spinel Waste Castable | |
KR100569207B1 (en) | Basic wet spray mix | |
JP6386317B2 (en) | Silica brick for hot repair | |
KR960004393B1 (en) | Castable composition | |
KR100562992B1 (en) | Sealing Materials Composition Having Excellent Sealing and Adhension Property | |
KR100218242B1 (en) | Meterials for repair refractory lining of ladle or tundish and method for repair refractory lining | |
KR100317307B1 (en) | Monolithic Basic Refractories Having High Durability | |
KR20050064558A (en) | Castable for cement rotary kiln | |
JP2003002754A (en) | Heat insulating castable refractory | |
KR900008589B1 (en) | Refractory | |
KR100723132B1 (en) | Gunning refractories for trough of blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |