KR20050062194A - High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same - Google Patents
High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same Download PDFInfo
- Publication number
- KR20050062194A KR20050062194A KR1020030094195A KR20030094195A KR20050062194A KR 20050062194 A KR20050062194 A KR 20050062194A KR 1020030094195 A KR1020030094195 A KR 1020030094195A KR 20030094195 A KR20030094195 A KR 20030094195A KR 20050062194 A KR20050062194 A KR 20050062194A
- Authority
- KR
- South Korea
- Prior art keywords
- rolled steel
- steel sheet
- less
- cold rolled
- steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 프론트 사이드 멤버(front side member) 등의 자동차 구조부재용 냉연강판에 관한 것이다.The present invention relates to cold rolled steel sheets for structural members of automobiles, such as front side members.
본 발명은 중량%로, C: 0.05~0.15%, Si: 0.7~1.3%, S: 0.02% 이하, N: 0.004% 이하, Al: 0.02~0.06%, Mn: 1.2~1.8%, P: 0.05~0.10%, 나머지 Fe 및 기타 불가피한 불순물을 포함하여 조성되며, 상기 Si와 P가 Si + (50/8)P ≥ 1.2%를 만족하는 것을 포함하여 이루어지는 용접성과 도장특성이 우수한 고가공성 고강도 냉연강판 및 그 제조방법에 관한 것이다.In the present invention, by weight%, C: 0.05-0.15%, Si: 0.7-1.3%, S: 0.02% or less, N: 0.004% or less, Al: 0.02-0.06%, Mn: 1.2-1.8%, P: 0.05 ~ 0.10%, including the remaining Fe and other unavoidable impurities, the high workability and high-strength cold rolled steel sheet having excellent weldability and coating properties, including the Si and P satisfying Si + (50/8) P ≥ 1.2% And to a method for producing the same.
본 발명은 가공성이 우수하여 프레스 가공시 균열발생이 없을 뿐만 아니라 용접성 및 도장성이 우수하여 자동차 제조시 원가절감을 할 수 있는 고강도 냉연강판을 제공할 수 있는 효과가 있다.The present invention has the effect of providing a high-strength cold-rolled steel sheet that can reduce the cost of manufacturing automobiles due to excellent workability, there is no crack generation during press working, and also excellent weldability and paintability.
Description
본 발명은 프론트 사이드 멤버(front side member) 등의 자동차 구조부재용 냉연강판에 관한 것으로, 보다 상세하게는 가공성이 우수하여 프레스 가공시 균열발생이 없을 뿐만 아니라 용접성과 도장성이 우수하여 자동차 제조시 원가절감을 할 수 있는 고강도 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to cold rolled steel sheets for structural members of automobiles such as front side members, and more particularly, has excellent workability, no cracking during press processing, and excellent weldability and paintability, resulting in cost. The present invention relates to a high strength cold rolled steel sheet and a method of manufacturing the same.
자동차 구조부재용 냉연강판은 형상이 복잡한 부품으로 가공되기 때문에 가공성 및 표면처리 특성이 우수해야 한다. 또한, 최종적으로 용접을 통하여 차체로 조립되기 때문에 용접성도 반드시 고려되어야 할 특성이다.Cold rolled steel sheet for automobile structural members must be excellent in workability and surface treatment characteristics because it is processed into complex parts. In addition, weldability is also a characteristic that must be considered since it is finally assembled into a vehicle body by welding.
일반적으로, 자동차 구조부재용 냉연강판에는 Mn, Si와 같은 합금원소들이 다량 첨가되며 이로 인하여 소둔시 상기 합금원소들이 표면층으로 농화되어 얇은 산화층을 형성하게 된다. 이렇게 형성된 산화층은 강판의 용접성을 열화시킬 뿐만 아니라 도장성 및 도금성에도 악영향을 미치게 되는 문제점이 있다.In general, a large amount of alloying elements, such as Mn and Si, is added to the cold rolled steel sheet for automobile structural members, whereby the alloying elements are concentrated to a surface layer during annealing to form a thin oxide layer. The oxide layer thus formed has a problem that not only deteriorates the weldability of the steel sheet but also adversely affects paintability and plating property.
본 발명은 상기한 종래기술의 문제점을 해결하기 위한 것으로, Mn, Si, P 등의 첨가량을 적절히 제어하고, 탄소의 농도를 극소화한 페라이트상과 잔류오스테나이트상이 형성되도록 열처리를 행하며, 강판의 표면산화층을 약산세한 후 강판에 니켈을 무전해 도금함으로써 용접성과 도장특성이 우수한 고가공성 고강도 냉연강판을 제공하는데, 그 목적이 있다. The present invention is to solve the above-mentioned problems of the prior art, and to appropriately control the amount of Mn, Si, P, etc., and to perform a heat treatment to form a ferrite phase and residual austenite phase which minimizes the concentration of carbon, the surface of the steel sheet It is an object of the present invention to provide a highly workable high strength cold rolled steel sheet excellent in weldability and coating properties by electroless plating nickel on a steel plate after weakly oxidizing the oxide layer.
상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.05~0.15%, Si: 0.7~1.3%, S: 0.02% 이하, N: 0.004% 이하, Al: 0.02~0.06%, Mn: 1.2~1.8%, P: 0.05~0.10%, 나머지 Fe 및 기타 불가피한 불순물을 포함하여 조성되며, 상기 Si와 P가 Si + (50/8)P ≥ 1.2%를 만족하는 것을 포함하여 이루어진다.The present invention for achieving the above object by weight, C: 0.05 ~ 0.15%, Si: 0.7 ~ 1.3%, S: 0.02% or less, N: 0.004% or less, Al: 0.02 ~ 0.06%, Mn: 1.2 ˜1.8%, P: 0.05˜0.10%, remaining Fe and other unavoidable impurities, and comprises Si and P satisfying Si + (50/8) P ≧ 1.2%.
또한, 본 발명은 중량%로, C: 0.05~0.15%, Si: 0.7~1.3%, S: 0.02% 이하, N: 0.004% 이하, Al: 0.02~0.06%, Mn: 1.2~1.8%, P: 0.05~0.10%, 나머지 Fe 및 기타 불가피한 불순물을 포함하여 조성되며, 상기 Si와 P가 Si + (50/8)P ≥ 1.2%를 만족하는 강을 1050~1300℃에서 균질화 처리하는 단계;In addition, the present invention is a weight%, C: 0.05 ~ 0.15%, Si: 0.7 ~ 1.3%, S: 0.02% or less, N: 0.004% or less, Al: 0.02 ~ 0.06%, Mn: 1.2 ~ 1.8%, P : 0.05 to 0.10%, containing the remaining Fe and other unavoidable impurities, homogenizing the steel at a temperature of 1050-1300 ° C. wherein Si and P satisfy Si + (50/8) P ≧ 1.2%;
상기 균질화 처리된 강을 850~950℃에서 마무리 열간압연한 다음 400~600℃에서 권취하는 단계;Hot-rolling the homogenized steel at 850-950 ° C. and then winding it at 400-600 ° C .;
상기 열연강판을 30~80%의 압하율로 냉간압연하는 단계;Cold rolling the hot rolled steel sheet at a reduction ratio of 30 to 80%;
상기 냉간압연된 강판을 800~870℃에서 연속소둔한 다음 620~700℃까지 1~7℃/초의 냉각속도로 냉각하고, 이어 350~450℃까지 10~100℃/초의 냉각속도로 냉각한 다음 350~450℃의 온도구간에서 30~600초 동안 유지하는 단계; 및 The cold rolled steel sheet is continuously annealed at 800 ~ 870 ℃ and then cooled to a cooling rate of 1 ~ 7 ℃ / second to 620 ~ 700 ℃, then cooled to a cooling rate of 10 ~ 100 ℃ / second to 350 ~ 450 ℃ Maintaining for 30 to 600 seconds in a temperature section of 350 ~ 450 ℃; And
이후 상기 강판을 약산세하고 니켈 무전해 도금하는 단계;를 포함하여 이루어진다.Thereafter, the steel sheet is slightly pickled and nickel electroless plating.
이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 저탄소 알루미늄 킬드강에 Mn, Si, P 등의 첨가량을 적절하게 제어하여 연속소둔 열처리 후 최종적으로 탄소의 농도가 극히 낮은 페라이트상에 잔류오스테나이트 상을 분포시켜 인장강도 및 연신율을 향상시키고, 소둔열처리가 끝난 다음 약산세와 니켈을 무전해 도금함으로써 강판표면의 산화층을 제거하고, 더 이상의 산화를 방지하여 용접성 및 도장성을 향상시키는데 특징이 있다.According to the present invention, the amount of Mn, Si, P, etc. is appropriately controlled in the low carbon aluminum-kilted steel, and after continuous annealing heat treatment, finally, the residual austenite phase is distributed in an extremely low concentration of carbon to improve tensile strength and elongation. After the annealing heat treatment is finished, light pickling and electroless plating of nickel are used to remove the oxide layer on the surface of the steel sheet and prevent further oxidation to improve weldability and paintability.
이하, 본 발명의 성분한정 이유부터 살펴본다.Hereinafter, look at from the reasons for the limitation of the present invention.
C: 0.05~0.15중량%(이하, 단지 "%"라고 함)C: 0.05 to 0.15% by weight (hereinafter referred to simply as "%")
상기 C는 2상역 소둔, 서냉 및 급냉시 오스테나이트상에 농화되고, 베이나이트 역에서 오스템퍼링시 오스테나이트상에 농화되어 오스테나이트상의 마르텐사이트 변태온도를 상온 이하로 낮추는데 기여하는 성분이다. 그리고, C 자체의 고용강화효과가 있을 뿐만 아니라 C의 첨가량이 증가하면 잔류오스테나이트의 양이 증가하고, 따라서 마르텐사이트 양이 증가하여 강도 및 연성을 향상시키기 때문에 첨가한다.The C is a component concentrating on the austenite phase during two-phase annealing, slow cooling, and quenching, and concentrating on the austenite phase during ossampering at the bainite station, thereby contributing to lowering the martensite transformation temperature of the austenite phase to below room temperature. In addition, the solid solution strengthening effect of C itself is increased, and the amount of C added increases because the amount of retained austenite increases, and thus the amount of martensite increases, thereby improving strength and ductility.
상기 C의 함량이 0.05% 미만이면 결정립이 성장되고 탄소에 의한 고용강화 및 석출강화 효과가 적어져 충분한 인장강도를 확보할 수 없을 뿐만 아니라 연속소둔 공정에서 형성된 잔류오스테나이트의 양이 적어 강도 및 연성향상에 기여하는 정도도 작아진다. 또한, 상기 C의 함량이 0.15%를 초과하면 다량의 잔류오스테나이트 형성에 따른 내지연파괴특성의 열화와 같은 문제점이 나타날 뿐만 아니라 용접성도 열화된다. 따라서, 상기 C의 함량은 0.05~0.15%로 제한하는 것이 바람직하다.When the content of C is less than 0.05%, grains grow and the effect of solid solution strengthening and precipitation strengthening by carbon is not sufficient, thus not enough tensile strength can be secured, and the amount of retained austenite formed in the continuous annealing process is low, resulting in strength and ductility. The degree of contribution to the improvement is also small. In addition, when the content of C exceeds 0.15%, not only problems such as deterioration of delayed fracture characteristics due to the formation of a large amount of residual austenite appear but also deterioration of weldability. Therefore, the content of C is preferably limited to 0.05 ~ 0.15%.
Si: 0.7~1.3%Si: 0.7 ~ 1.3%
상기 Si는 고용강화 효과에 의해서 강의 강도를 향상시키고, 페라이트상에서 탄소를 제거하여 강의 연성을 향상시키는 효과가 있을 뿐만 아니라 베이나이트 변태시 탄화물의 생성을 억제하여 오스테나이트상으로의 탄소 농화에 기여하는 성분이다. 상기 Si의 함량이 0.7% 미만이면 첨가에 따른 상기 효과를 얻을 수 없고, 1.3%를 초과하면 열간압연시 Si산화물이 존재하여 산세성을 나쁘게 하는 문제점이 있을 뿐만 아니라 강의 용접성도 크게 열화시키므로, 그 함량을 0.7~1.3%로 제한하는 것이 바람직하다.The Si improves the strength of the steel by the solid solution strengthening effect, and removes the carbon from the ferrite phase to improve the ductility of the steel, and also inhibits the formation of carbides during the bainite transformation to contribute to the carbon concentration in the austenite phase. Ingredient. If the content of Si is less than 0.7%, the effect of the addition cannot be obtained. If the content of Si is more than 1.3%, there is a problem that Si oxide is present during hot rolling, which deteriorates pickling property, and also greatly deteriorates weldability of steel. It is desirable to limit the content to 0.7-1.3%.
S: 0.02% 이하S: 0.02% or less
상기 S는 강의 제조시 불가피하게 함유되는 불순물로써, 0.02%를 초과하여 함유되면 조대한 MnS생성에 의해서 강도가 감소하므로, 그 함량을 0.02% 이하로 제한하는 것이 바람직하다.S is an impurity that is inevitably contained in the production of steel, and if it is contained in excess of 0.02%, the strength is reduced by coarse MnS generation. Therefore, the content is preferably limited to 0.02% or less.
N: 0.004% 이하N: 0.004% or less
상기 N도 강의 제조시 불가피하게 함유되는 불순물로써, 0.004%를 초과하여 함유되려면 추가로 N을 첨가하기 위한 공정이 필요하므로, 그 함량을 0.004% 이하로 제한하는 것이 바람직하다.The N is also an impurity that is inevitably contained in the manufacture of the steel, and in order to contain more than 0.004%, a process for additionally adding N is required, and therefore it is preferable to limit the content to 0.004% or less.
Al: 0.02~0.06%Al: 0.02-0.06%
상기 Al은 강의 탈산을 위하여 첨가되는 성분으로, 0.02% 미만 첨가되면 강중에 산소가 존재하여 제강시 망간, 실리콘, 인 등의 산화물 형성원소가 첨가될 경우 망간 산화물, 실리콘 산화물, 인 산화물 등을 형성하기 때문에 망간, 실리콘, 인 등의 성분제어가 매우 어려워지며, 0.06%를 초과하여 첨가되면 알루미늄의 양이 필요이상으로 많아져 제조원가가 상승될 뿐만 아니라 강판의 표면결함을 다량 발생시키는 문제점이 있으므로, 그 첨가량을 0.02~0.06%로 제한하는 것이 바람직하다.Al is a component added for deoxidation of steel. When less than 0.02% is added, oxygen is present in the steel to form manganese oxide, silicon oxide, and phosphorus oxide when oxide forming elements such as manganese, silicon, and phosphorus are added during steelmaking. Therefore, it is very difficult to control the composition of manganese, silicon, phosphorus, etc., and if it is added in excess of 0.06%, the amount of aluminum is more than necessary, which increases the manufacturing cost and causes a large amount of surface defects of the steel sheet. It is preferable to limit the addition amount to 0.02 to 0.06%.
Mn: 1.2~1.8%Mn: 1.2 ~ 1.8%
상기 Mn은 2상역 소둔에서 형성된 오스테나이트상의 페라이트 변태를 지연시키고 고용강화 효과를 나타내는데 유효한 성분으로, 1.2% 미만 첨가되면 오스테나이트에서 펄라이트로의 변태를 충분히 억제하지 못하기 때문에 최종 강판조직에서 펄라이트가 형성되어 연신율을 감소시키게 되고, 1.8%를 초과하여 첨가되면 경화능이 너무 높아져 가공성이 감소할 뿐만 아니라 용접성도 열화되는 문제점이 있으므로, 그 함량을 1.2~1.8%로 제한하는 것이 바람직하다.Mn is an effective ingredient for delaying ferrite transformation of austenite phase formed by two-phase annealing and exhibiting a solid solution strengthening effect. When Mn is added less than 1.2%, Mn does not sufficiently inhibit the transformation of austenite to pearlite. When formed to reduce the elongation, and when added in excess of 1.8%, there is a problem that the hardenability is too high to reduce workability as well as deterioration of weldability, it is preferable to limit the content to 1.2 ~ 1.8%.
P: 0.05~0.010%P: 0.05 ~ 0.010%
상기 P는 고용강화 원소로 종종 첨가되지만 본 발명에서는 오스템퍼링공정에서 형성되는 탄화물의 생성을 억제하고 강도를 증가시키기 위하여 첨가된다. 이 경우 인은 실리콘과 동일한 역할을 하게 된다. 이는 도 1에서 C-1.0Si-1.5Mn을 기준으로 하여 0.5%의 Si을 첨가한 경우와 0.08%의 P를 첨가한 경우의 상태도가 거의 유사한 형태를 가짐을 통하여 알 수 있다.The P is often added as a job-enhancing element, but in the present invention, it is added to suppress the generation of carbides formed in the ostampering process and to increase the strength. In this case phosphorus plays the same role as silicon. This can be seen from the state of the case of adding 0.5% Si and 0.08% P on the basis of C-1.0Si-1.5Mn in Figure 1 has almost the same form.
상기 P의 첨가량이 0.05% 미만이면 잔류오스테나이트상에 농화되는 탄소의 양이 충분하지 않기 때문에 잔류오스테나이트의 안정도가 낮아져 연성이 감소하게 되며, 0.10%를 초과하여 첨가되면 용접성이 열화되고 연주시 일어나는 중심편석에 의해서 부위별로 강의 재질편차가 커지는 문제점이 있을 뿐만 아니라 용접성도 저하되므로, 그 함량을 0.05~0.10%로 제한하는 것이 바람직하다.If the amount of P added is less than 0.05%, the amount of carbon concentrated on the retained austenite is not sufficient, so that the stability of the retained austenite is lowered and the ductility is reduced. If the amount is more than 0.10%, the weldability is deteriorated. In addition, there is a problem that the material deviation of the steel becomes larger due to the center segregation, and the weldability is lowered. Therefore, the content is preferably limited to 0.05 to 0.10%.
상기한 성분 이외에는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above components, it is composed of Fe and other unavoidable impurities.
상기한 성분을 만족하더라도 실리콘의 첨가량이 너무 많으면 강판의 용접성을 크게 악화시키는 문제점이 유발된다. 본 발명에서는 실리콘의 첨가량을 감소시키고 탄화물 형성 억제원소인 인을 첨가함으로써 실리콘을 다량 첨가한 경우와 동일한 효과를 얻을 수 있다. 따라서, 본 발명에서는 실리콘과 인의 첨가량이 재질에 중요한 영향을 끼치게 된다. 본 발명에서 Si + (50/8)P가 1.2% 미만이 되면 페라이트의 탄소량 감소가 어려울 뿐만 아니라 잔류오스테나이트의 생성이 어려우므로, Si + (50/8)P는 1.2% 이상으로 제한하는 것이 바람직하다.Even if the above components are satisfied, too much silicon addition causes a problem of greatly deteriorating the weldability of the steel sheet. In the present invention, the same effect as in the case where a large amount of silicon is added can be obtained by reducing the amount of silicon added and adding phosphorus, which is a carbide forming inhibitory element. Therefore, in the present invention, the addition amount of silicon and phosphorus has an important effect on the material. In the present invention, when Si + (50/8) P is less than 1.2%, it is difficult to reduce the carbon content of the ferrite and the formation of residual austenite is difficult. Therefore, Si + (50/8) P is limited to 1.2% or more. It is preferable.
본 발명의 냉연강판의 제조방법은 다음과 같다.Method for producing a cold rolled steel sheet of the present invention is as follows.
먼저, 상기한 조성의 강을 1050~1300℃에서 균질화 처리한다. 상기 균질화 처리 온도가 1050℃ 미만이면 열간압연시 압연부하가 증가하여 압연이 어려운 문제점이 있으며, 1300℃를 초과하면 슬라브 표면에 스케일이 두껍게 형성되어 실수율이 저하하고 실리콘, 망간 등에 의하여 내부산화가 발생하여 최종제품의 표면이 불량해지는 문제점이 있으므로, 상기 균질화 처리 온도는 1050~1300℃로 제한하는 것이 바람직하다.First, the steel of the said composition is homogenized at 1050-1300 degreeC. If the homogenization treatment temperature is less than 1050 ℃, the rolling load increases during hot rolling, the rolling is difficult, and if it exceeds 1300 ℃ scale is formed thick on the surface of the slab, the real rate is lowered and internal oxidation occurs due to silicon, manganese, etc. Since there is a problem that the surface of the final product is poor, the homogenization treatment temperature is preferably limited to 1050 ~ 1300 ℃.
이후, 상기 균질화 처리된 강을 850~950℃에서 마무리 열간압연한 다음 400~600℃에서 권취한다. 상기 마무리 열간압연온도가 850℃ 미만이면 열간압연시 압연부하가 증가하여 압연이 어려운 문제점이 있으며, 950℃를 초과하면 열연판의 표면에 두꺼운 스케일이 형성되어 산세가 어려워지고 전기도금강판의 밀착성을 저하시키는 문제점이 있으므로, 상기 마무리 열간압연온도는 850~950℃로 제한하는 것이 바람직하다. 또한, 상기 권취온도가 400℃ 미만이면 열연강판에서 강도가 높은 제2상이 생성되어 열연강판의 강도가 상승할 뿐만 아니라 강판의 형상이 나빠져 이후의 냉간압연을 어렵게 하는 문제점이 있으며, 600℃를 초과하면 열연강판에 조대한 펄라이트가 형성되고 상기 조대한 펄라이트는 소둔과정에서 재용해가 잘 일어나지 않기 때문에 균일한 조직의 소둔강판을 얻을 수 없어 냉연강판의 가공성을 열화시키는 문제점이 있다. 따라서, 상기 권취온도는 400~600℃로 제한하는 것이 바람직하다.Thereafter, the homogenized steel is finished hot rolled at 850 to 950 ° C. and then wound at 400 to 600 ° C. If the finishing hot rolling temperature is less than 850 ℃, the rolling load increases during hot rolling, which is difficult to roll. If the finishing hot rolling temperature exceeds 950 ℃, a thick scale is formed on the surface of the hot rolled sheet, making pickling difficult and the adhesion of the electroplated steel sheet. Since there is a problem to lower, the finish hot rolling temperature is preferably limited to 850 ~ 950 ℃. In addition, when the coiling temperature is less than 400 ℃ a second phase of high strength is generated in the hot rolled steel sheet not only increases the strength of the hot rolled steel sheet, but also has a problem that the shape of the steel sheet worsens, which makes it difficult to later cold rolling, exceeds 600 ℃ When coarse pearlite is formed on the hot rolled steel sheet, the coarse pearlite does not easily dissolve during the annealing process, so that an annealing steel sheet having a uniform structure cannot be obtained, thereby degrading the workability of the cold rolled steel sheet. Therefore, the winding temperature is preferably limited to 400 ~ 600 ℃.
상기와 같이 열간압연이 완료되면 원하는 강판의 형상과 두께로 강판을 제조하기 위하여 냉간압연을 실시한다. 본 발명에서는 상기 냉간압연시 압하율을 30~80%로 제한하는 것이 바람직한데, 그 이유는 상기 냉간압연시 압하율이 30% 미만이면 재결정에 필요한 충분한 에너지가 축적되지 않아 재결정이 어려워지므로 가공성이 열화되고, 80%를 초과하면 냉간압연시 압연하중이 증가하여 생산성이 감소되기 때문이다.When hot rolling is completed as described above, cold rolling is performed to manufacture the steel sheet in the shape and thickness of the desired steel sheet. In the present invention, it is preferable to limit the reduction rate during cold rolling to 30 to 80%. The reason is that when the reduction rate during cold rolling is less than 30%, sufficient energy necessary for recrystallization does not accumulate. This is because when it deteriorates and exceeds 80%, the rolling load increases during cold rolling, which reduces productivity.
상기와 같이 냉간압연된 강판을 800~870℃에서 연속소둔한다. 이어 620~700℃까지 1~7℃/초의 냉각속도로 냉각한 다음 350~450℃까지 10~100℃/초의 냉각속도로 냉각한 후 350~450℃의 온도구간에서 30~600초 동안 유지한다.The cold rolled steel sheet as described above is continuously annealed at 800 ~ 870 ℃. Then it is cooled to a cooling rate of 1 ~ 7 ℃ / second to 620 ~ 700 ℃, then cooled to a cooling rate of 10 ~ 100 ℃ / second to 350 ~ 450 ℃ and maintained for 30 ~ 600 seconds in the temperature range of 350 ~ 450 ℃ .
상기 연속소둔은 열간압연단계에서 형성된 펄라이트를 완전히 재용해시켜 냉각중 제2상을 균일하게 분포시키기 위한 과정으로, 소둔온도가 800℃ 미만이면 충분한 가공성을 확보하기 어려울 뿐만 아니라 저온에서 오스테나이트상을 유지할 수 있을 만큼 충분히 오스테나이트 변태가 일어나지 않는 문제점이 있고, 870℃를 초과하면 오스테나이트로 완전히 변태가 일어난 다음 냉각과정에서 다시 페라이트로 변태가 일어나기 때문에 잔류오스테나이트의 탄소농화가 낮고 침상형태로 발달하기 때문에 연신율이 감소하는 문제점이 있다. 따라서, 상기 연속소둔 온도는 800~870℃로 제한하는 것이 바람직하다.The continuous annealing is a process for uniformly dispersing the second phase during cooling by completely re-dissolving the pearlite formed in the hot rolling step, if the annealing temperature is less than 800 ℃ it is difficult to ensure sufficient processability and also to form the austenite phase at low temperature There is a problem that the austenite transformation does not occur enough to maintain, and if it exceeds 870 ℃, the transformation is completely transformed into austenite and then transformed to ferrite again during the cooling process. Therefore, there is a problem that the elongation is reduced. Therefore, the continuous annealing temperature is preferably limited to 800 ~ 870 ℃.
상기 소둔 후 620~700℃까지 냉각함에 있어서, 냉각속도가 1℃/초 미만이면 소둔할때 형성된 오스테나이트상이 펄라이트상으로 변태하게 되고, 7℃/초를 초과하면 충분한 양의 페라이트를 확보할 수 없어 가공성이 열화되는 문제점이 있다. 또한, 상기 냉각시 냉각종료온도가 620℃ 미만이면 오스테나이트가 펄라이트로 변태되어 잔류오스테나이트를 생성하기 어려워 강의 가공성 확보에 불리하고, 700℃를 초과하면 초석 페라이트가 충분히 생성되지 않아 잔류오스테나이트의 안정도가 감소함으로써 강의 연성을 감소시키는 문제점이 있다.In the cooling to 620 ~ 700 ℃ after the annealing, if the cooling rate is less than 1 ℃ / second, the austenite phase formed during annealing is transformed into a pearlite phase, if it exceeds 7 ℃ / second can ensure a sufficient amount of ferrite There is a problem that the workability is deteriorated. In addition, when the cooling end temperature of the cooling is less than 620 ℃ austenite is transformed to pearlite is difficult to produce residual austenite, which is disadvantageous to secure the workability of the steel, if it exceeds 700 ℃, the cornerstone ferrite is not produced sufficiently, the residual austenite There is a problem of reducing the ductility of the steel by reducing the stability.
이후, 350~450℃까지 냉각함에 있어서, 냉각속도가 10℃/초 미만이면 소둔할때 형성된 오스테나이트상이 펄라이트상으로 변태하거나 베이나이트 구간에 존재하는 오스테나이트상의 분율이 크게 감소하고, 100℃/초를 초과하면 냉각시 다량의 질소가 투입되어 제조원가가 상승되는 문제점이 있다. 또한, 상기 냉각시 냉각종료온도가 350℃ 미만이면 오스테나이트상이 마르텐사이트상으로 변태하여 잔류 오스테나이트의 분율을 감소시키고, 450℃를 초과하면 오스테나이트상에서 베이나이트상으로의 변태가 너무 빠르게 일어나서 잔류 오스테나이트 분율이 급격하게 감소하는 문제점이 있다.Then, in cooling to 350 ~ 450 ℃, if the cooling rate is less than 10 ℃ / sec, the austenite phase formed during annealing is transformed into a pearlite phase or the fraction of austenite phase present in the bainite section is greatly reduced, 100 ℃ / If it exceeds the second, a large amount of nitrogen is added during cooling, there is a problem that the manufacturing cost is increased. In addition, if the cooling end temperature of the cooling is less than 350 ℃ the austenite phase is transformed to the martensite phase to reduce the fraction of the retained austenite, and if it exceeds 450 ℃ the transformation from the austenite phase to the bainite phase occurs too quickly There is a problem that the austenite fraction is sharply reduced.
상기 냉각후 다시 350~450℃의 온도구간에서 30~600초 동안 유지함에 있어서, 상기 유지시간이 30초 미만이면 잔류된 오스테나이트를 베이나이트로 변태시키고 탄소가 충분히 농화된 잔류오스테나이트를 확보하기 어려우며, 600초를 초과하면 잔류오스테나이트의 안정도가 너무 높아지거나 베이나이트 변태가 일어나 강의 연성이 급격하게 저하되는 문제점이 있다.After the cooling, while maintaining for 30 to 600 seconds in the temperature section of 350 ~ 450 ℃ again, if the holding time is less than 30 seconds to convert the retained austenite to bainite to secure the residual austenite sufficiently enriched carbon Difficult to exceed 600 seconds, there is a problem that the stability of the residual austenite is too high or the bainite transformation occurs so that the ductility of the steel is sharply reduced.
상기와 같이 소둔이 완료된 냉연강판은 표면에 실리콘과 망간과 같은 원소의 산화물이 형성되어 있기 때문에 이를 제거해 주어야 한다. 이를 위해 냉연강판을 약산세를 하게 된다. 이때 이용될 수 있는 대표적인 산용액으로는 낮은 농도(6% 이하)의 염산용액을 들 수 있다.As described above, the cold rolled steel sheet that has been annealed should be removed because oxides of elements such as silicon and manganese are formed on the surface. To this end, cold rolled steel sheets are weakened. Representative acid solutions that can be used at this time include a hydrochloric acid solution of a low concentration (6% or less).
이후, 산세된 표면의 2차 산화를 방지하기 위하여 니켈을 무전해 도금하게 되는데, 이때 니켈용액은 니켈을 6% 이하 함유한 용액을 이용하는 것이 가능하다. 도 2는 약산세하고 니켈 무전해 도금한 강판표면의 성분분포를 나타낸 것이다. 도 2에서 알 수 있는 바와 같이, 약산세와 니켈 무전해 도금에 의해서 강판표면에 존재하는 실리콘과 망간의 산화층이 거의 대부분 제거되는 것을 알 수 있다.Thereafter, nickel is electroless plated to prevent secondary oxidation of the pickled surface. In this case, it is possible to use a nickel solution containing 6% or less of nickel. Fig. 2 shows the component distribution of the surface of the steel plate plated with weak pickling and nickel electroless plating. As can be seen in FIG. 2, it can be seen that almost all oxide layers of silicon and manganese existing on the surface of the steel sheet are removed by weak pickling and nickel electroless plating.
상기와 같이 제조된 본 발명의 냉연강판은 통상의 조건에서 전기도금함에 의하여 전기도금 강판으로 제조될 수 있다.Cold rolled steel sheet of the present invention prepared as described above can be produced by electroplating steel sheet by electroplating in the usual conditions.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
하기 표 1의 성분을 갖는 강을 1250℃에서 균질화 처리한 다음 열간압연하였다. 이때 마무리 열간압연온도는 900℃, 권취온도는 550℃로 하였다.Steels having the components of Table 1 below were homogenized at 1250 ° C. and then hot rolled. At this time, finishing hot rolling temperature was 900 degreeC, and the winding temperature was 550 degreeC.
이후, 압하율 50%로 하여 냉간압연을 실시하였으며, 냉간압연된 시편을 830℃에서 연속소둔한 다음 680℃까지 3℃/초의 냉각속도로 냉각하였다. 이어 400℃까지 30℃/초의 냉각속도로 냉각하였고, 상기 온도에서 370초간 유지하였다.Thereafter, cold rolling was performed at a reduction ratio of 50%, and the cold rolled specimens were continuously annealed at 830 ° C, and then cooled to a cooling rate of 3 ° C / sec to 680 ° C. It was then cooled to 400 ° C. at a cooling rate of 30 ° C./sec and held at this temperature for 370 seconds.
상기와 같이 제조된 시편들의 기계적 특성들을 측정하였으며, 그 결과는 하기 표 2와 같다.The mechanical properties of the specimens prepared as described above were measured, and the results are shown in Table 2 below.
상기 표 2에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명강1~3은 인장강도 60kgf/㎟ 이상, 연신율 35% 이상, 가공경화지수 0.25 이상으로 고강도이면서도 가공성이 우수한 특성을 보여주고 있었다. 따라서, 본 발명의 범위를 만족하는 발명강은 높은 인장강도에도 불구하고 연신율 및 가공경화지수가 높기 때문에 프레스 가공성이 우수하였다.As can be seen in Table 2, the invention steels 1 to 3 satisfying the scope of the present invention exhibits excellent strength and workability with a tensile strength of 60 kgf / mm 2 or more, an elongation of 35% or more, and a work hardening index of 0.25 or more. there was. Therefore, the invention steel which satisfies the scope of the present invention has excellent press workability because of high elongation and work hardening index despite high tensile strength.
그러나, Si의 첨가량이 본 발명의 범위보다 적은 비교강1의 경우, 소둔공정에서 페라이트상의 탄소를 감소시키기 어려울 뿐만 아니라 오스테나이트의 잔류도 어려워 가공성이 좋지 않았다.However, in the case of Comparative Steel 1 in which the amount of Si added was less than the range of the present invention, not only was it difficult to reduce the ferritic carbon in the annealing step, but also the austenite remained difficult, resulting in poor workability.
Mn의 첨가량이 본 발명의 범위보다 적은 비교강2의 경우, 소둔공정에서 2상역 열처리후 급냉시 오스테나이트 상이 쉽게 펄라이트로 변태가 일어나서 연성이 크게 감소하였다.In the case of Comparative Steel 2 having an added amount of Mn less than the range of the present invention, in the annealing process, the austenite phase easily transformed to pearlite during the quenching after the two-phase reverse heat treatment, and thus the ductility was greatly reduced.
P의 첨가량이 부족한 비교강3의 경우, 인장강도 및 연신율이 낮게 나타났다.In the case of Comparative Steel 3 lacking the amount of P added, tensile strength and elongation were low.
종래강1은 대표적인 인장강도 60kgf/㎟급의 석출경화형 고강도강으로, 티타늄을 첨가하여 티타늄 탄질화물을 형성함으로써 인장강도는 높지만 연신율 및 가공경화지수가 낮아 가공성이 매우 불량하였다.Conventional steel 1 is a precipitation hardening type high strength steel having a typical tensile strength of 60kgf / mm2, by adding titanium to form titanium carbonitride, the tensile strength is high, but the workability was very poor due to the low elongation and work hardening index.
연속소둔이 끝난 시편중 발명강3을 염산용액(농도:5%)에서 약산세한 후, 3%의 니켈을 함유한 용액에서 니켈 무전해 도금하였다. 상기 산세 및 무전해 도금한 시편과 산세 및 무전해 도금하지 않은 시편을 이용하여 용접성(연속타점수: 점용접에서 양호한 용접결과가 나올때까지 용접할 수 있는 용접팁의 수명)을 평가하였으며, 그 결과는 하기 표 3과 같다.Inventive steel 3 in the specimen subjected to continuous annealing was slightly pickled in a hydrochloric acid solution (concentration: 5%), and then plated with nickel electroless plating in a solution containing 3% nickel. Using the pickled and electroless plated specimens and the pickled and electroless plated specimens, the weldability (continuous stroke score: lifetime of the weld tip that can be welded until a good welding result in spot welding) was evaluated. Is shown in Table 3 below.
상기 표 3에서 알 수 있는 바와 같이, 약산세 및 니켈 무전해 도금을 실시한 발명예의 경우 약산세 및 니켈 무전해 도금을 실시하지 않은 비교예에 비하여 용접성이 우수하게 나타났다.As can be seen in Table 3, in the invention example subjected to the weak pickling and nickel electroless plating, weldability was superior to that of the comparative example without the weak pickling and nickel electroless plating.
도 3은 상기 발명예와 비교예의 인산염 처리 후 인산염 조직을 비교한 것으로, 발명예는 인산염조직이 균일하게 분포되어 약산세와 니켈 무전해 도금에 의해서 도장성이 크게 개선되었음을 확인할 수 있었다.Figure 3 is a comparison of the phosphate structure after the phosphate treatment of the invention example and the comparative example, the invention example was confirmed that the coating properties are greatly improved by a weak pickling and nickel electroless plating because the phosphate structure is uniformly distributed.
상술한 바와 같이, 본 발명에 따르면 가공성이 우수하여 프레스 가공시 균열발생이 없을 뿐만 아니라 용접성과 도장성이 우수하여 자동차 제조시 원가절감을 할 수 있는 고강도 냉연강판을 제공할 수 있는 효과가 있다.As described above, according to the present invention, there is an effect of providing a high-strength cold rolled steel sheet which is excellent in workability and does not generate cracks during press working, and also has excellent weldability and paintability, which can reduce costs in automobile manufacturing.
도 1은 인첨가에 의한 상태도의 변화를 나타내는 그림이다.1 is a diagram showing a change in the state diagram by the addition.
도 2는 비교예와 발명예의 표면성분 분포를 나타내는 그래프이다.2 is a graph showing surface component distributions of Comparative Examples and Inventive Examples.
도 3은 비교예와 발명예의 인산염처리후 인산염 조직을 비교한 사진이다.Figure 3 is a photograph comparing the phosphate tissue after the phosphate treatment of the comparative example and the invention example.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030094195A KR100554760B1 (en) | 2003-12-20 | 2003-12-20 | High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030094195A KR100554760B1 (en) | 2003-12-20 | 2003-12-20 | High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050062194A true KR20050062194A (en) | 2005-06-23 |
KR100554760B1 KR100554760B1 (en) | 2006-02-24 |
Family
ID=37254435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030094195A KR100554760B1 (en) | 2003-12-20 | 2003-12-20 | High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100554760B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112006003169B4 (en) | 2005-12-01 | 2013-03-21 | Posco | Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production |
KR20190077987A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Manufacturing method of ultra high strength coated cold steel sheet with good phosphating property |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR850000875B1 (en) * | 1980-11-26 | 1985-06-22 | 신닛본 세이데쓰 가부시기가이샤 | Method of process high strength cold steel sheet |
JPH0765117B2 (en) * | 1990-03-29 | 1995-07-12 | 川崎製鉄株式会社 | Method for producing hot-dip galvanized steel sheet with excellent spot weldability for deep drawing |
JP3146839B2 (en) * | 1994-04-18 | 2001-03-19 | 日本鋼管株式会社 | High corrosion resistant cold rolled steel sheet excellent in workability and method for producing the same |
KR100299443B1 (en) * | 1996-12-17 | 2001-11-22 | 이구택 | Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance |
KR100530055B1 (en) * | 2001-09-06 | 2005-11-22 | 주식회사 포스코 | Method for Manufacturing Automotive Steel Sheet Having Ultra High Formability |
-
2003
- 2003-12-20 KR KR1020030094195A patent/KR100554760B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112006003169B4 (en) | 2005-12-01 | 2013-03-21 | Posco | Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production |
KR20190077987A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Manufacturing method of ultra high strength coated cold steel sheet with good phosphating property |
Also Published As
Publication number | Publication date |
---|---|
KR100554760B1 (en) | 2006-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100851158B1 (en) | High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It | |
KR101561007B1 (en) | High strength cold rolled, hot dip galvanized steel sheet with excellent formability and less deviation of mechanical properties in steel strip, and method for production thereof | |
JP7274505B2 (en) | High-strength double-sided stainless steel clad plate and its manufacturing method | |
WO2021143661A1 (en) | High corrosion-resistance strip steel and manufacturing method therefor | |
EP1969148B1 (en) | Method for manufacturing high strength steel strips with superior formability and excellent coatability | |
KR101461740B1 (en) | Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same | |
KR101736632B1 (en) | Cold-rolled steel sheet and galvanized steel sheet having high yield strength and ductility and method for manufacturing thereof | |
KR20110119285A (en) | Cold rolled steel sheet and zinc plated steel sheet having high strength and manufacturing method thereof | |
KR101439613B1 (en) | The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same | |
KR20230082601A (en) | High-strength steel sheet having excellent formability and method for manufacturing thereof | |
WO2017164139A1 (en) | High-strength hot-dip galvanized steel sheet and method for manufacturing same | |
KR20070023995A (en) | Steel sheet for galvanizing with superior formability and method for manufacturing the steel sheet | |
KR20230028618A (en) | Steel material for hot forming, hot formed part, and mehod for manufacturing thereof | |
KR20220048611A (en) | High-strength hot-dip galvanized steel sheet with excellent ductility and processability and process for producing the same | |
KR20160082362A (en) | High strength cold rolled steel sheet having excellent surface quality of thin slab, weldability and bendability and method for manufacturing the same | |
KR20150075351A (en) | Rolled steel and method of manufacturing the same | |
KR100554760B1 (en) | High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same | |
KR100946066B1 (en) | Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements | |
JP2002226937A (en) | Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same | |
KR101042434B1 (en) | A cold rolledsteel sheet and method for manufacturing the same | |
KR20100047001A (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR100400866B1 (en) | High strength cold rolled steel sheet with excellent pickling resistance and corrosion resistance to holes and manufacturing method | |
KR102245228B1 (en) | Steel sheet having excellent uniform elongation and strain hardening rate and method for manufacturing thereof | |
KR101153659B1 (en) | A cold rolled steel sheet having excellent formability and coatability, and A method for manufacturing the same | |
KR20100047003A (en) | High-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130204 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140212 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150212 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160215 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180212 Year of fee payment: 13 |