JPH02149616A - Manufacture of nitrided steel member - Google Patents

Manufacture of nitrided steel member

Info

Publication number
JPH02149616A
JPH02149616A JP30444788A JP30444788A JPH02149616A JP H02149616 A JPH02149616 A JP H02149616A JP 30444788 A JP30444788 A JP 30444788A JP 30444788 A JP30444788 A JP 30444788A JP H02149616 A JPH02149616 A JP H02149616A
Authority
JP
Japan
Prior art keywords
steel member
shot
bainite
treatment
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30444788A
Other languages
Japanese (ja)
Other versions
JP2741222B2 (en
Inventor
Yoshihisa Miwa
能久 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP30444788A priority Critical patent/JP2741222B2/en
Publication of JPH02149616A publication Critical patent/JPH02149616A/en
Application granted granted Critical
Publication of JP2741222B2 publication Critical patent/JP2741222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a steel member excellent in fatigue strength by forming the structure of a steel member into a metallic structure composed principally of bainite, subjecting the above steel member to nitriding treatment, and then applying shot peening treatment to the above under specific conditions. CONSTITUTION:A steel member is hot-forged and cooled or is heated up to a temp. of the austenitizing temp. or above and cooled, by which the structure of the above steel member is formed into a metallic structure composed principally of bainite in which area ratio of bainite structure is regulated to >= about 50%. Subsequently, nitriding treatment or soft nitriding treatment is applied to the above steel member, by which a film of iron nitride (Fe2N, Fe3N, Fe4N) is formed to a thickness of about 10 to several tens microns on the surface layer of the steel member and also a diffused nitrogen layer is formed inside. Further, shot peening treatment is applied to the above steel member under the conditions of 15-60 ratio of shot diameter to thickness of nitrogen compound film, 45-60 Rockwell hardness of shot, and 50-120m/sec shot velocity. By this method, the steel member remarkably improved in fatigue strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化処理した鋼部材の製造方法に関し、特に鋼
部材に窒化処理とショットピーニング処理を施し疲労寿
命に優れる鋼部材を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing nitrided steel members, and particularly relates to a method for manufacturing steel members with excellent fatigue life by subjecting steel members to nitriding and shot peening. .

〔従来技術〕[Prior art]

従来、鋼部材を用いて疲労強度に優れる歯車などの鋼部
材を製造する技術として、鋼部材に浸炭処理を施す技術
と、鋼部材に窒化処理や軟窒化処理を施す技術が広く実
用化されている。
Conventionally, as a technology for manufacturing steel parts such as gears with excellent fatigue strength using steel parts, the technology of carburizing the steel parts and the technology of applying nitriding or nitrocarburizing to the steel parts have been widely put into practical use. There is.

上記窒化処理や軟窒化処理を施すと、鋼部材の表層に窒
化鉄(FezN、 FeJ、 FE14N)からなる高
硬度の窒化物被膜が形成され、同時に鋼部材の内部にも
窒化物(拡散硬化層)が形成され、疲労寿命が著しく向
上する。
When the above nitriding treatment or soft nitriding treatment is performed, a highly hard nitride film made of iron nitride (FezN, FeJ, FE14N) is formed on the surface layer of the steel member, and at the same time, a nitride (diffusion hardened layer) is formed inside the steel member. ) is formed, significantly improving fatigue life.

上記表層の窒化物被膜の内側の拡散硬化層を極力深く形
成することが重要であるとの観点から、窒化処理に際し
鋼組織を最適化し、金属組織をフェライト+パーライト
組織にすることも提案されている(特公昭61−311
84号公報参照)。
From the viewpoint that it is important to form the diffusion hardened layer inside the surface nitride coating as deep as possible, it has been proposed to optimize the steel structure during nitriding treatment and change the metal structure to a ferrite + pearlite structure. There is (Special public official 1986-311)
(See Publication No. 84).

一方、鋼部材の疲労寿命を高める技術として、ショット
ピーニング処理により鋼部材の表層部及び内部に圧縮残
留応力を付与し且つ加工硬化によりマルテンサイト組織
とする技術も広く実用化されている。
On the other hand, as a technique for increasing the fatigue life of steel members, a technique of imparting compressive residual stress to the surface and interior of the steel member through shot peening treatment and forming a martensitic structure through work hardening has also been widely put into practical use.

歯車などの鋼部材では、上記浸炭処理後の鋼部材ニショ
ットヒーニング処理を施すことにより疲労寿命を更に改
善する技術も法用化されているけれども、窒化処理や軟
窒化処理を施した鋼部材にショットピーニング処理を施
すと、高硬度で脆い窒化物に多数のクランクが発生して
窒化処理や軟窒化処理の効果が失なわれてしまうので、
窒化処理や軟窒化処理とショットピーニング処理を併用
する技術は実用化されていない。
For steel parts such as gears, it has been legalized to further improve the fatigue life of the steel parts by subjecting them to the above-mentioned carburizing treatment followed by Ni-shot heating. If shot peening is applied to the steel, many cranks will occur in the hard and brittle nitride, and the effects of nitriding and soft nitriding will be lost.
A technique that uses shot peening treatment together with nitriding treatment or soft nitriding treatment has not been put to practical use.

但し、エンジンのバルブスプリングなどに関しては、鋼
部材を窒化処理後、電解研磨処理などによって表層の窒
化物被膜を除去してからショットピーニング処理を施す
技術も実用化されているが、このようにすると窒化物被
膜を除去してしまうので窒化処理の効果が大幅に減殺さ
れてしまう。
However, for engine valve springs, etc., a technique has been put into practical use that involves nitriding the steel member, removing the surface nitride film by electrolytic polishing, etc., and then subjecting it to shot peening. Since the nitride film is removed, the effect of the nitriding treatment is greatly reduced.

〔発明が解決しようとする課題] 上記窒化処理や軟窒化処理を施した鋼部材にショットピ
ーニング処理を施した場合に、窒化物に多数のクラック
が発生する原因について考察してみると、次の3点が考
えられる。
[Problems to be Solved by the Invention] When we consider the reasons why many cracks occur in the nitride when shot peening is applied to a steel member that has been subjected to the nitriding or nitrocarburizing treatment, we find the following: Three points can be considered.

(1)窒化鉄(FezN、 FeJ、 Fe4N)から
なる窒化物被膜が本質的に高硬度で脆いこと、 (2)鋼部材の窒化物被膜下の基材の靭性が十分でなく
、ショットピーニングの打撃力によって降伏状態となり
、窒化物被膜を基材の内部より支持する支持作用が失な
われること、 (3)窒化処理や軟窒化処理した鋼部材に対するショッ
トピーニング処理条件が適正でないこと、などの原因が
考えられる。
(1) The nitride film made of iron nitride (FezN, FeJ, Fe4N) is inherently hard and brittle; (2) The base material under the nitride film of the steel member does not have sufficient toughness, making shot peening difficult. (3) Shot peening treatment conditions for nitrided or soft-nitrided steel members are not appropriate, etc. Possible causes.

上記公報に記載のように、フェライト+パーライト組織
の鋼部材に窒化処理を施し、且つショットピーニングを
施す場合には、フェライト+パーライト組織は余り硬度
が高くないことがら、上記(2)の原因により窒化物被
膜へのクラックの発生は避けられず、実用に適さない。
As described in the above publication, when a steel member with a ferrite + pearlite structure is subjected to nitriding treatment and shot peening, the hardness of the ferrite + pearlite structure is not very high, so due to the cause of (2) above, The occurrence of cracks in the nitride film is unavoidable, making it unsuitable for practical use.

本発明の目的は、上記(2)と(3)の原因を除去し、
窒化処理や軟窒化処理を施した鋼部材にショットピーニ
ングを施す技術を確立して疲労寿命を大幅に改善した鋼
部材の製造方法を提供することである。
The purpose of the present invention is to eliminate the causes of (2) and (3) above,
It is an object of the present invention to provide a method for manufacturing steel members whose fatigue life is significantly improved by establishing a technique for applying shot peening to steel members that have been subjected to nitriding or soft nitriding.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る窒化処理した鋼部材の製造方法は、鋼部材
を、熱間鍛造後冷却するか或いはオーステナイト化温度
以上に加熱した後冷却して、ベイナイトを主体とする金
属組織とし、次にこの鋼部材に窒化処理又は軟窒化処理
を施し、次にこの鋼部材に、ショット径/窒化化合物膜
厚=15〜6o、ショットのロックウェル硬さ=45〜
60、ショット速度=50〜120 m/secの条件
にてショットピーニング処理を施すものである。
In the method for manufacturing a nitrided steel member according to the present invention, a steel member is cooled after hot forging or heated to an austenitizing temperature or higher and then cooled to obtain a metal structure mainly composed of bainite. A steel member is subjected to nitriding treatment or soft nitriding treatment, and then this steel member is coated with shot diameter/nitride compound film thickness = 15~6o and Rockwell hardness of shot = 45~
60, shot peening treatment is performed under conditions of shot speed = 50 to 120 m/sec.

〔作用〕[Effect]

本発明に係る窒化処理した鋼部材の製造方法においては
、先ず、鋼部材を熱間鍛造後冷却するが或いはオーステ
ナイト化温度以上に加熱した後冷却して、ベイナイトを
主体とする金属組織とする。
In the method for manufacturing a nitrided steel member according to the present invention, first, the steel member is hot-forged and then cooled, or alternatively, the steel member is heated to an austenitizing temperature or higher and then cooled to form a metal structure mainly consisting of bainite.

ベイナイトの金属組織は、マルテンサイトよりは低硬度
であるものの非常に硬度が高く、フェライト+パーライ
ト組織よりも硬く靭性も高いので、ショットピーニング
処理を施したときにも鋼部材の内部が降伏状態とならず
に表層の窒化物被膜を内部より支持する支持作用を維持
することになる。
The metal structure of bainite is lower in hardness than martensite, but it is extremely hard, and it is also harder and tougher than the ferrite + pearlite structure, so even when shot peening is applied, the interior of the steel member remains in a yield state. This results in maintaining the supporting effect of supporting the surface nitride film from the inside.

上記ベイナイト組織は窒化化合物を生成し易いので、ベ
イナイト組織とすることは有利であるが、ベイナイト組
織の面積率は50%以上であることが望ましい。残りは
フェライト、パーライト、ソルバイト(焼戻しマルテン
サイト)である。
Since the above-mentioned bainite structure easily generates nitride compounds, it is advantageous to use a bainite structure, but it is desirable that the area ratio of the bainite structure is 50% or more. The remainder is ferrite, pearlite, and sorbite (tempered martensite).

次に、上記鋼部材に窒化処理又は軟窒化処理を施すと、
鋼部材の表層には約10μm程度乃至数10X/11の
膜厚の窒化鉄(FezN、、Fe:+N、 FeJ)の
窒化化合物の被膜が形成されるとともに、内部にも窒素
原子が拡散して窒化鉄が形成される。
Next, when the steel member is subjected to nitriding treatment or soft nitriding treatment,
A nitride compound film of iron nitride (FezN, Fe:+N, FeJ) with a thickness of about 10 μm to several 10X/11 is formed on the surface layer of the steel member, and nitrogen atoms are also diffused inside. Iron nitride is formed.

次に、上記鋼部材にショットピーニング処理を施すので
あるが、そのショットピーニングが、ショット径/窒化
化合物膜厚(D/l) −15〜60、ショットのロッ
クウェル硬さ(H,C)−45〜60、ショット速度(
V) = 15〜120 m/seeのショットピーニ
ング条件で施される。
Next, the above steel member is subjected to shot peening treatment, and the shot peening treatment has a shot diameter/nitride compound film thickness (D/l) of -15 to 60 and a shot Rockwell hardness (H, C) of - 45-60, shot speed (
V) = 15 to 120 m/see shot peening conditions.

ここで、D/l< 15では、窒化化合物の被膜下の金
属組織にショットピーニングの作用がおよばず、残留応
力の形成が不十分となり、ショットピニングによる疲労
寿命の改善を図り得ない。
Here, when D/l<15, the action of shot peening does not reach the metal structure under the nitride compound coating, and the formation of residual stress becomes insufficient, making it impossible to improve the fatigue life by shot pinning.

方、D/l>60では、ショットの打撃力が過大となっ
て窒化化合物の被膜下の金属組織が降伏状態となり、上
記被膜にクラックが発生する。
On the other hand, when D/l>60, the impact force of the shot becomes excessive, and the metal structure under the nitride compound film enters a yield state, causing cracks to occur in the film.

HRC<45では、ショットピーニングの加工力に乏し
いため、被膜下の金属組織中の残留圧縮応力の形成が不
十分となる。また、HRC>60では、ショットが硬す
ぎて被膜にクランクが発生する。V < 50 m/s
ecでは、ショットの運動エネルギが十分でなく、加工
力が不足し、またV>120 m/secでは、ショッ
トの運動エネルギが過大となるため被膜にクラックが発
生する。
When HRC<45, the processing power of shot peening is insufficient, and the formation of residual compressive stress in the metal structure under the coating becomes insufficient. In addition, when HRC>60, the shot is too hard and cranks occur in the coating. V < 50 m/s
With EC, the kinetic energy of the shot is insufficient and the processing force is insufficient, and with V>120 m/sec, the kinetic energy of the shot is excessive and cracks occur in the coating.

上記のようにして窒化処理した鋼部材を製造すると、鋼
部材の金属組織は硬く靭性に優れ、その表層には窒化化
合物の被膜が形成されるとともに内部金属組織中にも拡
散により拡散窒化物層が形成されて硬度並びに疲労寿命
が改善され、且つショットピーニング処理によって、窒
化化合物被膜にクランクを発生させることなく、窒化化
合物被膜下の金属組織に適正に残留圧縮応力が形成され
、この残留圧縮応力の作用により疲労寿命が改善される
When a steel member nitrided as described above is manufactured, the metal structure of the steel member is hard and has excellent toughness, and a nitride compound coating is formed on the surface layer, and a diffused nitride layer is also formed in the internal metal structure due to diffusion. is formed, improving hardness and fatigue life, and through shot peening treatment, residual compressive stress is appropriately formed in the metal structure under the nitride compound film without causing cranking in the nitride compound film, and this residual compressive stress is removed. The fatigue life is improved by this action.

(発明の効果〕 本発明に係る窒化処理した鋼部材の製造方法によれば、
上記〔作用〕の項で説明したように、鋼部材の金属組織
をベイナイトを主体とする組織にし、窒化処理又は軟窒
化処理を施し、前記所定の条件でショットピーニング処
理を施す、というプロセスによって、窒化化合物の被膜
を破壊することなく、窒化処理又は軟窒化処理した鋼部
材にショットピーニング処理を施すことが可能となる。
(Effects of the invention) According to the method for manufacturing a nitrided steel member according to the present invention,
As explained in the above [Operation] section, by the process of changing the metal structure of the steel member to a structure mainly consisting of bainite, subjecting it to nitriding treatment or soft nitriding treatment, and subjecting it to shot peening treatment under the predetermined conditions, It becomes possible to perform shot peening on a steel member that has been nitrided or soft-nitrided without destroying the nitride compound coating.

これにより、窒化処理又は軟窒化処理した鋼部材であっ
て疲労寿命が飛躍的に向上した鋼部材を製造することが
可能となる。
This makes it possible to manufacture a steel member that has undergone nitriding or soft-nitriding treatment and has a dramatically improved fatigue life.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

本実施例に係る窒化処理した鋼部材の製造方法について
、第1図に基いて説明しておく。
A method for manufacturing a nitrided steel member according to this example will be explained based on FIG. 1.

本願の製造方法を通用するのに適した鋼材料としては、
重量%にてCが0.15〜0.35、Siが0.50以
下、Mnが0.50〜1.20、Crが0.80〜1.
20、■が 0゜05〜0.20、Moが0.05〜0
.50を含んだ鋼であることが望ましい。
Steel materials suitable for use in the manufacturing method of the present application include:
In weight percent, C is 0.15 to 0.35, Si is 0.50 or less, Mn is 0.50 to 1.20, and Cr is 0.80 to 1.
20,■ is 0°05~0.20, Mo is 0.05~0
.. Preferably, it is a steel containing 50%.

先ず、鋼材を熱間鍛造に供するのに適した形状に切断し
、次にその鋼材を熱間鍛造して所定の形状の鋼部材とす
る。但し、この熱間鍛造するときの温度はオーステナイ
ト化温度(約730°C)よりも高い。
First, a steel material is cut into a shape suitable for hot forging, and then the steel material is hot forged into a steel member having a predetermined shape. However, the temperature during this hot forging is higher than the austenitizing temperature (about 730°C).

次に、上記熱間鍛造されオーステナイト化温度よりも高
温の鋼部材を0.4〜4.0°C/secの冷却速度で
調整冷却により鋼部材の金属組織をベイナイトを主体と
する組織にする。或いは、熱間鍛造後冷却してから再び
オーステナイト化温度以上に加熱後調整冷却により鋼部
材の金属組織をベイナイトを主体とする組織にする。上
記ベイナイトを主体とする組織にするのに従来周知の恒
温冷却により行なってもよいが、上記のような鋼材料を
用いる場合には、焼入れ性向上元素であるMoとMnと
Crとを適当に添加しであるので上記のように連続的な
調整冷却によってベイナイト組織とすることが出来る。
Next, the hot-forged steel member whose temperature is higher than the austenitization temperature is cooled at a cooling rate of 0.4 to 4.0°C/sec, so that the metal structure of the steel member is made into a structure consisting mainly of bainite. . Alternatively, after hot forging, the steel member is cooled, heated again to a temperature equal to or higher than the austenitizing temperature, and then adjusted and cooled to change the metallographic structure of the steel member to a structure mainly composed of bainite. The above-mentioned bainite-based structure may be achieved by conventionally well-known constant temperature cooling, but when using the above-mentioned steel materials, Mo, Mn and Cr, which are elements that improve hardenability, may be appropriately added. Since it is added, a bainite structure can be formed by continuous controlled cooling as described above.

上記゛ベイナイトを主体とする金属組織は、フェライト
士ベイナイト組織であってもよいが、面積率で50%以
上のベイナイトを含むことが望ましい。
The metal structure mainly composed of bainite may be a ferrite-bainite structure, but preferably contains bainite in an area ratio of 50% or more.

次に、上記ベイナイトを主体とする金属組織の鋼部材を
機械加工し、或いは必要に応じて焼戻し処理を施してか
ら機械加工して機械部品の形状にする。この場合、フェ
ライト+ベイナイト+ソルバイト(焼戻しマルテンサイ
ト)の金属組織となるが、面積率で50%以上のヘイナ
イトを含むことが望ましい。
Next, the steel member having a metal structure mainly composed of bainite is machined, or if necessary, tempered and then machined into the shape of a mechanical part. In this case, the metal structure will be ferrite + bainite + sorbite (tempered martensite), but it is desirable to include haynite in an area ratio of 50% or more.

次に、上記鋼部材に窒化処理又は軟窒化処理を施し、鋼
部材の表層に約10μm程度の窒化鉄(FezN、 F
e=N、 Fe、N)の被膜を形成するとともに内部に
は拡散窒化層を形成する。上記窒化処理や軟窒化処理の
技術は公知のものなので詳しい説明は省略する。
Next, the above-mentioned steel member is subjected to nitriding treatment or soft nitriding treatment, and iron nitride (FezN, F
A film of e=N, Fe, N) is formed, and a diffusion nitride layer is formed inside. Since the techniques of the nitriding treatment and soft nitriding treatment described above are well known, detailed explanations thereof will be omitted.

次に、上記鋼部材に、ショット径(D)/窒化鉄液膜厚
(t)=15〜60、ショットのロックウェル硬さ(H
,IC)=45〜60、ショット速度(V)=50〜1
20m/secの条件にてショットピーニング処理を施
す。但し、ショット径(D)と膜厚(1)は何れも同じ
単位(例えばμm)での値を用いる。
Next, the shot diameter (D)/iron nitride liquid film thickness (t) = 15 to 60 and the Rockwell hardness of the shot (H
, IC)=45-60, shot speed (V)=50-1
Shot peening treatment is performed under the condition of 20 m/sec. However, the shot diameter (D) and film thickness (1) are both expressed in the same unit (for example, μm).

上記の製造方法により得られる鋼部材は、ベイナイト組
織の利点(高硬度で靭性が高いこと)に加えて、窒化処
理による利点(高硬度の窒化鉄被膜及び拡散窒化層を有
し、疲労寿命に優れること)と、ショットピーニング処
理による利点(内部の金属組織に残留圧縮応力が形成さ
れて疲労寿命に優れること)と兼備したものとなる。
In addition to the advantages of the bainitic structure (high hardness and toughness), the steel parts obtained by the above manufacturing method have the advantages of the nitriding treatment (having a high hardness iron nitride coating and a diffusion nitride layer, resulting in a long fatigue life). It has the advantages of shot peening treatment (residual compressive stress is formed in the internal metal structure, resulting in excellent fatigue life).

次に、ショットピーニング処理の処理条件と疲労寿命の
向上との相関関係を調べる為に実際に行なった実験例■
と実験例■について説明する。
Next, an example of an experiment actually conducted to investigate the correlation between shot peening treatment conditions and improvement in fatigue life.
and experimental example ■ will be explained.

〈実験例I〉 使用した鋼材の組成を次の第1表に示す。<Experimental example I> The composition of the steel used is shown in Table 1 below.

第1表 (化学成分 %) (1)  試験片の作成 上記組成の鋼材を熱間鍛造後900°Cに加熱し、次に
1.0°C/secの冷却速度で冷却しオーステンパー
処理して、フェライト+ベイナイト組織(ヘイナイトの
面積率70%)の試験片を製作した。
Table 1 (Chemical composition %) (1) Preparation of test piece A steel material with the above composition was heated to 900°C after hot forging, and then cooled at a cooling rate of 1.0°C/sec to undergo austempering treatment. A test piece with a ferrite + bainite structure (area ratio of haynite: 70%) was manufactured.

次に上記試験片を機械加工して直径−10mm、切欠R
=1.0mmの疲労試験片を作成した。
Next, the above test piece was machined to a diameter of -10 mm and a notch R.
A fatigue test piece with a diameter of 1.0 mm was prepared.

(2)窒化処理 次に、上記試験片に、570°(: X 3Hr、 N
 H3/RX=50150の条件にてガス軟窒化処理を
施した。この窒化処理により表面に形成された窒化鉄被
膜の膜厚は10μmであった。尚、上記RXは吸熱型変
性ガスである。
(2) Nitriding treatment Next, the above test piece was treated with 570° (: X 3Hr, N
Gas nitrocarburizing treatment was performed under the condition of H3/RX=50150. The thickness of the iron nitride film formed on the surface by this nitriding treatment was 10 μm. Note that the above RX is an endothermic modified gas.

(3)  ショットピーニング処理 上記疲労試験片に種々の径のスチールショットを用いて
ショットピーニング処理を施してから疲労試験片を疲労
試験に供した。
(3) Shot peening treatment The above fatigue test pieces were subjected to shot peening treatment using steel shots of various diameters, and then the fatigue test pieces were subjected to a fatigue test.

ショットピーニングの条件は、ショットのロックウェル
硬さ(H,C)=48、ショット速度(V) =80m
/sec 、疲労試験応力= 45 Kgf/mm”で
あった。
The shot peening conditions are: Rockwell hardness of shot (H, C) = 48, shot speed (V) = 80 m
/sec, fatigue test stress = 45 Kgf/mm''.

(4)疲労試験結果 疲労試験結果をショット径(D)、窒化鉄被膜の膜厚(
1)とし、D/Tのパラメータを横軸に、また疲労寿命
比を縦軸にして整理すると第1図のような結果が得られ
た。ここで、疲労寿命比=1゜0は窒化処理したままで
ショットピーニング処理を施さない試験片の場合である
(4) Fatigue test results Fatigue test results are calculated based on the shot diameter (D) and the thickness of the iron nitride coating (
1), and when the D/T parameter is plotted on the horizontal axis and the fatigue life ratio is plotted on the vertical axis, the results shown in FIG. 1 are obtained. Here, the fatigue life ratio=1°0 is for a test piece that has been nitrided but not shot peened.

第1図から判るように、D/T= 15〜60の範囲の
ときに疲労寿命が4倍以上向上した。
As can be seen from FIG. 1, the fatigue life was improved by more than four times when D/T was in the range of 15 to 60.

D/T< 15では、ショット径(D)が小さく或いは
被膜の膜厚(1)が大きいために、ショットによるヘル
ツの接触応力が表層部に発生し、窒化鉄被膜下にショッ
トピーニングの影響が及ばず、残留圧縮応力の形成が不
十分となることから、疲労寿命の向上が不十分となる。
When D/T < 15, the shot diameter (D) is small or the film thickness (1) of the film is large, so Hertzian contact stress due to the shot occurs in the surface layer, and the effect of shot peening occurs under the iron nitride film. This results in insufficient formation of residual compressive stress, resulting in insufficient improvement in fatigue life.

D/T>60では、ショットの打撃力が過大で且つヘル
・ンの接触応力が内部に及び、内部の銅材料が降伏状態
となって表層の窒化鉄被膜を内側から支持する支持作用
が不十分となり、窒化鉄被膜にクラックが発生しやすく
なることから、疲労寿命の向上が不十分となる。
When D/T>60, the impact force of the shot is excessive and the contact stress of the shot is applied to the inside, and the internal copper material enters a yielding state, and the supporting effect to support the surface iron nitride coating from the inside is lost. If the iron nitride coating becomes insufficient, cracks are likely to occur in the iron nitride coating, resulting in insufficient improvement in fatigue life.

く実験例■〉 上記実験例Iと同様に製作した試験片にショット径(D
)0.4mm、つまりD/T=40で且つショットの硬
さとショット速度を変えてショットピーニング処理を施
し、疲労試験(疲労試験応力−45にgf/mm” )
に供した。
Experimental Example ■〉 The shot diameter (D
) 0.4 mm, that is, D/T = 40, and subjected to shot peening treatment by changing the shot hardness and shot speed, and subjected to a fatigue test (fatigue test stress -45 gf/mm")
Served.

その結果、次の第2表のような結果となり、それを図示
すると第3図のようになった。
As a result, the results were as shown in Table 2 below, which is illustrated in Figure 3.

(来夏 以下余白) 第2表 第2表及び第3図から判るように、ショットのロックウ
ェル硬さ(H,C)−45〜60、ショット速度(V)
 −50〜120m1secの範囲のときに疲労寿命が
4倍以上に向上する。
(Next summer, blank space below) As can be seen from Table 2 and Figure 3, the Rockwell hardness of the shot (H, C) -45 to 60, the shot speed (V)
In the range of -50 to 120 m1sec, the fatigue life is improved by more than 4 times.

11、Ic<45では、ショットの加工力が小さく、残
留圧縮応力の形成が不十分となることから、疲労寿命の
向上が十分でない。
11. When Ic<45, the shot processing force is small and the formation of residual compressive stress is insufficient, so that the fatigue life is not sufficiently improved.

)!、C>60では、ショットの硬さが過大で、窒化鉄
被膜にクラックが発生することから、疲労寿命の向上が
十分でない。
)! , C>60, the hardness of the shot is excessive and cracks occur in the iron nitride coating, so the fatigue life is not sufficiently improved.

また、ショット速度(V) < 50m/secでは、
ショットの運動エネルギが不十分で、加工力が不足する
ため疲労寿命の向上が十分でない。ショット速度(V)
 > 120m/secでは、ショットの加工力が過大
となるため疲労寿命の向上が十分でない。
In addition, when shot speed (V) < 50m/sec,
The kinetic energy of the shot is insufficient and the machining force is insufficient, resulting in insufficient improvement in fatigue life. Shot speed (V)
> 120 m/sec, the shot processing force becomes excessive and the fatigue life is not sufficiently improved.

上記実験例1と実験例■の結果を総合すると、結局量も
望ましいショットピーニング処理の条件は次のようにな
る。
Combining the results of Experimental Example 1 and Experimental Example (2) above, the conditions for shot peening treatment with a desirable amount are as follows.

(i)ショット径(D)/窒化鉄被膜の膜厚(1) −
15〜60、 (ii )  ショットのロックウェル硬さ(H,IC
)−45〜60、 (iii )ショット速度(V) =50〜120m/
sec上記のように、鋼部材をベイナイトを主体とする
金属組織とし、その鋼部材に窒化処理や軟窒化処理を施
し、その後上記の条件でショットピーニング処理を施す
と、前述の如くベイナイトの特性と窒化処理により得ら
れる特性とショットピーニング処理により得られる特性
とを兼備した鋼部材を製造することが出来る。
(i) Shot diameter (D)/Thickness of iron nitride film (1) −
15-60, (ii) Rockwell hardness of shot (H, IC
) -45~60, (iii) Shot speed (V) =50~120m/
sec As mentioned above, if a steel member has a metal structure mainly composed of bainite, and the steel member is subjected to nitriding or soft nitriding treatment, and then shot peening under the above conditions, the characteristics of bainite and It is possible to manufacture a steel member that has both the properties obtained by nitriding treatment and the properties obtained by shot peening treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係るもので、第1図は本実施例
に係る窒化処理した鋼部材の製造方法の製造工程図、第
2図は実験例Iで得られたショット径/窒化鉄被膜の膜
厚と疲労寿命比の関係を示す線図、第3図は実験例■で
得られたショットのロックウェル硬さとショット速度と
疲労寿命比の関係を示す図である。 第1図 第2図 ショット径(D) 窒イbとti1階タジデ豐J1町(【)第3図 ショットのロックウェル硬さ
The drawings relate to an example of the present invention, and FIG. 1 is a manufacturing process diagram of the method for manufacturing a nitrided steel member according to this example, and FIG. 2 is a diagram showing the shot diameter/iron nitride obtained in Experimental Example I. FIG. 3 is a diagram showing the relationship between the film thickness of the coating and the fatigue life ratio, and FIG. 3 is a diagram showing the relationship between the Rockwell hardness of the shot obtained in Experimental Example (2), the shot speed, and the fatigue life ratio. Fig. 1 Fig. 2 Shot diameter (D) Nitii b and ti 1st floor Tajide Fyo J1 town ([) Fig. 3 Rockwell hardness of shot

Claims (1)

【特許請求の範囲】[Claims] (1)鋼部材を、熱間鍛造後冷却するか或いはオーステ
ナイト化温度以上に加熱した後冷却して、ベイナイトを
主体とする金属組織とし、 次にこの鋼部材に窒化処理又は軟窒化処理を施し、 次にこの鋼部材に、ショット径/窒化化合物膜厚=15
〜60、ショットのロックウェル硬さ=45〜60、シ
ョット速度=50〜120m/secの条件にてショッ
トピーニング処理を施すことを特徴とする窒化処理した
鋼部材の製造方法。
(1) A steel member is cooled after hot forging or heated to a temperature higher than the austenitizing temperature and then cooled to obtain a metal structure mainly composed of bainite, and then the steel member is subjected to nitriding treatment or soft nitriding treatment. , Next, shot diameter/nitride compound film thickness = 15 was applied to this steel member.
60, a shot Rockwell hardness of 45 to 60, and a shot speed of 50 to 120 m/sec. A method for producing a nitrided steel member.
JP30444788A 1988-11-30 1988-11-30 Method for manufacturing a nitrided steel member Expired - Fee Related JP2741222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30444788A JP2741222B2 (en) 1988-11-30 1988-11-30 Method for manufacturing a nitrided steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30444788A JP2741222B2 (en) 1988-11-30 1988-11-30 Method for manufacturing a nitrided steel member

Publications (2)

Publication Number Publication Date
JPH02149616A true JPH02149616A (en) 1990-06-08
JP2741222B2 JP2741222B2 (en) 1998-04-15

Family

ID=17933121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30444788A Expired - Fee Related JP2741222B2 (en) 1988-11-30 1988-11-30 Method for manufacturing a nitrided steel member

Country Status (1)

Country Link
JP (1) JP2741222B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256870A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Method for manufacturing endless metal belt
JP2006291310A (en) * 2005-04-12 2006-10-26 Daido Steel Co Ltd Crankshaft and producing method therefor
JP2007332421A (en) * 2006-06-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing soft-nitride part
JP2009138275A (en) * 2009-01-09 2009-06-25 Sumitomo Metal Ind Ltd Nitriding-treated steel member
CN103403212A (en) * 2011-02-23 2013-11-20 同和热处理技术株式会社 Nitrided steel member and method for producing same
EP2458212A3 (en) * 2010-11-24 2017-12-06 Valeo Japan Co., Ltd. Swash plate compressor and surface treatment method for treating surface of swash plate in swash plate compressor
CN113396235A (en) * 2019-02-13 2021-09-14 株式会社日立制作所 Soft magnetic material, method for producing same, and motor using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256870A (en) * 2004-03-09 2005-09-22 Toyota Motor Corp Method for manufacturing endless metal belt
JP2006291310A (en) * 2005-04-12 2006-10-26 Daido Steel Co Ltd Crankshaft and producing method therefor
JP2007332421A (en) * 2006-06-15 2007-12-27 Sumitomo Metal Ind Ltd Method of manufacturing soft-nitride part
JP2009138275A (en) * 2009-01-09 2009-06-25 Sumitomo Metal Ind Ltd Nitriding-treated steel member
EP2458212A3 (en) * 2010-11-24 2017-12-06 Valeo Japan Co., Ltd. Swash plate compressor and surface treatment method for treating surface of swash plate in swash plate compressor
CN103403212A (en) * 2011-02-23 2013-11-20 同和热处理技术株式会社 Nitrided steel member and method for producing same
CN103403212B (en) * 2011-02-23 2015-08-26 同和热处理技术株式会社 Nitriding steel component and manufacture method thereof
CN113396235A (en) * 2019-02-13 2021-09-14 株式会社日立制作所 Soft magnetic material, method for producing same, and motor using same
CN113396235B (en) * 2019-02-13 2022-07-01 株式会社日立制作所 Soft magnetic material, method for producing same, and motor using same

Also Published As

Publication number Publication date
JP2741222B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
Farrahi et al. An investigation into the effect of various surface treatments on fatigue life of a tool steel
KR910003515B1 (en) Case hardening method for steel parts
US4222793A (en) High stress nodular iron gears and method of making same
US6790294B1 (en) Spring with excellent fatigue endurance property and surface treatment method for producing the spring
US7407555B2 (en) Oil tempered wire for cold forming coil springs
US3117041A (en) Heat treated steel article
US4202710A (en) Carburization of ferrous alloys
JPH02149616A (en) Manufacture of nitrided steel member
US6413326B1 (en) High strength coupling and method
US3216869A (en) Method of heat treating steel
JP3093123B2 (en) Manufacturing method of cast iron gear
US6902631B2 (en) Air-hardening, low to medium carbon steel for improved heat treatment
JPH0853711A (en) Surface hardening treating method
JP2005036279A (en) Surface hardening method for steel, and metallic product obtained thereby
JP3847350B2 (en) Spring with excellent fatigue resistance and surface treatment method for producing the spring
JP2000317838A (en) Surface treatment method for spring
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
Milella Surface Treatments and Temperature Effects
Grum Residual stresses in induction hardened steels
JPH02156020A (en) Production of carburization-hardened steel member
JPH0227408B2 (en)
JPH02294462A (en) Carburizing quenching method for steel member
JPH02240249A (en) Production of carburized parts reduced in heat treatment strain
Ciski et al. Heat treatment of nitrided layer formed on X37CrMoV5-1 hot working tool steel
RU2052536C1 (en) Method for thermochemical treatment of steel products

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees