KR100299443B1 - Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance - Google Patents

Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance Download PDF

Info

Publication number
KR100299443B1
KR100299443B1 KR1019960067026A KR19960067026A KR100299443B1 KR 100299443 B1 KR100299443 B1 KR 100299443B1 KR 1019960067026 A KR1019960067026 A KR 1019960067026A KR 19960067026 A KR19960067026 A KR 19960067026A KR 100299443 B1 KR100299443 B1 KR 100299443B1
Authority
KR
South Korea
Prior art keywords
steel sheet
high strength
manufacturing
austenite
steel
Prior art date
Application number
KR1019960067026A
Other languages
Korean (ko)
Other versions
KR19980048455A (en
Inventor
진광근
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019960067026A priority Critical patent/KR100299443B1/en
Publication of KR19980048455A publication Critical patent/KR19980048455A/en
Application granted granted Critical
Publication of KR100299443B1 publication Critical patent/KR100299443B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemically Coating (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A method is provided to improve delayed fracture resistance of a ultra-high strength retained Austenite contained steel sheet by diffusion coating or plating Ni content on the surface thereof when manufacturing the ultra-high strength retained austenite contained steel sheet by reverse transformation or Austempering. CONSTITUTION: In a method for manufacturing a retained Austenite contained steel sheet comprising the processes of manufacturing a hot rolled steel sheet by hot rolling Mn low carbon steel, pickling the hot rolled steel sheet and reverse transforming Martensite into Austenite by reannealing the pickled steel sheet, the method for manufacturing a ultra-high strength retained Austenite contained steel sheet having superior delayed fracture resistance is characterized in that a Ni layer is formed by dipping the steel sheet into an electroless plating solution containing Ni content for 5 to 30 seconds after the pickling process, thereby coating Ni on the surface of the steel sheet, and reannealing the Ni coated steel sheet so that Ni is diffused on the surface layer of the steel sheet. In a method for manufacturing a retained Austenite contained steel sheet comprising the processes of stabilizing Austenite by maintaining Si-Mn medium carbon steel in the Bainite temperature zone, hot rolling the carbon steel, finish rolling and coiling the hot rolled carbon steel, and picking the coiled steel sheet, the method for manufacturing a ultra-high strength retained Austenite contained steel sheet having superior delayed fracture resistance is characterized in that the surface of the steel sheet is electroless plated by dipping the pickled steel sheet into a Ni contained electroless plating solution for 5 to 30 seconds after the pickling process.

Description

[발명의 명칭][Name of invention]

내지연파괴 특성이 우수한 초고강도 잔류오스테나이트 함유강판의 제조방법Manufacturing method of super high strength residual austenite-containing steel sheet with excellent delayed fracture resistance

[발명의 상세한 설명]Detailed description of the invention

[발명의 목적][Purpose of invention]

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

본 발명은 자동차 범퍼 보강재나 자동차 도어 충격흡수재 등으로 사용되고 있는 초고강도 강판에 관한 것으로서, 보다 상세하게는 내지연파괴특성이 우수한 초고강도 잔류 오스테나이트 함유강판의 제조방법에 관한 것이다.The present invention relates to an ultra high strength steel sheet used as an automobile bumper reinforcement material or an automobile door shock absorber, and more particularly, to a method of manufacturing an ultra high strength residual austenite-containing steel sheet having excellent delayed fracture resistance.

최근, 자동차의 경량화 등을 목적으로 인장강도가 80kg/mm2이상인 초고강도강의 수요가 증가하고 있는 추세이다. 통상 인장강도 80kg/mm2이상이 요구되는 범퍼보강재나 도어 충격흡수재로 사용되고 있는 초고강도 강은 가공성이 낮기 때문에 주로 1-3열의 모자형 단면의 판넬로 굽힘가공 또는 프레스가공하거나 파이프로 조관하여 사용되고 있다. 그러나, 최근에는 우수한 가공성을 얻기 위하여 많은 노력이 경주되고 있는데, 특히 잔류 오스테나이트를 다량 함유하는 강종에 대해 많은 연구가 행해지고 있다.Recently, the demand for ultra high strength steel having a tensile strength of 80kg / mm 2 or more is increasing for the purpose of lightening the automobile. Ultra-high strength steel, which is usually used as a bumper reinforcement or door shock absorber that requires more than 80kg / mm 2 of tensile strength, has low workability, so it is mainly used for bending, pressing, or pipe-joining with a panel of 1 to 3 rows of hat-shaped sections. have. In recent years, however, many efforts have been made to obtain excellent workability. In particular, many studies have been conducted on steel grades containing a large amount of retained austenite.

잔류 오스테나이트 함유강판은 잔류오스테나이트가 가공에 의하여 마르텐사이트로 변태되면서 연성을 증가시키기 때문에 균일연성이 매우 우수할 뿐 아니라 드로잉과 같은 국부압축응력을 받는 경우 잔류오스테나이트가 마르텐사이트로 변태되면서 네킹저항이 급속하게 증가된다. 이로 인하여 냉연강판과 같이(222)집합조직이 발달하지 않아도 드로잉가공이 가능한 특징이 있다.Residual austenite-containing steel sheet has excellent uniform ductility because residual austenite is transformed into martensite by processing, and it is very excellent in uniform ductility and necking when residual austenite is transformed into martensite when subjected to local compressive stress such as drawing. Resistance increases rapidly. Due to this, there is a characteristic that drawing processing is possible even if the aggregate structure is not developed, such as the cold rolled steel sheet (222).

따라서, 연성이 우수한 잔류 오스테나이트 함유 강을 드로잉 가공부품에 적용할 수 있으면 그 활용분야는 매우 넓혀질 것이다.Therefore, the application of residual austenite-containing steel having excellent ductility to drawing processing parts will be greatly expanded.

종래, 잔류오스테나이트 함유강의 제조방법 중 대표적인 것으로는 다음과 같은 두 방법이 있다.Conventionally, the following two methods are typical of the manufacturing method of the residual austenite-containing steel.

첫 번째는 Si-Mn중탄소강을 연속냉각후 베이나이트 온도역에서 유지하면서 오스테나이트가 베이나이트로 변태하는 것을 지연시키고 동시에 오스테나이트를 안정화시켜 제조하는 방법으로서 오스템퍼링법이라고 한다.The first method is to maintain the Si-Mn medium carbon steel in the bainite temperature range after continuous cooling, to delay the transformation of austenite to bainite and to stabilize the austenite at the same time.

두 번째는 Mn저탄소강을 열간압연한 후 재소둔하여 마르텐사이트를 오스테나이트로 역변태시키는 방법으로서 역변태법이라고 한다.Secondly, Mn low carbon steel is hot-rolled and reannealed to reverse-transform martensite to austenite.

그러나, 현재까지 알려진 바에 의하면 상기와 같은 방법에 의해 제조된 잔류오스테나이트 함유강을 드로잉하는 경우 일정시간이 경과함에 따라 균열이 발생하는 소위 지연파괴가 발생하는 문제점이 있다(CAMP-ISIJ Vol.5(1992), 1841). 지연파괴는 120kg/mm2급 고장력 볼트와 같은 초고강도 강이나 오스테나이트계 스테인레스강에서 자주 발생하는 것으로, 잔류응력이 높은 상태에서 수소가 확산 침투하여 응집분자회됨으로써 균열로 발전한다.However, there is a known problem that when drawing residual austenite-containing steel manufactured by the above method, a so-called delayed fracture occurs when a predetermined time elapses (CAMP-ISIJ Vol. 5). (1992), 1841). Delayed fracture occurs frequently in ultra-high strength steels such as 120kg / mm class 2 high-tensile bolts or austenitic stainless steels, and hydrogen is diffused and penetrated in the state of high residual stresses to generate cracks.

한편, 잔류 오스테나이트 함유강의 경우 드로잉가공에 의하여 잔류오스테나이트가 마르텐사이트로 변태되면서 유발되는 체적팽창에 의한 내부응력과 프레스시 윤활유나 방청유 도는 pH가 낮은 용액과 접하는 환경에서 발생하는 수소의 침입에 의해 지연파괴가 일어난다. 특히 마르덴사이트조직에서는 수소확산속도가 매우 크고 용해도가 적기 때문에 침입한 수소가 조직의 경계에 용이하게 응집되어 지연파과가 발생하는 것이다.On the other hand, residual austenite-containing steels contain internal stresses caused by volume expansion caused by transformation of residual austenite into martensite, and lubricating oils or rust-preventing oils during press- ing are intruded by hydrogen generated in contact with low pH solutions. This causes delayed destruction. Particularly, in the mardensite structure, the hydrogen diffusion rate is very high and the solubility is low. Therefore, infiltrated hydrogen easily aggregates at the boundary of the tissue, causing delayed breakthrough.

상기와 같은 잔류오스테나이트 함유강 지연파괴의 감소방법으로는 다음과 같은 방법들이 있으나, 이와같은 방법들에서도 문제점이 발견된다.As a method of reducing the residual austenite-containing steel delayed destruction as described above, there are the following methods, but problems are found in such methods.

1)드로잉가공 전후에 윤활유 등에 의한 수소침입을 억제하는 방법으로서, 이 방법에서는 실제 성형시 윤활유나 방청유 등을 완전히 제거하는 것은 사실상 어려운 문제가 있다.1) As a method of suppressing hydrogen infiltration by lubricating oil or the like before and after drawing, it is difficult to completely remove lubricating oil or rust preventive oil during actual molding in this method.

2)가공후 잔류응력을 경감하거나 또는 완전히 제거하기 위하여 열처리를 행하는 방법으로서, 이 경우는 소둔후 산세를 해야하기 때문에 비용이 상승하는 문제가 있다.2) As a method of heat treatment to reduce or completely remove residual stress after processing, in this case, there is a problem in that the cost increases due to pickling after annealing.

3)변태된 마르텐사이트의 계면에 연질의 조직을 분포시켜 체적팽창을 최대한 흡수하여 내부응력을 완화시키는 방법과 잔류오스테나이트의 양을 제한하는 방법으로 이 방법들에 의하면 80kg/mm2이상의 잔류오스테나이트 함유강 제조는 거의 불가능하고 결과적으로 초고강도의 드로잉가공은 어려운 문제가 있다.3) According to the methods as a way to distribute the tissue of the soft at the interface of the transformation of martensite as much as possible to absorb the volume expansion to relieve internal stress and residual way to limit the amount of austenite 80kg / mm 2 or more residual austenite Production of knight-containing steel is almost impossible, and as a result, drawing processing of ultra high strength has a difficult problem.

4)화학성분의 제어를 통하여 지연파괴감수성을 완화시키는 방법으로서, 이 방법에서는 C,P를 낮추거나 Al을 첨가함으로써, 마르텐사이트의 강도를 저하시키고 Si로 하여금 인성을 증대시키도록 하여 지연파괴를 방지하는 것이다.(철과강, Vol.63(1977), p.659)4) A method of mitigating delayed fracture susceptibility through the control of chemical components. In this method, by lowering C and P or adding Al, the strength of martensite is reduced and Si increases toughness so that delayed fracture is prevented. (Steel and Steel, Vol. 63 (1977), p.659).

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

이에 본 발명자들은 상기한 방법들의 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 역변태법 또는 오스템퍼링법에 의한 초고강도 잔류오스테나이트 함유강판제조시, 그 표면에 Ni성분을 확산도포 또는 도금시킴으로서 드로잉가공후 강판의 외부로 부터의 수소가스의 침입을 차단하여 초고강도 잔류 오스테나이트 함유 강판의 내지연파괴 특성 향상시키는데 그 목적이 있다.In order to solve the problems of the above-described methods, the present inventors have repeatedly studied and experimented and proposed the present invention based on the results, and the present invention contains ultra-high strength residual austenite by reverse transformation or ostampering. In the manufacture of steel sheet, the purpose is to improve the delayed fracture resistance of the ultra-high strength residual austenite-containing steel sheet by blocking the penetration of hydrogen gas from the outside of the steel sheet after drawing processing by spreading or plating the Ni component on the surface.

[발명의 구성 및 작용][Configuration and Function of Invention]

본 발명은 Mn저탄소강을 열간압연하여 열연강판으로 제조하는 공정, 산세하는 공정 및 재소둔하여 마르텐사이트를 오스테나이트로 역변태시키는 공정을 포함하여 잔류 오스테나이트 함유 강판을 제조하는 방법에 있어서, 상기 산세하는 공정후 강판을 Ni 성분함유 무전해도금 용액에 5-30초간 침적시켜 강판표면에 Ni을 도포시키고, 재소둔에 의해 강판표층에 Ni를 확산시켜 Ni층을 형성시키는 내지연 파괴특성이 우수한 초고강도 잔류오스테나이트함유 강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a retained austenite-containing steel sheet, including a step of hot rolling Mn low carbon steel to produce a hot rolled steel sheet, a process of pickling and re-annealing to reverse transformation of martensite into austenite. After the pickling process, the steel sheet was deposited on the Ni-containing electroplating solution for 5-30 seconds to apply Ni to the surface of the steel sheet, and re-annealed to diffuse Ni to the surface of the steel sheet to form a Ni layer. The present invention relates to a method for producing a super high strength residual austenite-containing steel sheet.

또한, 본 발명은 Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연하는 공정, 마무리압연과 권취하는 공정 및 산세하는 공정을 포함하여 잔류오스테나이트 함유 강판을 제조하는 방법에 있어서, 상기 산세 공정후 강판을 Ni성분 함유 무전해 도금용액에 5-30초간 침적시켜 강판 표면에 Ni을 무전해 도금시키는 내지연파괴특성이 우수한 초고강도 잔류오스테나이트 함유 강판의 제조방법에 관한 것이다.In addition, the present invention is to produce a retained austenite-containing steel sheet including a step of stabilizing austenite by maintaining the Si-Mn medium carbon steel in the bainite temperature range, hot rolling, finishing rolling and winding process and pickling process In the method, the steel sheet is immersed in the Ni-containing electroless plating solution for 5-30 seconds after the pickling process to produce an ultra-high strength residual austenite-containing steel sheet excellent in delayed fracture characteristics by electroless plating Ni on the surface of the steel sheet It is about.

또한, 본 발명은 Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연하는 공정, 냉간압연하여 냉연강판으로 제조하는 공정, 및 연속소둔공정을 포함하여 잔류오스테나이트 함유 강판을 제조하는 방법에 있어서, 상기 연속소둔공정후 강판을 Ni성분 함유 무전해도금용액에 5-30초간 침적시켜 강판 표면에 Ni을 무전해도금시키는 내지연파괴특성이 우수한 초고강도 잔류오스테나이트 함유강판의 제조방법에 관한 것이다.In addition, the present invention is a retained austenite including the process of stabilizing austenite by maintaining the Si-Mn medium carbon steel in the bainite temperature range, the process of hot rolling, the process of manufacturing cold rolled cold steel sheet, and the continuous annealing process In the method for producing a steel sheet containing the ultra-high strength residual austenite having excellent delayed fracture characteristics by electroless plating Ni on the surface of the steel sheet by immersing the steel sheet in Ni-containing electroless plating solution after the continuous annealing process for 5-30 seconds. It relates to a method for producing a steel sheet.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

Ni성분은 수소의 흡장력이 우수하기 때문에 윤활유나 방청유 등에서 발생한 수소가스가 강판으로 침입하는 것을 억제하고 강중에 확산되는 경우에는 마르텐사이트의 계면으로 수소가스가 이동하는 것을 효과적으로 차단할 수 있기 때문에 잔류오스테나이트 함유강의 지연파괴를 억제한다.Ni component is excellent in absorbing power of hydrogen, so it is possible to prevent hydrogen gas from lubricating oil or rust preventive oil from invading steel plate and to effectively block the movement of hydrogen gas to martensite interface when it is diffused in steel. Suppresses the delayed fracture of knight-containing steel.

이러한 관점으로 부터 출발한 본 발명은 잔류 오스테나이트를 다량함유한 인장강도 80kg/mm2이상의 초고강도강판의 드로잉 가공후 발생하는 지연파괴를 방지하기 위한 것으로서 역변태법에 의한 잔류오스테나이트 함유강 제조시는 산세직후 Ni을 도포하여 역변태 소둔을 하고, 오스템퍼링법의 경우는 상온냉각후 Ni을 도금하여 강판의 표면에 Ni층을 형성시킴으로써 내지연파괴특성이 우수한 초고강도 잔류오스테나이트 함유강의 제조에 관한 것이다.Starting from this point of view, the present invention is to prevent delayed fracture occurring after drawing processing of an ultra high strength steel sheet having a tensile strength of 80 kg / mm 2 or more containing a large amount of retained austenite, and thus producing residual austenite-containing steel by reverse transformation method. In the case of pickling, after application of Ni, reverse transformation annealing is carried out, and in the case of the ostempering method, Ni is plated after cooling to room temperature to form a Ni layer on the surface of the steel sheet to produce super high strength residual austenite-containing steel having excellent delayed fracture characteristics. It is about.

먼저, 역변태법에 의한 잔류오스테나이트 함유강 제조는 Mn저탄소강을 열간압연하여 열연강판으로 제조하는 공정 및 산세하는 공정을 거친다음 재소둔하여 마르텐사이트를 오스테나이트로 역변태시키는 공정을 포함하는데, 본 발명에서는 상기 산세하는 공정후에 Ni을 도포시킨다. 즉, 역변태법의 경우는 산세와 역변태소둔 중간 공정에서 Ni을 도포하고 소둔과정에서 강판의 표층에 확산시키는 것이다.First, the production of residual austenite-containing steel by the inverse transformation method includes a process of hot rolling Mn low carbon steel into a hot rolled steel sheet and a process of pickling, followed by re-annealing to reverse transformation of martensite into austenite. In the present invention, Ni is applied after the pickling process. In other words, in the case of the reverse transformation method, Ni is applied in the intermediate process of pickling and reverse transformation annealing, and diffused to the surface layer of the steel sheet during the annealing process.

다음으로, 오스템퍼링법중에서 잔류오스테나이트 함유 열연강판에 의한 잔류 오스테나이트를 함유하는 강을 제조하는 경우에는 Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연 및 권취하는 공정을 및 산세하는 공정을 거치게 되는데, 본 발명에서는 상기 산세공정후에 Ni을 무전해도금시킨다.Next, in the case of manufacturing the steel containing the residual austenite by the retained austenite-containing hot rolled steel sheet in the austempering method, the process of stabilizing austenite by maintaining Si-Mn medium carbon steel in the bainite temperature range, hot rolling and The process of winding up and pickling are performed. In the present invention, Ni is electroless plated after the pickling process.

다음으로, 오스템퍼링법중에서 잔류오스테나이트 함유 냉연강판에 의한 잔류 오스테나이트함유강을 제조하는 경우에는 Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연, 냉간압연, 및 연속소둔하는 공정을 거치게 되는데, 본 발명에서는 상기 연속소둔 후에 Ni을 무전해 도금시킨다.Next, in the case of manufacturing the retained austenite-containing steel by the retained austenite-containing cold rolled steel sheet in the austempering method, the process of stabilizing austenite by maintaining Si-Mn medium carbon steel in the bainite temperature range, hot rolling, cold rolling And, and undergoes a continuous annealing process, in the present invention, after the continuous annealing, Ni is electroless plated.

즉, 오스템퍼링법의 경우는 강판의 제조직후 Ni을 무전해 도금하는 것이다.That is, in the case of the ostempering method, Ni is electroless plated immediately after the steel sheet is manufactured.

본 발명에서는 상기와 같은 공정순서로 Ni을 도포 또는 도금함에 있어서, 무전해 도금용액에서 강판을 5-30초간 침적시킨다. 그 이유은 Ni을 강판표면에 도포하거나 도금하여 내지연파괴를 향상시키기 위해서는 도포량이 최소 100mg/m2가 되어야 하는데, 이에 필요한 최소 침적시간이 5초이기 때문에 이를 하한값으로 하는 것이며, Ni도포량이 증가하면 내지연파괴 효과가 증가하지만, 20g/m2이상에서는 거의 일정하게 되므로 이때 소요되는 30초를 상한값으로 제한하는 것이다.In the present invention, in applying or plating Ni in the above process sequence, the steel sheet is deposited for 5-30 seconds in an electroless plating solution. The reason is that in order to improve the delayed fracture by applying or plating Ni on the surface of steel sheet, the coating amount should be at least 100mg / m 2 , and the minimum deposition time is 5 seconds. Although delayed-destructive effect is increased, since it becomes almost constant in 20 g / m <2> or more, it will limit the 30 second which is required at this time to an upper limit.

본 발명에 적용하는 무전해도금용액은 통상의 것이면 모두 사용가능하며, 그 일례로 황산니켈, 황산나트륨 및 차아인산나트륨의 혼합용액을 들 수 있다.The electroless plating solution to be applied to the present invention can be used as long as it is a normal one, and examples thereof include a mixed solution of nickel sulfate, sodium sulfate and sodium hypophosphite.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

Ni도포에 따른 내지연파괴특성이 우수한 초고강도 잔류오스테나이트강을 제조하기 위하여 하기 표 1과 같은 화학성분을 가진 역변태형 잔류오스테나이트 함유강과 오스템퍼링형 잔류오스테나이트 함유강을 용해하여 제조하였다.In order to manufacture ultra-high strength residual austenite steel having excellent delayed fracture characteristics according to Ni coating, it was prepared by dissolving the reverse transformation residual austenite-containing steel having the chemical composition shown in Table 1 below and the austempering residual austenite-containing steel. .

역변태형의 경우 하기 표 1의 1번 강종을 이용하여 산세후, 황산니켈, 황산나트륨 및 차아인산나트륨의 혼합용액인 Ni성분을 함유한 용액에 5-30초간 침적하여 도포한 후 620℃에서 5시간 소둔하여 도포된 Ni을 강판표층에 확산시켜 Ni층을 형성하여 열연강판을 제조하였으며 냉연강판은 냉간압연후 600℃에서 24시간 소둔하였다.In case of inverse transformation type, after pickling using steel No. 1 in Table 1 below, the solution was deposited on the solution containing Ni component, a mixed solution of nickel sulfate, sodium sulfate, and sodium hypophosphite, for 5-30 seconds, and then applied at 5% at 620 ° C. The coated Ni was annealed over time to form a Ni layer by forming a Ni layer. The cold rolled steel sheet was annealed at 600 ° C. for 24 hours after cold rolling.

또한, Ni도포를 행하지 않는 것을 제외하고 나머지는 상기와 같은 조건을 거친 열연강판도 제조하였다.In addition, except that the Ni coating is not carried out, a hot rolled steel sheet subjected to the same conditions as described above was also produced.

오스템퍼링형의 경우 열연강판은 하기 표 1의 2번강종을 이용하여 850℃마무리 압연하여 350℃권취하고 산세후 상기 Ni성분을 함유한 용액중에서 5-30초간 침적하여 무전해도금하고, 냉연강판은 3번강종을 이용하여 820℃에서 5분간 소둔후 과시효가 종료한 다음 동일 조건으로 Ni 무전해도금을 행하였다. 또한, Ni 무전해도금을 행하지 않는 것을 제외하고 나머지는 상기와 같은 조건을 거친 열연강판도 제조하였다.In the case of the ostampering type, the hot rolled steel sheet is rolled at 850 ° C. using the No. 2 steel in Table 1 and wound up at 350 ° C., and then pickled and electroless plated in a solution containing the Ni component for 5-30 seconds. After annealing at 820 ° C. for 5 minutes using steel grade 3, overaging was completed, and Ni electroless plating was performed under the same conditions. In addition, except that the Ni electroless plating was not carried out, a hot rolled steel sheet subjected to the same conditions as described above was also produced.

상기와 같은 제조조건을 갖는 강판을 하기 표 2와 같은 두께로 제조하였다. 각 강종 및 그 두께별로 기계적 성질을 구하여 하기 표 2에 나타내었다.Steel sheets having the same manufacturing conditions as described above were prepared in the thickness shown in Table 2 below. Obtained mechanical properties for each steel grade and its thickness are shown in Table 2 below.

한편, 지연파괴특성평가는 95mm 직경의 원판을 가공하여 45mm직경의 머리부분이 평평한 펀치로 컵모양으로 드로잉한 다음 에틸알콜에 3일간과 7일간 침적하여 균열의 평균길이를 조사하였으며 하기 표 2에는 가공전 기계적성질과 지연파괴특성을 나타내었다.In the meantime, the delayed fracture characteristic evaluation was carried out by processing a 95mm diameter disk, drawing a cup-shaped head with a flat punch of 45mm diameter, and then immersing it in ethyl alcohol for 3 days and 7 days to investigate the average length of cracks. The mechanical properties and delayed fracture characteristics were shown before processing.

상기 표2에서 Ni을 도포한 본 발명재의 경우 3일간 침지시 균열이 발생하지 않았으나 Ni도포를 실시하지 않은 비교재는 모든 강에서 지연파괴가 발생하였다. 한편 7일간 침지시에는 소둔시 Ni을 확산시킨 역변태형의 경우가 균열이 발생하지 않았으나 상온에서 표면에만 무전해도금시킨 오스템퍼링형에서 약간의 균열이 발생하였다. 이는 Ni이 표층에 도포되거나 표층직하에 확산되어 감에 따라 외부로부터 침입하는 수소가스를 차단할 뿐 아니라 내부의 수소가스의 응집을 억제하기 때문이다.In the present invention material coated with Ni in Table 2, cracks did not occur when immersed for 3 days, but the comparative material that did not perform Ni coating caused delayed fracture in all steels. On the other hand, during the immersion for 7 days, the case of the reverse transformation type in which Ni was diffused during the annealing did not cause cracking, but a slight crack occurred in the ostempering type electroless plated only at the surface at room temperature. This is because Ni not only blocks hydrogen gas invading from the outside as Ni is applied to the surface layer or diffuses directly under the surface layer, but also suppresses the aggregation of hydrogen gas inside.

[발명의 효과][Effects of the Invention]

상술한 바와 같이, 본 발명은 잔류오스테나이트 함유강에 있어서 Ni층을 강판 표면에 형성시킴으로써 내지연파괴특성을 개선시키는 것으로서 본 발명에 의한 강판은 드로잉성과 내지연파괴특성이 우수한 초고강도 잔류오스테나이트 함유강판으로서 자동차용 보강재 및 충격흡수재 등의 굽힘가공용도 뿐만 아니라, 일반적인 수준의 드로잉가공이 가능하기 때문에 기존의 인장강도 40-60kg/mm2수준의 강판이 사용되는 일부 부품에 대체사용될 경우 차체 안전성 및 경량화에 효과가 있다.As described above, the present invention improves the delayed fracture characteristics by forming a Ni layer on the surface of the steel sheet in the retained austenite-containing steel, and the steel sheet according to the present invention has excellent ultrahigh strength residual austenite having excellent drawing and delayed fracture characteristics. As a steel-containing steel sheet, it can be used not only for bending reinforcement of automobile reinforcement and shock absorber, but also for general drawing, so that the safety of the body when the steel sheet with the tensile strength of 40-60kg / mm 2 is used instead of some parts. And weight reduction.

Claims (3)

Mn저탄소강을 열간압연하여 열연강판으로 제조하는 공정, 산세하는 공정 및 재소둔하여 마르텐사이트를 오스테나이트로 역변태시키는 공정을 포함하여 잔류오스테나이트 함유강판을 제조하는 방법에 있어서, 상기 산세하는 공정후 강판을 Ni 성분함유 무전해도금 용액에 5-30초간 침적시켜 강판표면에 Ni을 도포시키고, 재소둔에 의해 강판표층에 Ni를 확산시켜 Ni층을 형성시키는 것을 특징으로 하는 내지연파괴특성이 우수한 초고강도 잔류오스테나이트 함유 강판의 제조방법.A method for producing a residual austenite-containing steel sheet, including a step of hot rolling Mn low carbon steel to produce a hot rolled steel sheet, a step of pickling, and a step of re-annealing to inversely transform martensite into austenite. The steel sheet was then deposited on the Ni-containing electroless plating solution for 5-30 seconds to apply Ni to the surface of the steel sheet, and Ni was diffused to the surface of the steel sheet by re-annealing to form a Ni layer. Excellent method for producing super high strength residual austenite-containing steel sheet. Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연하는 공정, 마무리압연과 권취하는 공정 및 산세하는 공정을 포함하여 잔류 오스테나이트 함유 강판을 제조하는 방법에 있어서, 상기 산세공정후 Ni성분 함유 무전해 도금용액에 5-30초간 침적시켜 강판표면에 Ni을 무전해도금시키는 것을 특징으로 하는 내지연 파괴특성이 우수한 초고강도 잔류 오스테나이트 함유 강판의 제조방법.A method of manufacturing a retained austenite-containing steel sheet, including a step of stabilizing austenite by maintaining Si-Mn medium carbon steel at a bainite temperature range, hot rolling, finishing rolling and winding, and pickling, After the pickling process, Ni-containing electroless plating solution is deposited for 5-30 seconds, Ni is electroless plated on the surface of the steel sheet, characterized in that the super high strength residual austenite-containing steel sheet having excellent fracture delay characteristics. Si-Mn중탄소강을 베이나이트 온도역에서 유지시켜 오스테나이트를 안정화시키는 공정, 열간압연하는 공정, 냉간압연하여 냉연강판으로 제조하는 공정, 및 연속소둔공정을 포함하여 잔류오스테나이트 함유 강판을 제조하는 방법에 있어서, 상기 연속소둔공정후 강판을 Ni 성분 함유 무전해도금용액에 5-30초간 침적시켜 강판 표면에 Ni을 무전해도금시키는 것을 특징으로 하는 내지연 파괴특성이 우수한 초고강도 잔류오스테나이트 함유 강판의 제조방법.Maintaining Si-Mn medium carbon steel at bainite temperature range to stabilize austenite, hot rolling, cold rolling to cold rolled steel sheet, and continuous annealing to produce steel sheet containing residual austenite In the method, after the continuous annealing process, the steel sheet is immersed in the Ni component-containing electroless plating solution for 5-30 seconds to electrolessly plate Ni on the surface of the steel sheet. Method of manufacturing steel sheet.
KR1019960067026A 1996-12-17 1996-12-17 Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance KR100299443B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960067026A KR100299443B1 (en) 1996-12-17 1996-12-17 Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960067026A KR100299443B1 (en) 1996-12-17 1996-12-17 Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance

Publications (2)

Publication Number Publication Date
KR19980048455A KR19980048455A (en) 1998-09-15
KR100299443B1 true KR100299443B1 (en) 2001-11-22

Family

ID=37528709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960067026A KR100299443B1 (en) 1996-12-17 1996-12-17 Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance

Country Status (1)

Country Link
KR (1) KR100299443B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554760B1 (en) * 2003-12-20 2006-02-24 주식회사 포스코 High formable and high strength cold rolled steel sheets with excellent weldability and paintability, and method for manufacturing the same
KR102326045B1 (en) 2019-12-18 2021-11-15 주식회사 포스코 Steel wire rod, part for cold forging having excellent delayed fracture resistance, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009362A (en) * 1992-10-27 1994-05-20 황선두 Electroless Nickel Plating Method for Iron Free Cutting Steels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009362A (en) * 1992-10-27 1994-05-20 황선두 Electroless Nickel Plating Method for Iron Free Cutting Steels

Also Published As

Publication number Publication date
KR19980048455A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
EP1808505A1 (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
KR101726090B1 (en) High strength galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
JP2005060743A (en) Method and facility for manufacturing high-strength galvannealed steel sheet
JP2011523442A (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in high ductility and delayed fracture resistance, and manufacturing method thereof
RU2472868C2 (en) Steel for high-strength parts from strips, plates or pipes with excellent deformability, which is especially useful for methods of high-temperature application of coatings
KR930001519B1 (en) Method of manufacturing a steel sheet
KR20190078327A (en) Hot rolled steel with excellent impact toughness, steel tube, steel member, and method for manufacturing thereof
Ding et al. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel
RU2743041C1 (en) High-strength hot-rolled flat steel product with high resistance to edge cracking and simultaneously with high thermal strength indicator and method for producing such a flat steel product
CA2910703A1 (en) Zinc-coated steel for press hardening applications and method of production
JP7163339B2 (en) HIGH-STRENGTH MEMBER AND METHOD FOR MANUFACTURING HIGH-STRENGTH MEMBER
JPWO2020158063A1 (en) High-strength galvanized steel sheet and its manufacturing method
JPH06145788A (en) Production of high strength steel sheet excellent in press formbility
KR100299443B1 (en) Method for manufacturing ultra-high strength retained austenite contained steel sheet having superior delayed fracture resistance
CA1290657C (en) Method of directly softening rolled machine structural steels
KR100994007B1 (en) High Strength Steel Sheet for Hot-Dip Galvanization with Excellent Galvanizing Properties and Manufacturing Method Thereof
KR0180748B1 (en) Method for producing by continuous heat treatment oil-tempered steel or spring having high strength and high toughness
EP3940091A1 (en) Hot press member, production method for steel sheet for hot press, and production method for hot press member
JP3110238B2 (en) Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
De Meyer et al. The bake hardening behaviour of electro‐galvanized cold rolled CMnSi and CMnAlSi TRIP steels
JP3287270B2 (en) Manufacturing method of high strength galvannealed steel sheet
CN113953346A (en) Aluminum-silicon alloy coating coated steel plate for hot stamping and preparation method and application thereof
EP3702638A1 (en) Actuator for opening and closing a door or a tailgate of a car
JPH02149616A (en) Manufacture of nitrided steel member
US3929517A (en) Process for producing a steel having a superb combination of high strength and substantial toughness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130605

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150603

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee