KR20050059817A - Cold rolled steel sheet having homogeneous plastic deformation property and manufacturing method thereof - Google Patents
Cold rolled steel sheet having homogeneous plastic deformation property and manufacturing method thereof Download PDFInfo
- Publication number
- KR20050059817A KR20050059817A KR1020030091533A KR20030091533A KR20050059817A KR 20050059817 A KR20050059817 A KR 20050059817A KR 1020030091533 A KR1020030091533 A KR 1020030091533A KR 20030091533 A KR20030091533 A KR 20030091533A KR 20050059817 A KR20050059817 A KR 20050059817A
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel sheet
- rolled steel
- value
- cold rolled
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 rm 값이 1에 가까우며 Δr 값이 낮아 거의 0에 가까운 값을 가져서 자동차 외판의 가공시 주로 발생하는 스트레칭 모드의 변형에서의 소성변형이 균일할 뿐만 아니라 형상동결성이 우수한 냉연강판 및 그 제조방법에 관한 것이다.The present invention r m value is close to 1 Δr value is excellent in low almost shape fixability as well as gajyeoseo a value close to 0 to a plastic deformation in the stretching mode, which typically occurs during the processing of the vehicle outer panel deformed uniformly cold-rolled steel sheet, and It relates to a manufacturing method.
본 발명에 의하면,중량%로 C: 0.1%이하,Mn:0.1~1.0%,P:0.1%이하,S:0.02%이하,Si:0.05%이하,산가용 Al:0.08%이하,N:0.01%이하,Ti:0.0025~0.10%, Zr:0.10%이하, 및 나머지는 Fe와 피할수 없는 불순물로 구성되는 냉연강판이 제공된다. 또한,상기 조성을 갖는 강 슬라브를 1050 ℃ 이상으로 재가열하는 단계, Ar3 이상의 마무리 온도와 권취온도 500 100 ℃ 에서 열간압연하는 단계, 50~80% 압하율로 냉간압연하는 단계, Ar1 이하의 균열대 온도에서 상소둔하는 단계, 및 0.5~2% 압하율로 조질압연하는 단계로 구성되는 냉연강판의 제조방법이 제공된다According to the present invention, by weight% C: 0.1% or less, Mn: 0.1 to 1.0%, P: 0.1% or less, S: 0.02% or less, Si: 0.05% or less, acid value Al: 0.08% or less, N: 0.01 A cold rolled steel sheet comprising% or less, Ti: 0.0025 to 0.10%, Zr: 0.10% or less, and the balance consisting of Fe and inevitable impurities is provided. In addition, reheating the steel slab having the composition to 1050 ℃ or more, finishing temperature and winding temperature of Ar 3 or more 500 Cold rolled steel sheet consisting of hot rolling at 100 ℃, cold rolling at a 50 ~ 80% reduction rate, annealing at a crack zone temperature of Ar 1 or less, and temper rolling at a 0.5 ~ 2% reduction rate Provided are methods for preparing
본 발명의 강은 스트레칭 모드 변형이 가해지는 자동차 외판등의 사용에 특히 적합하다.The steel of the present invention is particularly suitable for use in automobile shells and the like to which a stretching mode deformation is applied.
Description
본 발명은 가공성이 우수한 냉연강판 및 그 제조방법에 관한 것으로, 특히 자동차 외판의 프레스 가공이 용이하여 복잡한 형상의 자동차 부품의 성형에 유리하도록 평균 소성비(rm)가 낮아 1에 가깝고 소성변형비 이방성계수(Δr)가 낮은 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a cold rolled steel sheet having excellent workability and a method of manufacturing the same, and in particular, the average plasticization ratio (r m ) is close to 1 and the plastic strain ratio is low, so that it is easy to press-process the outer shell of automobiles, which is advantageous for molding automobile parts having a complex shape. The present invention relates to a cold rolled steel sheet having a low anisotropy coefficient Δr and a method of manufacturing the same.
자동차 외판의 재료로는 가공결함 없이 프레스 성형을 실시하고 성형 후 원하는 모양의 부품을 원활하게 제작하기 위하여 가공성이 우수한 냉연강판이 요구된다. 즉, 연신률이 높으면서도 항복강도가 낮고 면방향으로의 소성변형이 균일한 냉연강판을 이용하여 자동차 외판을 성형하면 복잡한 형상을 갖는 부품을 원하는 모양으로 제작하는 것이 유리하다. 연신률은 인장 시 균열발생 없이 연신되는 강판의 성질을 나타내는 값이므로 연신률이 크면 허용되는 강판의 변형이 크다고 할 수 있다. 연신률은 강종이 결정되면 크게 변화하지 않는 강의 기계적 성질이다. 소성변형비 r 값은 두께방향의 변형률에 대한 폭방향의 변형률의 비로 정의되는 값이다. 소성변형비가 큰 강판은 폭방향의 변형량의 일정하다고 가정하면 일정 변형량만큼 판재를 임의방향의로 인장하였을 때 두께방향으로의 변형률이 적으므로 큰 변형까지 재료의 네킹이 발생하지 않고 가공이 가능하다는 것을 의미한다. 자동차 내판의 경우, 디프드로잉 변형이 주로 발생하므로 판재의 가공시 연신률 및 소성변형비가 큰 냉연강판이 유리하나, 자동차 외판의 경우는 스트레칭 변형이 주로 발생하므로 소성변형비가 낮을수록 가공측면에서 유리하다. 그 이유는 소성변형비가 낮으면 낮을수록 등이축 항복강도가 낮아져서 적은 변형으로도 소성변형이 가능하기 때문이다. 한편, 소성변형비는 판재의 이방성 성질때문에 인장방향에 따라 다른 값을 가진다. 인장 방향에 따른 소성변형비의 변화정도를 나타낸 것이 평균 소성변형비 rm 과 소성변형비 이방성계수 r 이다. 일반적으로 소성변형비를 측정하는 방법으로는 각 판재의 r0 , r45 , r90 을 측정한 후 다음 식에 대입하여 rm 과Δr 을 결정한다.As a material of an automobile outer plate, a cold rolled steel sheet having excellent workability is required in order to perform press molding without processing defects and to smoothly manufacture a part having a desired shape after molding. That is, it is advantageous to manufacture a part having a complicated shape in a desired shape by forming a vehicle outer plate using a cold rolled steel sheet having a high elongation, low yield strength and uniform plastic deformation in the plane direction. The elongation is a value representing the property of the steel sheet to be elongated without cracking when tensile, so when the elongation is large, the allowable deformation of the steel sheet is large. Elongation is a mechanical property of steel that does not change significantly once the steel grade is determined. The plastic strain ratio r value is a value defined as the ratio of the strain in the width direction to the strain in the thickness direction. If the steel sheet with a large plastic deformation ratio is assumed to have a constant deformation in the width direction, when the plate is tensioned in an arbitrary direction by a certain amount of deformation, the strain in the thickness direction is small, so that the material can be processed without causing necking until a large deformation. it means. In the case of automobile inner plates, cold drawing steels having a high elongation and plastic strain ratio are advantageous because of deep drawing deformation, but in the case of automobile outer panels, stretching deformation mainly occurs, so the plastic deformation ratio is advantageous in terms of processing. The reason is that the lower the plastic deformation ratio, the lower the biaxial yield strength, and thus plastic deformation can be performed with less deformation. On the other hand, the plastic strain ratio has a different value depending on the tensile direction because of the anisotropic property of the plate. The average plastic strain ratio r m and the plastic strain ratio anisotropy r are shown. In general, the plastic deformation ratio is measured by measuring r 0 , r 45 , and r 90 of each sheet and then substituting the following equations to determine r m and Δr.
rm = (r0+2r45+r90)/4 , Δr = (r0 -2r45+r90)/2r m = (r 0 + 2r 45 + r 90 ) / 4, Δr = (r 0 -2r 45 + r 90 ) / 2
여기서 r0 , r45 , r90 은 인장방향이 판재의 압연방향에 대하여 각각 00 ,450 , 900 방향의 소성변형비 값을 의미한다.Δr 값이 작기위해서는 각 방향으로 인장하였을 때 소성변형비의 차이가 작아야 한다. Δr 값이 작다는 것은 프레스 성형 시 변형률의 분포가 균일하다는 것을 의미하므로 스트레칭 모드의 변형에서 큰 변형까지 성형하는데 유리하다. 낮은 Δr , 1에 가까운 rm 값을 가진 강은 스트레칭 변형이 주로 발생하는 자동차 외판의 가공시 형상 동결성이 향상된다.Where r 0 , r 45 and r 90 are tensile directions of 0 0 , 45 0 , It means the plastic strain ratio value in the 90 0 direction. In order for the value of Δr to be small, the difference in plastic strain ratio should be small when it is tensioned in each direction. The small value of Δr means that the distribution of strain in the press molding is uniform, which is advantageous for molding from deformation in stretching mode to large deformation. Steels with low Δr and rm values close to 1 improve shape freezing during machining of automotive shells, where stretching strains occur predominantly.
일본 공개공보 특개평 9-296226 에는 극저탄소 냉연강판에 Ti 나 Nb 를 단독 혹은 복합으로 첨가하여 고용 C 및 N 를 탄화물 및 질화물의 형태로 석출킴으로써 연신률 및 소성변형비가 높아져서 자동차용 냉연강판의 성형성이 향상되는 기술이 공지되어 있다. 독일 특허 DE3847732 ,3803064 와 미국특허 US5139580 에서는 중,저 탄소강에 탄화물 형성원소인 Ti,Nb 을 첨가하여 열연과 소둔중에 탄화물의 거동 및 미소집합조직을 제어함으로써 등방성의 소성성질을 갖는 냉연강판의 제조방법이 공지되어 있다. 그러나 Ti,Nb을 첨가한 강은 Δr , rm 값이 비교적 높아 디프드로잉 모드의 변형에서는 우수한 가공성을 보이나, 스트레칭 모드의 변형에서는 이방성이 심하고 등이축항복강도가 높아 자동차 외판용 냉연강판에서의 가공성 측면에서는 불리하다는 문제점이 있다. 한편, 일본 공개공보 특개평 6-346149에서는 이런 문제점을 해결하기위해 극저탄소강에 Ti 만,또는Ti과Nb을 첨가하여 탈가스후 열처리를 하였다. 그러나, 이 기술을 이용하면 압연방향과 폭방향의 r값이 차이가 난다는 문제점이 있다.Japanese Laid-Open Patent Publication No. 9-296226 describes the formation of automotive cold rolled steel sheets by adding Ti or Nb alone or in combination to ultra low carbon cold rolled steel sheets to precipitate solid solution C and N in the form of carbides and nitrides, thereby increasing elongation and plastic strain ratio. Techniques for improving the properties are known. German Patent DE3847732,3803064 and U.S. Pat.No. 5,395,803, US Pat. This is known. However, the steel with Ti and Nb has a relatively high Δr and r m value, which shows excellent workability in the deformation of the deep drawing mode, but high anisotropy and high isoaxial yield strength in the deformation of the stretching mode. There is a problem in terms of workability. On the other hand, in Japanese Laid-Open Patent Publication No. 6-346149, in order to solve this problem, heat treatment is performed after degassing by adding only Ti or Ti and Nb to ultra low carbon steel. However, there is a problem that the r value in the rolling direction and the width direction is different when using this technique.
본 발명의 목적은 중,저 탄소강에 해당하는 탄소 조성범위에서도 높은 연신률이 유지되고, rm 값이 1에 가까우며 Δr 값이 낮아 거의 0에 가까운 값을 가져서 자동차 외판의 가공시 주로 발생하는 스트레칭 모드의 변형에서의 소성변형이 균일할 뿐만 아니라 형상동결성이 우수한 냉연강판 및 그 제조방법을 제공하는 것이다.An object of the present invention is to maintain a high elongation even in the carbon composition range corresponding to the low and medium carbon steel, the r m value is close to 1 and the Δr value is low to nearly 0, the stretching mode that occurs mainly during the processing of automotive shells It is to provide a cold rolled steel sheet having a uniform plastic deformation in the deformation of and excellent in shape freezing and a method of manufacturing the same.
상기의 목적을 달성하기위해 본 발명에서는,중,저 탄소강에 공지 기술에서는 사용하지 않은 Zr을 첨가하되 Ti 과 Zr을 복합첨가하였다.In order to achieve the above object, in the present invention, Zr, which is not used in the known art, is added to the medium and low carbon steel, but Ti and Zr are added in combination.
본 발명에 의하면, 중량%로 C: 0.1%이하,Mn:0.1~1.0%,P:0.1%이하,S:0.02%이하,Si:0.05%이하,산가용 Al:0.08%이하,N:0.01%이하,Ti:0.1% ~ 0.0025%, Zr:0.1%이하, 및 나머지는 Fe와 불가피한 불순물로 구성되며,평균소성변형비(rm )가 1.1이하이고 소성변형비 이방성계수( Δr)가 0.15이하의 값을 갖는, 자동차 외판용 냉연강판이 제공된다.According to the present invention, by weight% C: 0.1% or less, Mn: 0.1 ~ 1.0%, P: 0.1% or less, S: 0.02% or less, Si: 0.05% or less, acid value Al: 0.08% or less, N: 0.01 % Or less, Ti: 0.1% to 0.0025%, Zr: 0.1% or less, and the remainder is composed of Fe and inevitable impurities, average plastic strain ratio (r m ) is 1.1 or less, and plastic strain ratio anisotropy coefficient (Δr) is 0.15 Provided is a cold rolled steel sheet for an automotive exterior plate having the following values.
또한, 본 발명에 의하면, 상기 조성을 갖는 강 슬라브를 1050 ℃ 이상으로 가열하는 단계, Ar3 이상의 마무리 온도와 권취온도 500 100 ℃ 에서 열간압연하는 단계, 50~80% 압하율로 냉간압연하는 단계, Ar1 이하의 균열대 온도에서 상소둔(batch annealing)하는 단계, 및 0.5~2% 압하율로 조질압연하는 단계로 구성되는 자동차 외판용 냉연강판의 제조방법이 제공된다.In addition, according to the present invention, the step of heating the steel slab having the composition to 1050 ℃ or more, the finishing temperature and winding temperature 500 of Ar 3 or more Hot rolling at 100 ° C., cold rolling at 50-80% reduction rate, batch annealing at a crack zone temperature of Ar 1 or less, and temper rolling at 0.5-2% reduction rate. Provided is a method of manufacturing a cold rolled steel sheet for an automotive exterior plate.
이하에 본 발명을 상세히 설명한다.The present invention is described in detail below.
본 발명에서 강중 C는 침입형 고용원소 및 시멘타이트 형태로 존재하면서 냉연과 소둔과정에서 강판의 집합조직 형성에 매우 큰 영향을 미친다. 강중에 C 의 양이 많은 경우 Fe와 결합하여 시멘타이트를 형성하므로 C 이 강중에 안정적으로 존재할 수 있다. 상소둔과 같이 가열 및 냉각속도가 느린 공정에서는 시멘타이트가 열역학적으로 안정되기가 용이하다. 소둔시에는 강중에 포함된 C가 Ti과 결합하여 TiC 를 석출시킴으로서 ND(normal direction ; 압연방향의 수직방향)가 <111>방향과 평행한 방위(<111>//ND)를 가진 결정립의 회복 및 재결정 속도를 늦추는 역할을 하여 <111>//ND 방위를 가진 결정립의 분율이 낮아진다. 이는 rm 값의 증가 및 Δr 값의 감소로 이어진다. 일부 C 은 Zr 과 결합하여 ZrC 를 형성시키기도 하는데 석출물의 크기가 TiC 에 비해 상대적으로 조대하여 연신률에 유리한 점을 보인다.In the present invention, while the steel C is present in the form of invasive solid solution element and cementite, it has a great influence on the formation of texture of the steel sheet during cold rolling and annealing. In the case of a large amount of C in the steel, C is combined with Fe to form cementite, and thus C may be stably present in the steel. In processes with slow heating and cooling rates, such as annealing, cementite is likely to be thermodynamically stable. During annealing, C in the steel combines with Ti to precipitate TiC, thereby restoring the grains having an orientation (<111> // ND) in which the ND (normal direction; vertical direction in the rolling direction) is parallel to the <111> direction. And the recrystallization rate is lowered, so that the fraction of grains having the <111> // ND orientation is lowered. This leads to an increase in the r m value and a decrease in the Δr value. Some C may combine with Zr to form ZrC, but the precipitates are relatively coarse than TiC, which is advantageous for elongation.
강 중 Mn은 고용강화 효과에 유효한 원소이며, 특히 강 중 S를 MnS로 석출시켜 열간압연시 S에 의한 편파단 발생과 고온취화를 억제시킨다. 그러나, 본 발명의 실험에 의하면 Mn함량이 0.3중량%미만인 경우에는 강도상승 효과를 얻을 수 없고, 강중 S를 MnS로 완전히 석출시키지 못하기 때문에 성형성 확보에 문제가 있다.Mn in steel is an effective element for the solid-solution strengthening effect, and in particular, S precipitates steel in MnS to suppress the occurrence of polarized fracture and high temperature embrittlement by S during hot rolling. However, according to the experiment of the present invention, when the Mn content is less than 0.3% by weight, the effect of increasing strength cannot be obtained, and there is a problem in securing formability because the steel S cannot be precipitated completely by MnS.
강 중 P는 함량이 많을수록 강도상승에는 유리하지만 과잉의 P첨가는 취성파괴 발생가능성을 높여 열간압연 도중 슬라브의 판파단 발생가능성이 증가되고, 소둔완료 후 결정입계로의 확산 및 편석이 용이해짐에 따라 성형시 2차 가공취성 발생에 대한 문제점이 증대되기 때문에 그 함량을 제한하여 사용할 필요가 있다. 본 발명에서는 TiC,ZrC에 의한 석출강화로 P의 함량을 0.1중량% 미만으로 제한한다.The higher the content of P in the steel, the better the strength. However, the addition of excess P increases the possibility of brittle fracture, which increases the probability of slab breakage during hot rolling, and facilitates diffusion and segregation to the grain boundary after annealing. As a result, the problem of the occurrence of secondary processing brittleness during molding is increased, and therefore, it is necessary to limit the content thereof. In the present invention, the content of P is limited to less than 0.1 wt% by precipitation strengthening by TiC and ZrC.
S 와 N 은 강중 불순물로써 불가피하게 포함되는 원소들이기 때문에 가능한 낮게 관리하는 것이 중요하다. 그러나. 그 함량을 적게 관리할수록 강의 정련비용이 높아진다. 따라서 조업조건이 가능한 범위인 0.01중량% 이하로 S를 관리하는 것이 중요하며, N함량은 고온에서 TiN을 형성하여 C와 결합할 유효Ti를 변화시키므로 전체 Ti함량은 N함량에 따라 첨가량이 달라질 수 있다.It is important to keep S and N as low as possible because they are inevitably included as impurities in the steel. But. The less it manages, the higher the refining cost of the steel. Therefore, it is important to manage S to 0.01% by weight or less, which is a range of possible operating conditions. Since the N content forms TiN at high temperature and changes the effective Ti to combine with C, the total Ti content may vary depending on the N content. have.
Si는 강중에 산화물로 작용하여 연성을 저해하므로 그 양이 적을수록 바람직하나, 제강 정련단계에서의 조업경제성을 고려하여 0.05wt%로 제한한다.Since Si acts as an oxide in steel and inhibits ductility, the smaller the amount is, the more preferable. However, Si is limited to 0.05 wt% in consideration of the economical efficiency in steelmaking refining step.
산가용 Al양은 용강의 탈탄원소로서 유효하게 작용하지만, Al 을 과잉으로 첨가하는 경우에는 가공성에 악영향을 미치므로 함유량을 0.08중량% 이하로 관리하는 것이 바람직하다.The amount of acid value Al effectively acts as a decarbonization element of molten steel. However, when Al is excessively added, it adversely affects workability, so it is preferable to control the content to 0.08% by weight or less.
Ti는 강중에 N과결합하여 TiN을 만듦으로써 AlN형성을 억제시키는 효과가 있다. 열연중에 생성되는 AlN는 열연조직을 연신시켜 판재의 형상이방성을 증가시키는 문제점을 갖고 있다. Ti의 첨가량은 소둔시 TiC를 석출시키기위해 (Ti-N x 48 /14) 0.0025중량% 관계로 첨가하는 것이 바람직하다. 그러나 Zr첨가 없이 Ti첨가시 Ti 첨가량이 증가할수록 rm 값이 증가하는 것으로 나타나고,Zr 과 복합첨가 하는 경우 Ti첨가량에 따른 rm 의 변화는 거의 없었으나 rm 값을 낮게 하려면 Ti함량을 0.1중량%이하로 제한하는 것이 바람직한 것으로 나타났다.Ti has an effect of inhibiting AlN formation by bonding Ti to steel to form TiN. AlN produced during hot rolling has a problem of increasing the shape anisotropy of the sheet by stretching the hot rolled structure. The amount of Ti added to precipitate TiC during annealing (Ti-N x 48/14) It is preferred to add 0.0025% by weight. However, Zr As the Ti addition of Ti addition amount increases without adding it appears that the r m values increase, Zr and compound, when added, but is almost no change of the r m of the Ti addition amount to a low r m values for Ti content of 0.1 wt. It has been found to be limited to less than%.
Zr은 강중에 C와 결합하여 ZrC를 형성한다. Zr양이 증가할수록 강의 이방성 측면에서 효과적이나, 0.10중량% 이상에서는 그 효과증가가 미미하고 Zr의 회수율에 문제가 생기므로 Zr함량은 0.10중량% 이하로 관리함이 바람직하다.Zr combines with C in steel to form ZrC. As the amount of Zr is increased, it is effective in terms of anisotropy of the steel, but at 0.10% by weight or more, the effect increase is insignificant, and a problem arises in the recovery rate of Zr.
스트레칭 모드의 변형에서 소성변형이 균일하면서 형상동결성이 우수한 중,저 탄소강의 냉연강판을 얻기위해서는, 이상에서 설명한 바와 같이 Ti와 Zr 함량을 조절해가면서 양자를 복합적으로 첨가하는 것이 매우 중요하다. In order to obtain a cold rolled steel sheet of medium and low carbon steel having uniform plastic deformation and excellent shape freezing in the deformation of the stretching mode, it is very important to add both of them in combination with adjusting the Ti and Zr content as described above.
한편, 상기 강 성분을 갖는 냉연강판이 자동차 외판 제조시 가해지는 변형조건에서 소성변형이 균일하면서 형상동결성이 우수한 성질을 나타내려면, 적절한 열처리 과정을 거쳐야 한다. 즉,상기 조성의 강 슬라브를 1050 ℃ 이상으로 재가열하고 Ar3 이상의 마무리 온도와 권취온도 500 100 ℃ 에서 열간압연한 후, 50~80% 압하율로 냉간압연, Ar1 이하의 균열대 온도에서 상소둔(batch annealing), 및 0.5~2% 압하율로 조질압연하여 냉연강판을 제조하여야 한다. 이때, 열간압연 후 코일의 권취온도는 상기 언급한 바와 같이 저온으로 하여 권취상태에서 최대한 석출물의 석출을 억제시키는 것이 중요하다.On the other hand, the cold-rolled steel sheet having the steel component is required to undergo an appropriate heat treatment process in order to exhibit a uniform plastic deformation and excellent shape freezing properties under the deformation conditions applied during the manufacture of automobile exterior plates. That is, the steel slab having the composition is reheated to 1050 ° C. or higher and the finishing temperature and winding temperature of Ar 3 or higher 500. After hot rolling at 100 ℃, cold rolling at 50 ~ 80% reduction rate, batch annealing at a cracking zone temperature of less than Ar 1 , and temper rolling at 0.5 ~ 2% reduction ratio should be produced cold rolled steel sheet . At this time, it is important that the coiling temperature of the coil after hot rolling is kept at a low temperature as mentioned above to suppress precipitation of precipitates as much as possible in the wound state.
다음은 본 발명의 실시예이다. The following is an embodiment of the present invention.
표 1성분의 각 강을 용해하고 열간압연을 실시하였다, 열간압연시 재가열온도는 1200 ℃, 마무리 온도는 890 ℃ , 권취온도는 500 ℃로 하였다. 열간압연판의 표면산화층을 산세로 제거한 후, 70%압하율로 냉간압연을 실시하였다. 냉간압연한 강판을 연속소둔로에서 소둔하였다. 열처리 균열대의 온도는 690 ℃ 이었다. 열처리 후, 1.5%의 압하율로 조질압연을 하였다.Each steel of Table 1 component was melted and hot-rolled. The reheating temperature at the time of hot rolling was 1200 degreeC, the finishing temperature was 890 degreeC, and the coiling temperature was 500 degreeC. After removing the surface oxide layer of the hot rolled plate by pickling, cold rolling was performed at a 70% reduction rate. The cold rolled steel sheet was annealed in a continuous annealing furnace. The temperature of the heat treatment crack was 690 ° C. After the heat treatment, temper rolling was carried out at a reduction ratio of 1.5%.
표1 Table 1
표2는 표1의 성분으로 제조한 냉연강판의 기계적 성질을 측정한 결과이다. 비교예로는 Ti첨가 저탄소강 및 Ti첨가 극저탄소강을 이용하였다. 표 2에서 발명예 1과 비교예 1을 비교하면 Zr이 미량 첨가된 발명예 1의 경우가 Δr 값이 낮은 것을 알 수 있다. 발명예 2와 발명예 3은 발명예 1에 비해 Zr 함량을 증가시킨 경우로서 Zr함량이 증가할수록 rm 값은 큰 변화가 없으나 Δr 값은 감소함을 알 수 있다. 그러나 Zr 함량이 0.015중량% 이상에서는 Δr 값 감소율이 크지 않았다. 이같은 이방성 특성의 개선효과는 Zr 첨가로 인해 TiC 보다 조대한 ZrC가 형성되기 때문인 것으로 판단된다. 비교예 2,3 으로부터 극저탄소강의 경우는 rm 값이 저탄소강보다 큰 값을 가지며, Δr 값이 커 면내 이방성이 큰 결점을 갖고 있음을 알 수 있고, Ti함량을 0.01중량%이하로 제한하는 것이 강의 이방성 특성을 개선하는데 바람직한 것으로 나타났다. 본 발명의 강은 rm 값이 1.1이하이며 Δr 값이 0.15이하임을 알 수 있다.Table 2 shows the results of measuring the mechanical properties of the cold rolled steel sheet manufactured by the components of Table 1. As a comparative example, Ti-added low carbon steel and Ti-added ultra low carbon steel were used. Comparing Inventive Example 1 with Comparative Example 1 in Table 2, it can be seen that the case of Inventive Example 1 in which a small amount of Zr was added has a low Δr value. Inventive Example 2 and Inventive Example 3 is a case where the Zr content is increased compared to Inventive Example 1, it can be seen that as the Zr content increases, the r m value does not change significantly but the Δr value decreases. However, when the Zr content was 0.015 wt% or more, the Δr value reduction rate was not large. The improvement effect of this anisotropic property is believed to be due to the formation of coarse ZrC than TiC due to the addition of Zr. From Comparative Examples 2 and 3, it can be seen that, in the case of the ultra low carbon steel, the r m value has a larger value than that of the low carbon steel, and the large Δr value has a large defect in in-plane anisotropy. It has been shown to be desirable to improve the anisotropic properties of the steel. It can be seen that the steel of the present invention has an r m value of 1.1 or less and a Δr value of 0.15 or less.
표2 Table 2
도 1은 본 발명예 3 강의 FE(Field Emission)-SEM 과 EBSD(Electron Backscattered Direction)를 이용하여 측정한 결정학적 방위 Map을 보여준다. 상단의 역극점도의 색깔과 비교하면, 본 발명의 경우 α- fiber (압연방향이 <110>방향과 평행한 결정립)와 γ- fiber(ND가 <111>방향과 평행한 결정립) 집합조직이 함께 발달하고 있음을 알 수 있다. 도 2는 소성변형비 이방성에 미치는 집합조직의 영향을 이론적으로 계산한 결과를 나타내었다. 도2로부터 α- fiber 와 γ- fiber 집합조직은 소성변형비에 서로 다른 영향을 미침을 알 수 있다. 도1과 도2를 비교하면 발명예 3의 강은 소성변형비가 1에 가까운 값을 가지며 소성변형비 이방성계수가 적은 강임을 판단할 수 있다. 도3은 발명예 3과 비교예 1의 디프드로잉 후 귀발생을 비교한 것이다. 발명예 3의 강은 귀발생이 없으나 비교예 1은 귀발생이 심하게 발달하고 있어 본 발명의 강은 스트레칭모드 변형에서 우수한 변형특성을 나타냄을 알 수 있다.FIG. 1 shows a crystallographic orientation map measured using Field Emission (FE) -SEM and Electron Backscattered Direction (EBSD) of Inventive Example 3. FIG. Compared with the color of the reverse pole viscosity at the top, in the present invention, the aggregates of α-fiber (grains in which the rolling direction is parallel to the <110> direction) and γ-fibers (grains in which the ND is parallel to the <111> direction) You can see that it is developing together. Figure 2 shows the results of theoretical calculation of the effect of texture on the plastic strain ratio anisotropy. It can be seen from FIG. 2 that the α-fiber and γ-fiber textures have different effects on the plastic strain ratio. Comparing FIG. 1 and FIG. 2, it can be determined that the steel of Inventive Example 3 has a value of plastic strain ratio close to 1 and steel having a small plastic strain ratio anisotropy coefficient. Figure 3 compares the ear development after deep drawing of Inventive Example 3 and Comparative Example 1. Steel of Inventive Example 3 has no earing, but Comparative Example 1 shows that the earing develops severely, and thus the steel of the present invention shows excellent deformation characteristics in stretching mode deformation.
이상에서 설명한 것과 같이, 본 발명에 의해 rm 값이 1.1이하이며 Δr 값이 0.15이하의 값을 갖는 가공성이 우수한 강을 얻을 수 있다. 이러한 강은 스트레칭 모드의 변형에서 우수한 가공특성을 나타내므로 자동차 외판등에 사용하기 적합하다.As described above, according to the present invention, steel having excellent workability having an r m value of 1.1 or less and a Δr value of 0.15 or less can be obtained. These steels exhibit excellent processing characteristics in deformation of the stretching mode, and thus are suitable for use in automobile shells and the like.
제 1도는 발명예 3의 상소둔 후 측정한 미소집합조직의 현미경사진과 결정학적 방위 Map도.1 is a micrograph and a crystallographic orientation map of the microassembly measured after the annealing of Inventive Example 3.
제 2도는 r값 이방성에 미치는 집합조직의 영향에 대한 이론적인 계산도.2 is a theoretical calculation of the effect of texture on r value anisotropy.
제 3도는 비교예 2와 발명예 3에 대한 디프드로잉 후 귀발생의 비교사진.3 is a comparative photograph of ear development after deep drawing for Comparative Example 2 and Inventive Example 3. FIG.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030091533A KR100555581B1 (en) | 2003-12-15 | 2003-12-15 | Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030091533A KR100555581B1 (en) | 2003-12-15 | 2003-12-15 | Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050059817A true KR20050059817A (en) | 2005-06-21 |
KR100555581B1 KR100555581B1 (en) | 2006-03-03 |
Family
ID=37252679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030091533A KR100555581B1 (en) | 2003-12-15 | 2003-12-15 | Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100555581B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729125B1 (en) * | 2005-12-28 | 2007-06-14 | 현대하이스코 주식회사 | High strength steets which have good average plastic strain ratio and the method of developing those steels |
-
2003
- 2003-12-15 KR KR1020030091533A patent/KR100555581B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729125B1 (en) * | 2005-12-28 | 2007-06-14 | 현대하이스코 주식회사 | High strength steets which have good average plastic strain ratio and the method of developing those steels |
Also Published As
Publication number | Publication date |
---|---|
KR100555581B1 (en) | 2006-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2554699B1 (en) | Steel sheet with high tensile strength and superior ductility and method for producing same | |
KR100742955B1 (en) | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same | |
US20070289679A1 (en) | High Strength Cold Rolled Steel Sheet Having Excellent Shape Freezability, and Method for Manufacturing the Same | |
WO2016080344A1 (en) | Drawn-can steel sheet and manufacturing method therefor | |
JP5145315B2 (en) | Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same | |
KR101657793B1 (en) | Bake hardening steel sheet having excellent drawability and method for manufacturing thereof | |
US20240200175A1 (en) | Non-oriented electrical steel sheet and method for manufacturing same | |
KR100879084B1 (en) | High-strength isotropic steel, method for making steel plates and resulting plates | |
JP3280692B2 (en) | Manufacturing method of high strength cold rolled steel sheet for deep drawing | |
KR102098478B1 (en) | Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same | |
KR100555581B1 (en) | Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof | |
JP3674502B2 (en) | Bake-hardening cold-rolled steel sheet and method for producing the same | |
CN110997962B (en) | Hot rolled steel sheet having excellent strength and elongation and method for manufacturing the same | |
EP2431490B1 (en) | Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same | |
KR100470640B1 (en) | A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it | |
KR101568501B1 (en) | A formable hot-rolled steel having excellent surface quality, and manufacturing of the same | |
KR102168369B1 (en) | Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same | |
KR101205133B1 (en) | Extra low carbon hot rolled steel sheet manufacturing method with low mechanical property deviation in the thickness direction | |
KR101062131B1 (en) | Beo hardened steel sheet and manufacturing method | |
KR20160144012A (en) | High-strength thin steel sheet having excellent drawability and bake hardenability and method for manufacturing the same | |
KR100627481B1 (en) | Extra low carbon cold rolled steel sheet having reduced plane anisotropy and method for producing the same | |
KR20010017609A (en) | Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient | |
KR100544724B1 (en) | Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet | |
KR20240074954A (en) | Hot stamping component and method of manufacturing the same | |
KR100957959B1 (en) | V-Zr Added Bake Hardenable Steel Sheet with Excellent Strain Aging Resistance and Manufacturing Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130204 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140224 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150209 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180220 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190219 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20200219 Year of fee payment: 15 |