KR20050041069A - NOVEL THERMOSTABLE α-GLUCANOTRANSFERASE AND USE THEREOF - Google Patents

NOVEL THERMOSTABLE α-GLUCANOTRANSFERASE AND USE THEREOF Download PDF

Info

Publication number
KR20050041069A
KR20050041069A KR1020030075978A KR20030075978A KR20050041069A KR 20050041069 A KR20050041069 A KR 20050041069A KR 1020030075978 A KR1020030075978 A KR 1020030075978A KR 20030075978 A KR20030075978 A KR 20030075978A KR 20050041069 A KR20050041069 A KR 20050041069A
Authority
KR
South Korea
Prior art keywords
glucanotransferase
alpha
leu
gly
arg
Prior art date
Application number
KR1020030075978A
Other languages
Korean (ko)
Other versions
KR100645993B1 (en
Inventor
박관화
박진희
이현규
김용노
채혜영
최차란
신말식
문태화
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020030075978A priority Critical patent/KR100645993B1/en
Publication of KR20050041069A publication Critical patent/KR20050041069A/en
Application granted granted Critical
Publication of KR100645993B1 publication Critical patent/KR100645993B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • A23L7/107Addition or treatment with enzymes not combined with fermentation with microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010254-Alpha-glucanotransferase (2.4.1.25)

Abstract

본 발명은 신규한 내열성 알파-글루카노트랜스퍼라제 및 이의 용도에 관한 것이다. 특히 본 발명은 전분의 사이드 체인의 길이가 조절된 맞춤형 전분을 생산할 수 있으며, 식품의 품질 향상 및 저장성 연장에 현저한 효과가 있는 내열성 알파-글루카노트랜스퍼라제를 제공한다. The present invention relates to novel heat resistant alpha-glucanotransferases and uses thereof. In particular, the present invention can produce a customized starch, the length of the side chain of the starch is adjusted, and provides a heat-resistant alpha-glucanotransferase that has a remarkable effect on improving the quality of food and extending shelf life.

Description

신규한 내열성 알파-글루카노트랜스퍼라제 및 이의 용도{NOVEL THERMOSTABLE α-GLUCANOTRANSFERASE AND USE THEREOF}New heat resistant alpha-glucanotransferases and uses thereof {NOVEL THERMOSTABLE α-GLUCANOTRANSFERASE AND USE THEREOF}

[발명이 속하는 기술분야][TECHNICAL FIELD OF THE INVENTION]

본 발명은 신규한 내열성 알파-글루카노트랜스퍼라제 및 이의 용도에 관한 것으로, 보다 상세하게는 전분의 사이드 체인의 길이가 조절된 맞춤형 전분을 생산할 수 있으며, 식품의 품질 향상 및 저장성 연장에 현저한 효과가 있는 내열성 알파-글루카노트랜스퍼라제 및 이의 용도에 관한 것이다.The present invention relates to a novel heat-resistant alpha-glucanotransferase and its use, and more particularly to the production of tailored starch, the length of the side chain of the starch can be produced, has a significant effect on improving the quality of food and extending shelf life Heat-resistant alpha-glucanotransferase and its use.

[종래기술][Private Technology]

정미한 쌀의 대부분을 차지하고 있는 쌀 전분(현미의 경우 70 %)은 선형의 아밀로오스와 가지상의 아밀로펙틴으로 구성되어 있다. 쌀을 이루는 아밀로오스와 아밀로펙틴의 함량비는 가열 조리된 쌀 가공품의 찰기와 풍미를 결정하는 데 중요한 요인으로 작용한다. 예를 들면, 육종을 통해 얻은 아밀로오스 함량이 낮은 제품의 멥쌀(10-15 %)은 일반 멥쌀(17-23 %)에 비해 품질과 저장성이 뛰어난 제품으로 평가받고 있다(N. Inouchi, 식품저장과 가공 산업, 1, 17-25, 2002).Rice starch (70% of brown rice), which accounts for most of the rice, is composed of linear amylose and branched amylopectin. The ratio of amylose and amylopectin, which form rice, is an important factor in determining the stickiness and flavor of heated cooked rice products. For example, non-glutinous rice (10-15%) from low-amylose-derived products is considered to be of superior quality and shelf life compared to non-glutinous rice (17-23%) (N. Inouchi, Food Storage Division Processing industry, 1, 17-25, 2002).

일반적으로 호화된 전분을 함유한 식품을 저장하는 경우, 아밀로오스와 아밀로펙틴의 상호작용으로 인한 재결정화로 제품의 품질이 크게 떨어뜨리게 되는데, 이러한 노화현상을 억제하기 위한 방법으로는 지질이나, 지방산과 같은 첨가물을 이용하는 방법과 아밀라아제를 사용하여 전분의 구조 자체를 변화시키는 방법이 사용되고 있다. In general, when storing food containing gelatinized starch, recrystallization due to the interaction of amylose and amylopectin, the quality of the product is greatly degraded. As a way to suppress the aging phenomenon, additives such as lipids and fatty acids The method of using and the method of changing the structure of starch itself using amylase are used.

상기 방법중, 아밀라아제를 이용한 방법으로 알파 아밀라아제를 빵과 같은 전분 가공식품의 노화 방지제로 사용되고 있다. 그러나 알파 아밀라아제는 약간의 과용에도 제품의 물성이 약해지며 대량의 환원당이 생성되어 마이야르 반응과 같은 원하지 않은 반응이 유발되어 품질의 저하가 초래될 수 있다. 또한 쌀 전분은 다른 전분에 비해 호화 온도가 높으며(68-78 ℃), 특히 쌀 낟알 중 전분입자는 매우 촘촘하고 단단하게 붙어 있어, 호화 온도보다 낮은 온도에서는 효소처리가 힘들거나 시간이 매우 오래 걸리는 어려움이 있다. 따라서 쌀 가공식품의 효소적 처리를 위해서는 쌀 전분의 호화 온도보다 높은 온도에서도 활성이 높은 내열성 효소의 개발이 요구된다.Among the above methods, alpha amylase is used as an antioxidant for starch processed foods such as bread by a method using amylase. However, alpha amylase may weaken the properties of the product even with a slight overuse and produce a large amount of reducing sugars, causing undesired reactions such as Maillard reactions. In addition, rice starch has a higher gelatinization temperature than other starches (68-78 ℃), especially starch particles in rice grains are very dense and firmly attached, which is difficult to process or takes a long time at temperatures lower than gelatinization temperature. There is difficulty. Therefore, for the enzymatic treatment of rice processed foods, development of heat-resistant enzymes with high activity even at temperatures higher than the gelatinization temperature of rice starch is required.

한편, 알파-글루카노트랜스퍼라제는 알파 아밀라아제의 그룹 13에 속하는 효소로서 E. coli에서는 아밀로말테이즈, 감자 등의 식물에서는 D-enzyme으로 불리워지고 있다. 알파 글루카노트랜스퍼라제는 E. coli에서 처음 클로닝되었으며, 현재 감자, 고구마, 보리 및 일부 미생물에서 클로닝 되어있다. 알파-글루카노트랜스퍼라제는 공여분자의 비환원성 말단으로부터 수여분자의 비환원성 말단에 글루코오스 단위로 전이하는 효소로서 전분 중 아밀로오스와 아밀로펙틴의 긴 가지들을 가수분해하고, 동시에 가수분해된 저 분자의 글루칸을 α-1,4 결합으로 당전이하여 아밀로펙틴 가지들을 재구성시키는 효소이다. 현재까지 알파-글루카노트렌스퍼라제를 식품에 적용한 예는 보고된 바 없다.On the other hand, alpha-glucanotransferase is an enzyme belonging to group 13 of alpha amylase and is called D-enzyme in plants such as amylomaltease and potato in E. coli . Alpha glucanotransferase was first cloned in E. coli and is now cloned in potatoes, sweet potatoes, barley and some microorganisms. Alpha-glucanotransferase is an enzyme that transfers glucose units from the non-reducing end of the donor molecule to the non-reducing end of the donor molecule. It is an enzyme that transfers sugars to α-1,4 bonds and reconstitutes amylopectin branches. To date, no application of alpha-glucanotransferase to food has been reported.

상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명은 신규한 내열성 알파-글루카노트랜스퍼라제를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the problems of the prior art, and an object of the present invention is to provide a novel heat resistant alpha-glucanotransferase.

또한 본 발명은 신규한 내열성 알파-글루카노트랜스퍼라제 유전자를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a novel heat resistant alpha-glucanotransferase gene.

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제 발현 시스템을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a heat resistant alpha-glucanotransferase expression system.

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제를 이용한 식품 가공방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a food processing method using heat-resistant alpha-glucanotransferase.

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제에 의하여 가공된 식품을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a food processed by heat-resistant alpha-glucanotransferase.

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제 처리에 의하여 물성이 개선되고, 노화가 지연된 식품을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a food having improved physical properties and delayed aging by heat-resistant alpha-glucanotransferase treatment.

상기 목적을 달성하기 위하여 본 발명은 서열번호 4로 기재된 아미노산 서열을 포함하는 펩타이드로 이루어진 내열성-알파 글루카노트랜스퍼라제를 제공한다.In order to achieve the above object, the present invention provides a heat-resistant alpha glucanotransferase consisting of a peptide comprising the amino acid sequence set forth in SEQ ID NO: 4.

또한 본 발명은 상기 펩타이드를 암호하는 핵산 서열을 포함하는 폴리뉴클레오티드를 제공한다.The present invention also provides a polynucleotide comprising a nucleic acid sequence encoding the peptide.

또한 본 발명은 상기 폴리뉴클레오티드를 발현가능하도록 포함하는 벡터를 제공한다.The present invention also provides a vector comprising the polynucleotide to be expressed.

또한 본 발명은 폴리뉴클레오티드를 발현가능하도록 포함하는 벡터로 형질전환된 세포주를 제공한다.The present invention also provides a cell line transformed with the vector comprising a polynucleotide to be expressed.

또한 본 발명은 상기 형질전환된 세포주로부터 생산되는 내열성 알파-글루카노트랜스퍼라제를 제공한다.The present invention also provides a heat resistant alpha-glucanotransferase produced from the transformed cell line.

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제를 전분, 전분이 함유된 곡물 또는 식품에 가하여 반응시키는 것을 포함하는 알파-글루카노트랜스퍼라제가 처리된 가공식품 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a processed food alpha-glucanotransferase treatment comprising the addition of the heat-resistant alpha-glucanotransferase to starch, starch-containing grains or foods.

또한 본 발명은 상기 가공식품 제조방법으로 제조된 가공식품을 제공한다. In another aspect, the present invention provides a processed food prepared by the processed food manufacturing method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 열안정성을 갖는 신규한 알파-글루카노트랜스퍼라제를 클로닝하여 이의 유전자 핵산 서열 및 단백질 아미노산 서열을 분석하였으며, 알파-글루카노트랜스퍼라제 생산 시스템을 확립하였다. 또한 알파-글루카노트랜스퍼라제를 식품에 처리하는 경우 식품의 품질이 개선되고 식품노화를 지연시키는 효과가 있음을 확인하였다.We cloned a novel alpha-glucanotransferase with thermostability to analyze its gene nucleic acid sequence and protein amino acid sequence, and established an alpha-glucanotransferase production system. In addition, it was confirmed that the treatment of alpha-glucanotransferase in food has the effect of improving food quality and delaying food aging.

본 발명의 내열성 알파-글루카노트랜스퍼라제는 써머스 스코토덕터스(Thermus scotoductus ATCC 27978)에서 유래한 단백질로, 500개의 아미노산으로 이루어지며 이의 분자량은 약 57 kDa이다. 알파-글루카노트랜스퍼라제는 서열번호 4의 아미노산 서열을 포함하는 펩타이드로 이루어져 있다.The heat resistant alpha-glucanotransferase of the present invention is a protein derived from Thermus scotoductus ATCC 27978, which consists of 500 amino acids and has a molecular weight of about 57 kDa. Alpha-glucanotransferases consist of a peptide comprising the amino acid sequence of SEQ ID NO: 4.

내열성 알파-글루카노트랜스퍼라제는 아밀로오스와 아밀로펙틴의 긴 가지들을 가수분해하는 가수분해능과, 동시에 가수분해된 저 분자의 글루칸을 α-1,4 결합으로 당전이하여 아밀로펙틴 가지들을 재구성하는 디스프로포셔네이션(disproportionation) 활성을 가진다. 특히 상기 효소는 아밀로오스에 대한 가수분해능이 우수하고, 반면에 아밀로펙틴에 대한 가수분해는 통상적인 알파-아밀라아제에 비하여 제한적이므로 처리시 식품 또는 제품이 묽어질 확률이 낮다. 또한 알파-글루카노트랜스퍼라제는 환원당을 제거하며, 아밀로펙틴 사슬을 재구성시킨다. 상기 효소는 상온 또는 상온이상의 고온에서 활성을 가지는데, 특히 45 내지 90 ℃에서 활성을 나타내며, 효소 활성을 갖는 pH 범위는 5.5 내지 8.5 일 수 있다. 효소반응시간은 효소의 반응온도, 반응 pH 또는 효소 역가에 따라 적절히 조절할 수 있으며, 예컨대 30분 내지 12시간 일 수 있으나, 12시간 이상에서도 반응이 이루어지므로 상기 수치한정에 제한되는 것은 아니다. 상기 효소는 바람직하기로는 반응온도 70 내지 85 ℃에서, pH 범위는 7.0 내지 7.5에서 최적의 활성을 나타낸다.Heat-resistant alpha-glucanotransferases have a hydrolysis ability to hydrolyze long branches of amylose and amylopectin, and at the same time disproportionate to reconstruct amylopectin branches by transferring the hydrolyzed low molecule glucan to α-1,4 bonds. (disproportionation) has activity. In particular, the enzyme has a good hydrolytic ability to amylose, while the hydrolysis to amylopectin is limited compared to conventional alpha-amylase, so the probability of food or product thinning is low. Alpha-glucanotransferase also removes reducing sugars and reconstitutes amylopectin chains. The enzyme has an activity at room temperature or a high temperature of more than room temperature, particularly exhibits the activity at 45 to 90 ℃, pH range having an enzyme activity may be 5.5 to 8.5. Enzyme reaction time can be appropriately adjusted according to the reaction temperature, the reaction pH or enzyme titer of the enzyme, for example, may be 30 minutes to 12 hours, but the reaction is also made in more than 12 hours is not limited to the numerical limitation. The enzyme preferably shows optimum activity at a reaction temperature of 70 to 85 ° C. and a pH range of 7.0 to 7.5.

본 발명의 내열성 알파-글루카노트랜스퍼라제 유전자는 서열번호 4의 펩타이드를 암호하는 핵산 서열을 포함하는 폴리뉴클레오티드로 구성된다. 상기 서열번호 4의 펩타이드를 암호하는 핵산 서열의 예로는 서열번호 3으로 기재한 핵산 서열이 있다.The heat resistant alpha-glucanotransferase gene of the present invention consists of a polynucleotide comprising a nucleic acid sequence encoding a peptide of SEQ ID NO: 4. An example of a nucleic acid sequence encoding the peptide of SEQ ID NO: 4 is a nucleic acid sequence set forth in SEQ ID NO: 3.

본 발명의 내열성 알파-글루카노트랜스퍼라제는 미생물 발현 생산시스템을 통하여 생산가능하다. 이에, 본 발명은 내열성 알파-글루카노트랜스퍼라제 유전자가 공지의 벡터에 발현가능하도록 삽입된 재조합 벡터를 제공한다. 상기 공지의 벡터는 미생물, 특히 효모, 대장균 또는 곰팡이에서 이종 단백질을 발현하기 위하여 제안된 모든 종류의 벡터일 수 있으며, 선별마크, 리포터 유전자 또는 재조합 단백질의 분리를 용이하게 하기 위한 수단을 더욱 포함할 수 있다. 상기 선별마크는 항생제 내성 유전자 또는 옥소트로피에 관련된 유전자일 수 있다. 일예로, p6xHis119(김태집, 박사학위논문, 서울대학교, 1998), pUC119 및 pET29(b)가 있다. The heat resistant alpha-glucanotransferase of the present invention can be produced through a microbial expression production system. Accordingly, the present invention provides a recombinant vector in which a heat resistant alpha-glucanotransferase gene is inserted to be expressible in a known vector. The known vector may be any kind of vector proposed for expressing heterologous proteins in microorganisms, in particular yeast, Escherichia coli or fungi, and may further comprise means for facilitating the separation of selection marks, reporter genes or recombinant proteins. Can be. The selection mark may be an antibiotic resistance gene or a gene related to oxotropy. For example, p6xHis119 (Kim Tae-kip, Ph.D. dissertation, Seoul National University, 1998), pUC119 and pET29 (b).

일실시예로, 본 발명에서는 서열번호 3의 핵산 서열을 p6xHis119 벡터의 NdeI 및 HindIII 제한요소부위에 삽입하여 p6xHisTSαGT를 제조하였다(도 1).In one embodiment, p6xHisTSαGT was prepared by inserting the nucleic acid sequence of SEQ ID NO: 3 into the Nde I and Hind III restriction sites of the p6xHis119 vector (FIG. 1).

또한 본 발명은 내열성 알파-글루카노트랜스퍼라제 유전자로 형질전환된 세포주를 제공한다. 상기 형질전환된 세포주는 내열성 알파-글루카노트랜스퍼라제 유전자를 포함하는 벡터를 숙주세포에 도입한 것이다. 상기 숙주세포는 통상의 원핵생물, 진핵생물 또는 이들로부터 유래한 세포일 수 있으며, 일예로, 대장균, 효모 또는 곰팡이일 수 있다. 본 발명에서는 일실시예로, p6xHisTSαGT를 Escherichia coli MC1061에 도입하여 형질전환시켰다.The present invention also provides a cell line transformed with a heat resistant alpha-glucanotransferase gene. The transformed cell line introduces a vector containing a heat resistant alpha-glucanotransferase gene into a host cell. The host cell may be a conventional prokaryote, eukaryote, or a cell derived therefrom, for example, E. coli, yeast or fungus. In one embodiment of the present invention, p6xHisTSαGT was transformed by introducing Escherichia coli MC1061.

본 발명에 따른 형질전환된 세포주로부터 발현되는 알파-글루카노트랜스퍼라제 재조합 단백질은 세포외 또는 세포내 발현될 수 있으며, 원심분리 또는 크로마토그래피를 통하여 용이하게 분리 및 정제가능하다. 예컨대, p6xHisTSαGT로 형질전환된 Escherichia coli MC1061은 LB 배지상에서 배양할 수 있으며, 세포내 발현된 알파-글루카노트랜스퍼라제 재조합 단백질은 균체수득, 균체 용혈(lysis), 상청액 분리 및 크로마토그래피를 통하여 정제가능하다. 특히 p6xHisTSαGT는 알파-글루카노트랜스퍼라제 재조합 단백질에 히스티딘 6 개를 접합시킨 상태로 발현시키므로, 니켈 친수성 컬럼을 이용하여 용이하게 정제가능하다. 형질전환된 세포주로부터 발현되는 알파-글루카노트랜스퍼라제는 말토올리고당을 디스프로포셔네이션하여 긴 직쇄상의 말토올리고당을 생성시킨다(도 2).Alpha-glucanotransferase recombinant protein expressed from the transformed cell line according to the present invention can be expressed extracellularly or intracellularly, and can be easily isolated and purified through centrifugation or chromatography. For example, Escherichia coli MC1061 transformed with p6xHisTSαGT can be cultured on LB medium, and intracellularly expressed alpha-glucanotransferase recombinant protein can be purified by cell harvest, cell hemolysis, lysis, supernatant separation and chromatography. Do. In particular, p6xHisTSαGT is expressed in a state in which 6 histidines are conjugated to an alpha-glucanotransferase recombinant protein, and thus can be easily purified using a nickel hydrophilic column. Alpha-glucanotransferases expressed from the transformed cell lines disproportionate maltooligosaccharides to produce long linear maltooligosaccharides (FIG. 2).

본 발명에 따른 형질전환된 세포주로부터 발현되는 알파-글루카노트랜스퍼라제는 식품에 처리하여 식품의 품질을 개선시키거나, 식품 저장성을 향상시키는 용도로 사용가능하다.Alpha-glucanotransferase expressed from the transformed cell line according to the present invention can be used for the purpose of treating food to improve the quality of food or improve food shelf life.

즉, 알파-글루카노트랜스퍼라제를 전분, 전분이 함유된 곡물 또는 식품에 전분함량 기준으로 15 내지 200 U으로 처리하여 가공식품을 제조할 수 있다. 이때 반응온도는 알파-글루카노트랜스퍼라제가 활성을 나타내는 온도범위일 수 있으며, 반응시간은 식품의 종류 또는 바람직한 전분의 변형정도에 따라 적절히 조절할 수 있으며, 또한 효소에 의한 전분의 가수분해 및 디스프로포셔네이션 반응을 중지하고자 하는 경우 100 ℃이상의 열을 가하여 반응을 중지시킬 수 있다.That is, processed foods may be prepared by treating alpha-glucanotransferase with 15 to 200 U based on starch content in starch, grains or foods containing starch. In this case, the reaction temperature may be a temperature range in which alpha-glucanotransferase exhibits activity, and the reaction time may be appropriately adjusted according to the type of food or the degree of modification of the desired starch, and also the hydrolysis and disprophylization of starch by enzymes. If the reaction is to be stopped, the reaction may be stopped by applying heat of 100 ° C. or more.

알파-글루카노트랜스퍼라제로 가공가능한 곡물으로는 쌀, 찹쌀, 감자, 밀, 옥수수, 및 콩 등이 있으며, 상기 곡물을 이용한 식품에도 모두 사용가능하다. 식품의 예로는, 취반미, 김밥, 초밥, 쌀음료, 쌀국수, 가래떡, 떡볶이, 백설기, 식빵, 비스켓 등이 있다.The grains that can be processed with alpha-glucanotransferases include rice, glutinous rice, potatoes, wheat, corn, and soybeans. Examples of foods include rice cooked rice, gimbap, sushi, rice drinks, rice noodles, rice cakes, tteokbokki, snow white, bread, and biscuits.

본 발명에서 일실시예로, 쌀전분에 알파-글루카노트랜스퍼라제를 처리하여 전분의 사이드 체인의 길이가 재구성된, 즉 긴 사이드 체인의 수는 감소되고 짧은 사이드 체인의 수는 증가된 맞춤형 전분을 제조할 수 있었다(도 4). 그 외에도, 가래떡 제조시 쌀가루에 알파-글루카노트랜스퍼라제를 처리하거나 또는 취반시 처리하여 식품의 품질변화, 저장성 및 기호성을 확인하였다. 그 결과, 가래떡의 경우 노화가 연장되고 기호도가 향상되며(도 5), 가래떡 조직이 조밀한 망상구조로 전환되었으며(도 6a 및 6b), 취반미 역시 저장성 및 기호도가 증가되는 효과가 있었다.In one embodiment of the present invention, the starch is treated with alpha-glucanotransferase to reconstruct the length of the starch side chain, that is, the number of long side chains is reduced and the number of short side chains is increased. It could be prepared (FIG. 4). In addition, rice flour was treated with alpha-glucanotransferase or cooked at the time of preparing rice cake to confirm the change in food quality, shelf life and palatability. As a result, the aging of barley rice cake was extended and the palatability was improved (FIG. 5), the barley rice cake tissue was converted to a dense network structure (FIGS. 6A and 6B), and the cooking taste was also effective in increasing shelf life and palatability.

이에, 본 발명에 따른 알파-글루카노트랜스퍼라제는 전분함유 식품의 품질을 개선하고 향미를 향상시킬 수 있다. 또한 알파-글루카노트랜스퍼라제는 고온에서 안정하여 열을 가하여 제조되는 식품에 용이하게 사용할 수 있다. Thus, alpha-glucanotransferase according to the present invention can improve the quality and flavor of starch-containing food. In addition, alpha-glucanotransferase is stable at high temperatures and can be easily used in food prepared by applying heat.

이하 본 발명의 실시예를 기재한다. 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. Hereinafter, examples of the present invention will be described. The following examples are only for illustrating the present invention and the present invention is not limited to the following examples.

실시예 1: 써머스 스코토덕터스로부터 알파글루카노트랜스퍼라제 유전자 분리Example 1 Isolation of Alpha Glucanotransferase Gene from Summers Scothoductus

써머스 스코토덕터스(Thermus scotoductus ATCC 27978)를 castenholz TYE 배지(0.02% nitrilotriacetic acid, 0.2% Nitschs's trace elements, 0.006% FeCl3 solution, 0.012% CaSO4, 0.02% ㎎SO4, NaCl, KNO3, NaNO3 , Na2HPO4, 3% agar, 0.2% trypton 및 0.2% yeast extract)에 접종하여 70 ℃에서 배양한 다음 원심분리하여 균체를 회수하였다. 이후 균체로부터 염색체 DNA를 공지의 방법(Dubnau, D. and R. D. Abenson(J. Mol. Biol., 56, 209-221, 1971)을 기초로 분리하였다. Thermos scotoductus ATCC 27978 was castenholz TYE medium (0.02% nitrilotriacetic acid, 0.2% Nitschs's trace elements, 0.006% FeCl 3 solution, 0.012% CaSO 4 , 0.02% mgSO 4 , NaCl, KNO 3 , NaNO 3 , Na 2 HPO 4 , 3% agar, 0.2% trypton and 0.2% yeast extract) were incubated at 70 ℃ and centrifuged to recover the cells. The chromosomal DNA was then isolated from the cells based on known methods (Dubnau, D. and RD Abenson (J. Mol. Biol., 56, 209-221, 1971).

써머스 스코토덕터스의 염색체 DNA를 제한효소인 Hind III로 절단하고, 아가로오스 젤에 전기영동 한 후, 알려진 알파-글루카노트랜스퍼레이즈의 상동부위를 포함하는 서열번호 5의 프로브를 이용하여 서든 블로팅(Molecular cloning, Cold Spring Harbor Laboratory Press, New York, 1989)을 수행하였다. 서든 블로팅 결과 3.2 kb의 유전자를 포함하는 절편을 얻고 이를 p119 벡터에 삽입하여 재조합 벡터를 제조하였다.Chromosomal DNA of Summers Scothoductus was cut with Hind III, a restriction enzyme, electrophoresed on agarose gel, and suddenly blown using a probe of SEQ ID NO: 5 containing the homologous region of a known alpha-glucanotransferase. (Molecular cloning, Cold Spring Harbor Laboratory Press, New York, 1989). As a result of sudden blotting, a fragment containing a 3.2 kb gene was obtained and inserted into the p119 vector to prepare a recombinant vector.

상기 재조합 벡터로부터 알파-글루카노트랜스퍼레이즈의 개시 인식 프레임(open reading frame)을 클로닝하기 위하여, 서열번호 1 및 2의 프라이머 세트로 PCR을 실시하였으며, PCR 산물은 p6xHis119 벡터의 NdeI 및 HindIII 제한효소 부위에 삽입하여 재조합벡터 p6xHisTSαGT를 제조하였다.In order to clone the open reading frame of alpha-glucanotransferase from the recombinant vector, PCR was performed with primer sets of SEQ ID NOs: 1 and 2, and the PCR product was limited to Nde I and Hind III of the p6xHis119 vector. Inserted into the enzyme site to prepare a recombinant vector p6xHisTSαGT.

본 발명의 p6xHisTSαGT 벡터 지도는 도 1에 간략하게 나타내었다. p6xHisTSαGT에 클로닝된 알파-글루카노트랜스퍼레이즈 유전자는 ATG를 시작 코돈으로, TAA를 정지 코돈으로 포함하고 있으며, 서열번호 3으로 기재한 바와 같이 총 1,503개의 뉴클레오타이드로 이루어져 있다. 또한 이로부터 발현되는 단백질은 500개의 아미노산(서열번호 4)으로 구성되어 있었다.The p6xHisTSαGT vector map of the present invention is shown briefly in FIG. The alpha-glucanotransferase gene cloned into p6xHisTSαGT contains ATG as start codon and TAA as stop codon and consists of a total of 1,503 nucleotides as described in SEQ ID NO: 3. The protein expressed therefrom was composed of 500 amino acids (SEQ ID NO: 4).

실시예 2: 알파-글루카노트랜스퍼라제 생산 및 이의 활성 분석Example 2: Alpha-Glucanotransferase Production and Its Activity Assay

2-1. 알파-글루카노트랜스퍼라제 생산2-1. Alpha-Glucanotransferase Production

실시예 1에서 제조한 p6xHisTSαGT를 Escherichia coli MC1061에 형질전환하였고, LB 배지에 접종하여 37도에서 16시간 배양하고 원심분리하여 균체를 얻었다. 회수한 균체를 pH 7.5의 50 mM Tris-HCl 완충용액으로 현탁시킨 다음, 초음파로 파괴한 뒤 원심분리하여 상등액을 취하였다. 상등액을 Ni-NTA 친수성 크로마토그래피에 통과시켜 정제된 알파-글루카노트랜스퍼라제를 수율 50%, fold 1.5배로 수득하였다.P6xHisTSαGT prepared in Example 1 was transformed into Escherichia coli MC1061, inoculated in LB medium, cultured at 37 ° C for 16 hours, and centrifuged to obtain cells. The recovered cells were suspended in 50 mM Tris-HCl buffer at pH 7.5, then disrupted by ultrasound and centrifuged to obtain supernatant. The supernatant was passed through Ni-NTA hydrophilic chromatography to obtain purified alpha-glucanotransferase with a yield of 50%, fold 1.5 fold.

2-2. 알파-글루카노트랜스퍼라제의 디스프로포셔네이션 활성 검증2-2. Validation of Disproportionation Activity of Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제 10 U 및 1 % 말토올리고당(말토오스, 말토트리오스, 말토테트라오스, 말토펜타오스, 말토헵사오스 또는 말토헵타오스)을 50 mM Tris-HCl 완충용액(pH 7.0, 시그마)에 혼합한 후 75 ℃에서 3시간 반응시켰다. 반응 후 5분간 반응액을 끓임으로써 반응을 정지시켰다.Alpha-Glucanotransferase 10 U and 1% maltooligosaccharides (maltose, maltotriose, maltotetraose, maltopentase, maltohepsaose or maltoheptaose) were added to 50 mM Tris-HCl buffer (pH 7.0, Sigma). After mixing, the mixture was reacted at 75 ° C. for 3 hours. The reaction was stopped by boiling the reaction solution for 5 minutes after the reaction.

반응생성물을 분석하기 위해서 박막크로마토그래피를 수행하였다. 반응 종결 후, 각 시료를 왓트만 K5F TLC 플레이트(20 ㎝ x 20 ㎝)에 1 ㎕씩 로딩하여 2-프로파놀 : 에틸 아세테이트 : 증류수를 3:1:1로 포함하는 전개액상에서 전개시켰다. 전개 후, 플레이트는 건조하여 0.3 (w/v)% N-(1-나프틸)-에틸렌디아민과 5 (v/v)% 황산을 용해시킨 발색액에 담군 다음 110 ℃ 오븐에서 10분간 발색시켰다. Thin layer chromatography was performed to analyze the reaction product. After completion of the reaction, each sample was loaded into Whatman 1 K5F TLC plate (20 cm x 20 cm) by 1 µl and developed on a developing solution containing 2-propanol: ethyl acetate: distilled water in a 3: 1: 1. After development, the plates were dried, immersed in a developing solution in which 0.3 (w / v)% N- (1-naphthyl) -ethylenediamine and 5 (v / v)% sulfuric acid were dissolved, and then developed for 10 minutes in an oven at 110 ° C. .

도 2는 알파-글루카노트랜스퍼라제를 말토올리고당에 반응시킨 후, 그 반응생성물의 박막크로마토그래피 분석결과를 나타낸 것이다. 도 2에서, 알파-글루카노트랜스퍼라제가 말토오스, 말토트리오스, 말토테트라오스, 말토펜타오스, 말토헵사오스 또는 말토헵타오스와 반응하여 이들을 각각 디스프로포셔네이션시키므로써 긴 사슬의 직쇄상의 말토올리고당들이 각각 생성됨을 확인할 수 있었다. 따라서, 본 발명의 알파-글루카노트랜스퍼라제는 말토올리고당을 성공적으로 디스프로포셔네이션 시킴을 알 수 있었다. Figure 2 shows the result of thin layer chromatography analysis of the reaction product after the alpha-glucanotransferase to maltooligosaccharide. In FIG. 2, alpha-glucanotransferases react with maltose, maltotriose, maltotetraose, maltopentaose, maltohepsaose or maltoheptaose to disproportionate them, respectively, so that long-chain straight maltose It was confirmed that oligosaccharides were produced respectively. Therefore, it was found that the alpha-glucanotransferase of the present invention successfully disproportionates maltooligosaccharides.

2-3. 알파-글루카노트랜스퍼라제의 열안정성2-3. Thermal Stability of Alpha-Glucanotransferases

효소의 열안정성을 보기 위하여 열에 의한 불활성(thermal inactivation) 실험을 수행하였다.Thermal inactivation experiments were performed to see the thermal stability of the enzyme.

0.25 % 아밀로스, 0.05 % 말토스, 50mM Tris-HCl(pH7.5)에 효소액을 첨가한 후, 온도와 시간별로 일부를 취하여 알파 글루카노트랜스퍼라제의 활성을 조사하였다. 도 3은 알파-글루카노트랜스퍼라제의 열안정성을 측정한 그래프이다. 도 3에서, D-value(활성이 10분의 1로 줄어드는데 걸리는 시간)가 85 ℃, 90 ℃에서 각각 210분, 90분으로 확인되어, 알파-글루카노트랜스퍼라제는 고온에서 매우 안정함을 확인할 수 있었다.After adding enzyme solution to 0.25% amylose, 0.05% maltose and 50 mM Tris-HCl (pH 7.5), the activity of alpha glucanotransferase was examined by taking part of temperature and time. 3 is a graph measuring the thermal stability of alpha-glucanotransferases. In FIG. 3, the D-value (the time taken for the activity to decrease to one tenth) was found to be 210 minutes and 90 minutes at 85 ° C. and 90 ° C., respectively, indicating that alpha-glucanotransferase was very stable at high temperatures. I could confirm it.

상기한 효소의 열안정성은 전분의 공정 시 높은 온도에서도 적용이 가능하므로, 효소를 이용한 식품의 응용에 매우 유리하다. The thermal stability of the enzyme can be applied even at high temperatures in the process of starch, it is very advantageous for the application of food using the enzyme.

실시예 3: 내열성 알파-글루카노트랜스퍼라제를 이용한 맞춤형 전분의 생성Example 3: Generation of Customized Starch Using Heat Resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제 10 U 및 1 % 쌀 전분을 50 mM Tris-HCl 완충용액(pH 7.0, 시그마)에 혼합한 후 75 ℃에서 12시간 반응시켰다. 반응 후 5분간 반응액을 끓임으로써 반응을 정지시켰다.Alpha U-Glucanotransferase 10 U and 1% rice starch were mixed in 50 mM Tris-HCl buffer (pH 7.0, Sigma) and reacted at 75 ° C. for 12 hours. The reaction was stopped by boiling the reaction solution for 5 minutes after the reaction.

알파-글루카노트랜스퍼라제에 의해 변형된 쌀 전분의 사이드 체인의 길이를 확인하기 위해서, 반응액에 α-1,6 결합을 자르는 디브랜칭 효소(debranching enzyme)를 60 ℃에서 3시간 처리하였다. 반응 후, 5분간 끊임으로써 반응을 정지시켰다. 반응액은 원심분리하여 상등액만을 취하고, 이온 교환 크로마토그래피를 이용하여 반응액을 분석하였다.In order to confirm the length of the side chain of the rice starch modified by alpha-glucanotransferase, a debranching enzyme that cuts α-1,6 bonds into the reaction solution was treated at 60 ° C. for 3 hours. After the reaction, the reaction was stopped by stopping for 5 minutes. The reaction solution was centrifuged to take only the supernatant, and the reaction solution was analyzed using ion exchange chromatography.

도 4a는 쌀 전분의 사이드 체인을 분석한 이온 교환 크로마토그래피로 분석한 결과이고, 도 4b는 알파-글루카노트랜스러파제를 반응시킨 쌀 전분의 사이드 체인을 분석한 결과이다. 도 4a 및 4b에서, 쌀 전분의 사이드 체인의 길이가 알파-글루카노트랜스퍼라제 처리에 의하여 현저히 줄어듬을 확인할 수 있었다. 특히, DP10 이상의 긴 사이드 체인의 수는 줄어들고, DP10 이하의 짧은 사이드 체인의 수는 증가되었다.Figure 4a is a result of analyzing the side chain of the rice starch by ion exchange chromatography, Figure 4b is a result of analyzing the side chain of the rice starch reacted with alpha-glucanotransparase. In Figures 4a and 4b, it was confirmed that the length of the side chain of the rice starch is significantly reduced by the alpha-glucanotransferase treatment. In particular, the number of long side chains above DP10 was reduced, and the number of short side chains below DP10 was increased.

상기 실험으로, 알파-글루카노트랜스퍼라제에 의해 전분의 사이드 체인의 길이가 재구성된 ??춤형 전분을 생성할 수 있음을 확인하였다. This experiment confirmed that alpha-glucanotransferases can produce ?? danched starches, in which the length of the side chains of starch is reconstituted.

실시예 4: 내열성 알파-글루카노트랜스퍼라제를 첨가한 가래떡의 제조Example 4 Preparation of Sputum Rice Cake Added with Heat-Resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제의 처리가 가래떡의 물성과 선호도에 미치는 영향을 알아보기 위해, 알파-글루카노트랜스퍼라제를 첨가한 가래떡을 최 (최차란, 박사학위 논문, 전남대학교, 2002)의 방법을 응용하여 제조하였다.To investigate the effects of alpha-glucanotransferase treatment on the properties and preferences of rice cakes, the method of Choi, Choi (Chan Ran, Ph.D. Thesis, Chonnam National University, 2002) was added. Application was made.

멥쌀을 수세하여 12시간 동안 수침한 후, 물기를 제거하고 롤러 밀(roller mill)로 2회 분쇄하므로써 쌀가루(수분함량 38.7%)를 제조하였다. 효소액을 준비하여 위하여, 20 ㎎의 효소가 함유된 효소 농축액(1 ㎎/㎖로 농축한 알파-글루카노트랜스퍼라제 20 ㎖)에 총 60 ㎖이 되도록 증류수를 더한 후, 3 g의 소금을 넣어 5 % 소금의 농도가 되도록 하였다. 이후 250 g의 쌀가루와 60 ㎖의 효소액을 고루 섞어 37 ℃에서 1시간 동안 방치한 후, 체에 내리고 물 3 L를 넣은 찜기에서 30분간 쪘다. 찐 반죽은 압출기로 3회 압출시켜 직경 1.5 ㎝의 가래떡을 얻었다.After washing the rice with water and soaking for 12 hours, water was removed and pulverized twice with a roller mill to prepare rice flour (water content 38.7%). To prepare an enzyme solution, distilled water was added to an enzyme concentrate containing 20 mg of enzyme (20 ml of alpha-glucanotransferase concentrated at 1 mg / ml) to a total of 60 ml, and then 3 g of salt was added thereto. % Salt concentration. After mixing 250 g of rice flour and 60 ml of enzyme solution and left for 1 hour at 37 ℃, lowered in a sieve and steamed for 30 minutes in a steamer containing 3 L of water. Steamed dough was extruded 3 times with the extruder, and the rice cake of diameter 1.5cm was obtained.

실시예 5: 내열성 알파-글루카노트랜스퍼라제를 첨가하여 제조된 가래떡의 관능검사Example 5: Sensory Evaluation of Sputumdduk Prepared by Addition of Heat-resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제를 처리한 가래떡을 처리하지 않은 대조구 가래떡과 함께 상온으로 식힌 후, 관능검사를 실시하였다. After cooling to room temperature with the control rice cake treated with alpha-glucanotransferase-treated rice cake, the sensory test was performed.

관능검사는 가래떡의 특성에 대한 측정항목을 인지하도록 훈련시킨 12명의 대학원생들을 대상으로 실시되었으며, 측정항목은 가래떡의 외관 (색깔, 표면의 매끄러운 정도), 향미 (쌀가루 특유의 냄새, 이취), 입 안에서의 느낌 (단단한 정도, 촉촉한 정도, 쫄깃한 정도, 치아에 달라붙는 정도), 전체적인 선호도 순으로 평가하도록 하였다. 검사 결과는 분산분석(ANOVA)을 이용하여 통계처리 하였다. Sensory tests were conducted on 12 graduate students who were trained to recognize the parameters of sputum mochi, and the items were the appearance (color, smoothness), flavor (scent of rice flour, odor) and mouth. They were evaluated in order of feeling inside (hardness, moistness, chewyness, sticking to teeth) and overall preference. The test results were statistically analyzed using ANOVA.

관능검사 결과는 하기 표 1에 나타내었다.Sensory test results are shown in Table 1 below.

특성characteristic 특성characteristic 대조구Control 효소처리구Enzyme treatment 외관Exterior 색깔 (노란: 1 ~ 15 :흰)Color (yellow: 1-15: white) 10.9 ± 1.210.9 ± 1.2 10.4 ± 2.010.4 ± 2.0 표면의 매끄러운 정도 (거침: 1 ~ 15 :매끈함)Surface smoothness (roughness: 1 to 15: smooth) 8.3 ± 1.5 8.3 ± 1.5 5.9 ± 1.2 5.9 ± 1.2 향미Flavor 쌀가루 특유의 냄새 (약함: 1 ~ 15 :강함)Unique smell of rice flour (weak: 1 ~ 15: strong) 3.8 ± 1.5 3.8 ± 1.5 3.4 ± 0.93.4 ± 0.9 이취 (약함: 1 ~ 15 :강함)Off-flavor (weak: 1 ~ 15: strong) 2.5 ± 0.8 2.5 ± 0.8 2.4 ± 0.72.4 ± 0.7 입 안에서의 느낌Feeling in the mouth 단단한 정도 (말랑말랑함: 1 ~ 15 :딱딱함)Hardness (Fluffy: 1 ~ 15: Hard) 3.9 ± 1.23.9 ± 1.2 6.3 ± 2.1 6.3 ± 2.1 쫄깃한 정도 (풀어짐: 1 ~ 15 :쫄깃쫄깃함)Chewy (Unpacked: 1 to 15: Chewy) 4.0 ± 0.9 4.0 ± 0.9 7.5 ± 1.9 7.5 ± 1.9 촉촉한 정도 (마름: 1 ~ 15 :촉촉함)Moist (dry: 1 to 15: moist) 11.8 ± 0.611.8 ± 0.6 10.5 ± 0.410.5 ± 0.4 치아에 달라붙는 정도 (약함: 1 ~ 15 :강함)Sticking to teeth (weak: 1 ~ 15: strong) 5.1 ± 1.0 5.1 ± 1.0 5.7 ± 1.7 5.7 ± 1.7 전반적인 선호도Overall preference (나쁨: 1 ~ 15 :좋음)(Poor: 1 to 15: Good) 7.7 ± 1.7 7.7 ± 1.7 10.1 ± 1.310.1 ± 1.3

상기 표 1에서, 알파-글루카노트랜스퍼라제를 처리한 가래떡이 처리하지 않은 대조구에 비해 쫄깃한 정도가 두드러지게 향상되었음을 알 수 있었다. 그 외 유의적인 결과로는, 효소를 처리한 가래떡이 대조구에 비해 다소 단단하였고 표면이 덜 매끄러웠다. 색깔은 효소 처리구가 대조구에 비해 유의한 차이를 보이지 않아 일반적으로 아밀라아제 효소 처리 시 환원당 생성으로 인한 갈변화 반응의 심화는 나타나지 않은 것으로 보여진다. In Table 1, it can be seen that the rice cake treated with alpha-glucanotransferase significantly improved the chewy level compared to the control. Other significant results were that the rice cakes treated with enzyme were somewhat harder and less smooth than the control. The color of the enzyme treatment did not show a significant difference compared to the control, and in general, it was shown that there was no deepening of browning reaction due to reducing sugar production during amylase enzyme treatment.

실시예 6: 내열성 알파-글루카노트랜스퍼라제를 첨가하여 제조된 가래떡의 노화정도 측정Example 6 Determination of Aging Degree of Rice Cake Prepared by Addition of Heat-resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제의 처리가 가래떡의 노화에 미치는 영향을 알아보기 위해 실시예 4에서 제조한 알파-글루카노트랜스퍼라제가 첨가된 가래떡과 효소가 첨가되지 않은 가래떡 대조구를 폴리에틸렌 봉지에 각각 넣어 4 ℃에서 저장하면서 5일과 8일에 시차주사열량계(Differential Scanning Calorimeter)로 노화 정도를 측정하였다. In order to examine the effect of alpha-glucanotransferase treatment on aging of rice cake, the rice cake with alpha-glucanotransferase added in Example 4 and the rice cake control group without enzyme were placed in polyethylene bags. The degree of aging was measured by differential scanning calorimeter on days 5 and 8 while stored at ℃.

약 10 ㎎의 시료를 알루미늄 용기에 넣고, 25 ℃부터 130 ℃까지 분당 5 ℃로 가열하면서 얻어지는 약 40 ℃부근의 흡열곡선의 면적을 단위 무게당 호화 열량으로 환산하여 노화 정도를 판단하였다. About 10 mg of the sample was put in an aluminum container, and the degree of aging was determined by converting the area of the endothermic curve around 40 ° C obtained by heating from 25 ° C to 130 ° C at 5 ° C per minute to the calorific value per unit weight.

도 5는 알파-글루카노트랜스퍼라제 처리구(??)와 무처리구(??)의 노화정도를 확인한 것으로, 대조구에 비해 알파-글루카노트랜스퍼라제를 처리한 가래떡에서 노화가 현저히 억제되었다.Figure 5 confirms the degree of aging of alpha-glucanotransferase treated group (??) and untreated group (??), aging was significantly suppressed in the rice cake treated with alpha-glucanotransferase compared to the control.

실시예 7: 내열성 알파-글루카노트랜스퍼라제를 첨가하여 제조된 가래떡의 미세 조직 관찰Example 7: Observation of Microstructure of Sputumdduk Prepared by Addition of Heat-resistant Alpha-Glucanotransferase

실시예 4에서와 같이 알파-글루카노트랜스퍼라제를 처리하여 제조한 가래떡의 미세 조직을 주사 전자 현미경(SEM)으로 관찰하였다.As in Example 4, the microstructure of the rice cake prepared by treatment with alpha-glucanotransferase was observed by scanning electron microscopy (SEM).

도 6a는 알파-글루카노트랜스퍼라제를 무처리한 대조구 가래떡의 주사전자현미경 사진이고, 6b는 알파-글루카노트랜스퍼라제 처리한 가래똑의 주사전자현미경 사진이다. 도 6에서 보는 바와 같이, 대조구 가래떡에 비해 알파-글루카노트랜스퍼라제를 처리한 가래떡이 보다 작고 촘촘한 내부 공극을 보였으며, 보다 조밀한 망상구조를 나타내었다.FIG. 6A is a scanning electron micrograph of a control sputum rice cake treated with alpha-glucanotransferase and 6b is a sputum scanning electron microscope image of alpha-glucanotransferase treated. As shown in Figure 6, compared to the control barley rice cake, the rice cake treated with alpha-glucanotransferase showed smaller and tighter internal voids and showed a denser network structure.

실시예 8: 내열성 알파-글루카노트랜스퍼라제를 첨가한 취반미의 제조Example 8 Preparation of Cooked Rice with Heat-Resistant Alpha-Glucanotransferase

쌀밥을 제조하기 위하여 100 g의 쌀에 물을 쌀 부피의 1 : 1.3 의 비율이 되도록 첨가하였다. 알파글루카노트랜스퍼라제가 처리된 밥에는 10 ㎎(1 ㎎/㎖로 농축한 알파-글루카노트랜스퍼라제 효소액 10 ㎖, 150U)의 알파글루카노트랜스퍼라제를 첨가하고, 이후 과정은 대조구와 동일시하였다. 실온에서 1시간 침지한 후, 취반/보온 겸용 전기보온밥솥(SJ-M032R, Samsung Electronics Co., Seoul)으로 취반하였다. 전기보온 밥솥의 취사 신호가 보온으로 바뀌는 순간으로부터 10분간 뜸들이기를 실시한 후, 밥솥 중심부의 밥만을 꺼내어 실온에서 1시간 방치 후에 분석에 이용하였다.To prepare rice, water was added to 100 g of rice at a ratio of 1: 1.3 of the volume of rice. To the rice treated with alpha glucanotransferase, 10 mg (10 mL of alpha-glucanotransferase enzyme solution concentrated to 1 mg / ml, 150 U) of alpha glucanotransferase was added, and the procedure was then identified with the control. After immersing at room temperature for 1 hour, it was cooked with a rice cooker / heat insulating combined electric rice cooker (SJ-M032R, Samsung Electronics Co., Seoul). After steaming for 10 minutes from the moment when the cooking signal of the electric heat cooker turned into heat retention, only the rice in the center of the rice cooker was taken out and left for 1 hour at room temperature to be used for analysis.

실시예 9: 내열성 알파-글루카노트랜스퍼라제를 첨가하여 제조된 취반미의 물성 분석Example 9 Analysis of Physical Properties of Cooked Rice Prepared by Addition of Heat-resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제의 처리가 취반미의 물성에 미치는 영향을 알아보기 위하여, 물성분석기 (Texture Analyzer, TA-XT2i)를 이용하여 밥알의 단단한 정도(hardness)와 표면의 끈적거림 정도(Stickiness)를 측정하였다.In order to investigate the effect of alpha-glucanotransferase treatment on the properties of cooked rice, the hardness of rice grains and the stickiness of the surface using a physical analyzer (TA-XT2i) Was measured.

실시예 8에서 제조한 시료 중 5개의 밥 알갱이를 집어내어 물성분석기 위에 적당한 간격으로 올려놓고 35 ㎜ 원통형 프로브를 사용하여 분당 0.5 ㎜, 50 % 스트레인으로 세팅하여 분당 10 ㎜의 속도로 떼어내어, 누를 때의 힘(g)과 떼어낼 때의 힘(g)을 측정함으로써 밥알의 단단한 정도와 끈적거림 정도를 측정하였다. 그 결과는 하기 표 2에 나타내었다.Five rice grains of the sample prepared in Example 8 were picked up and placed on the physical property analyzer at appropriate intervals, and set at 0.5 mm / min and 50% strain using a 35 mm cylindrical probe, removed at a rate of 10 mm / min, and pressed. The hardness and stickiness of the grains of rice were measured by measuring the force in grams and the force in peeling. The results are shown in Table 2 below.

특성characteristic StrainStrain 대조구 취반미Control cooked rice 효소를 처리한 취반미Cooked rice with enzyme 단단함(Hardness)Hardness 90%90% 3,463 g ± 2533,463 g ± 253 4,086 g ± 5414,086 g ± 541 50%50% 854 g ± 55 854 g ± 55 793 g ± 68 793 g ± 68 끈적거림(Stickiness)Stickiness 90%90% 1,155 g ± 1341,155 g ± 134 985 g ± 79 985 g ± 79 50%50% 173 g ± 29 173 g ± 29 100 g ± 15 100 g ± 15

표 2에서, 알파-글루카노트랜스퍼라제를 처리한 밥 알갱이와 처리하지 않은 밥 알갱이는 비슷한 단단한 정도를 나타내어 효소 처리에 의한 물러짐은 없는 것으로 나타났으며, 표면의 끈적거림은 덜 한 것으로 나타났다. In Table 2, rice grains treated with alpha-glucanotransferase and untreated rice grains exhibited similar hardness, showing no enzymatic retreat and less stickiness on the surface.

실시예 10: 내열성 알파-글루카노트랜스퍼라제를 첨가하여 제조된 취반미의 노화정도 측정Example 10 Determination of Aging Degree of Cooked Rice Prepared by Addition of Heat-resistant Alpha-Glucanotransferase

알파-글루카노트랜스퍼라제가 취반미의 노화 억제에 미치는 영향을 알아보기 위해 실시예 8에서와 같이 효소를 처리하여 밥을 짓고 대조구와 함께 4 ℃에서 저장 중 4일과 8일째 노화 정도를 실시예 6에서와 같은 방법으로 측정하였다.In order to determine the effect of alpha-glucanotransferase on the inhibition of aging of cooked rice, enzyme treatment was performed as in Example 8, and the degree of aging on the 4th and 8th days of storage at 4 ° C. with the control was measured. It was measured in the same manner as in.

도 7은 알파-글루카노트랜스퍼라제 처리구와 무처리구의 노화정도를 확인한 것으로, 대조구에 비해 알파-글루카노트랜스퍼라제를 처리한 취반미에서 노화가 현저히 억제되었다. Figure 7 confirms the degree of aging of the alpha-glucanotransferase treated and untreated group, aging was significantly suppressed in the cooked rice treated with alpha-glucanotransferase compared to the control.

이상 살펴본 바와 같이, 본 발명에서 제공한 고온성 균주로부터 분리한 내열성 알파-글루카노트랜스퍼라제는 식품내 전분의 구조를 재구성하고, 식품이 저장성을 향상시키며, 또한 식품의 물성 및 기호성을 현저히 개선시키는 용도로 사용가능하다. As described above, the heat-resistant alpha-glucanotransferase isolated from the high temperature strain provided in the present invention reconstructs the structure of starch in the food, improves the shelf life of the food, and significantly improves the physical properties and palatability of the food. Can be used for purposes.

도 1은 본 발명에 따른 p6xHisTSαGT 벡터의 지도를 간략하게 도시한 것이다.Figure 1 shows a simplified map of the p6xHisTSαGT vector according to the present invention.

도 2는 알파-글루카노트랜스퍼라제의 디스프로포셔네이션능을 확인한 박막 크로마토그래피 분석 결과이다.2 is a thin layer chromatography analysis confirming the disproportionation ability of alpha-glucanotransferase.

도 3은 알파-글루카노트랜스퍼라제의 열안정성을 측정한 그래프이다.3 is a graph measuring the thermal stability of alpha-glucanotransferases.

도 4a는 쌀 전분의 사이드 체인을 분석한 이온 교환 크로마토그래피로 분석한 결과이고, 도 4b는 알파-글루카노트랜스퍼라제를 반응시킨 쌀 전분의 사이드 체인을 분석한 결과이다. Figure 4a is a result of analyzing the side chain of the rice starch by ion exchange chromatography, Figure 4b is a result of analyzing the side chain of the rice starch reacted with alpha-glucanotransferase.

도 5는 알파-글루카노트랜스퍼라제 처리구(▼)와 무처리구(●)의 전분 노화속도를 측정한 것이다.5 is a measure of the starch aging rate of alpha-glucanotransferase treated (▼) and untreated (●).

도 6a는 알파-글루카노트랜스퍼라제를 무처리한 대조구 가래떡의 주사전자현미경 사진이고, 6b는 알파-글루카노트랜스퍼라제 처리한 가래떡의 주사전자현미경 사진이다.FIG. 6A is a scanning electron micrograph of a control sputum rice cake treated with alpha-glucanotransferase and 6b is a scanning electron micrograph of a rice cake treated with alpha-glucanotransferase.

도 7은 알파-글루카노트랜스퍼라제 처리구와 무처리구에서의 취반미 노화속도를 측정한 것이다.Figure 7 measures the rate of aging prevalence in alpha-glucanotransferase treated and untreated.

<110> PARK, Kwan-Hwa <120> NOVEL THERMOSTABLE alpha-GLUCANOTRANSFERASE AND USE THEREOF <130> dpp20033768kr <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Nde-TSaGT primer <400> 1 gggtaaactg ggcatatgga gcttccg 27 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> TSaGT-Hd primer <400> 2 cccttaagct tcccaccctg gccg 24 <210> 3 <211> 1503 <212> DNA <213> Thermus scotoductus <220> <221> CDS <222> (1)..(1500) <223> alpha-glucanotransferase <400> 3 atg gag ctt ccg cgc gcc tat ggc ctg ctt ctg cac ccc acc agc ctt 48 Met Glu Leu Pro Arg Ala Tyr Gly Leu Leu Leu His Pro Thr Ser Leu 1 5 10 15 ccc gga ccc tat ggg gtt ggc gtt nna aaa nag gag gct ttt gcc ttc 96 Pro Gly Pro Tyr Gly Val Gly Val Xaa Lys Xaa Glu Ala Phe Ala Phe 20 25 30 ctc cga ttc ctg ggg gag tct ggg gcc cgc tac tgg cag gtt ttg ccc 144 Leu Arg Phe Leu Gly Glu Ser Gly Ala Arg Tyr Trp Gln Val Leu Pro 35 40 45 tta ggg ccc aca gga tac gga gac tcc ccc tac cag tcc ttc agc gcc 192 Leu Gly Pro Thr Gly Tyr Gly Asp Ser Pro Tyr Gln Ser Phe Ser Ala 50 55 60 ttt gcc ggg aac ccc tac ctc atc gac ctc cgc cta agg cgg agg cgg 240 Phe Ala Gly Asn Pro Tyr Leu Ile Asp Leu Arg Leu Arg Arg Arg Arg 65 70 75 80 ggg tac ctc cgc ctc gag gac ccc ggt ttt ccc gag ggc cgg gtg gta 288 Gly Tyr Leu Arg Leu Glu Asp Pro Gly Phe Pro Glu Gly Arg Val Val 85 90 95 tac ggc tgg ctc tac gcc tgg aaa tgg ccg gcg ctt agg gaa gcc ttc 336 Tyr Gly Trp Leu Tyr Ala Trp Lys Trp Pro Ala Leu Arg Glu Ala Phe 100 105 110 cgg ggt ttc cag gag cgg gct agc cgg gag gaa aag gag gcc ttt cag 384 Arg Gly Phe Gln Glu Arg Ala Ser Arg Glu Glu Lys Glu Ala Phe Gln 115 120 125 cct ttt ggg acc cgg gaa agg agc tgg ttg gat gac tac acc ctc ttc 432 Pro Phe Gly Thr Arg Glu Arg Ser Trp Leu Asp Asp Tyr Thr Leu Phe 130 135 140 atg gcc ttg aag ccc acc cac gga ggc ctt cct tgg aac cgc tgg ccc 480 Met Ala Leu Lys Pro Thr His Gly Gly Leu Pro Trp Asn Arg Trp Pro 145 150 155 160 atg ccc cta cgc ctg agg gag gaa aag gct tta agg gaa gca tct ttg 528 Met Pro Leu Arg Leu Arg Glu Glu Lys Ala Leu Arg Glu Ala Ser Leu 165 170 175 gcc ctc tcc caa gag gtg gcc ttc cac gcc tgg acc cag tgg ttt ttc 576 Ala Leu Ser Gln Glu Val Ala Phe His Ala Trp Thr Gln Trp Phe Phe 180 185 190 ttc cgg cag tgg cag gcc ttg agg gag gcg gcg gag gcc ttg ggc ctc 624 Phe Arg Gln Trp Gln Ala Leu Arg Glu Ala Ala Glu Ala Leu Gly Leu 195 200 205 tcc ttg atc ggc gac atg ccc atc ttc gtg gcc gag gac tcc gcg gag 672 Ser Leu Ile Gly Asp Met Pro Ile Phe Val Ala Glu Asp Ser Ala Glu 210 215 220 gtc tgg gcc cac ccc gag tgg ttc cac ctg gat gag gag gga agg ccc 720 Val Trp Ala His Pro Glu Trp Phe His Leu Asp Glu Glu Gly Arg Pro 225 230 235 240 acg gtg gtg gcg ggg gtg ccg ccg gat tac ttt tcg gaa acg ggc cag 768 Thr Val Val Ala Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln 245 250 255 cgc tgg ggg aat ccc ctg tac cgc tgg gag gtg ctg gaa agg gag ggg 816 Arg Trp Gly Asn Pro Leu Tyr Arg Trp Glu Val Leu Glu Arg Glu Gly 260 265 270 ttc tcc ttc tgg ata gag cgc ctg agg aag gcc ttg gag ctt ttc cac 864 Phe Ser Phe Trp Ile Glu Arg Leu Arg Lys Ala Leu Glu Leu Phe His 275 280 285 ctg gtg cgc atc gac cac ttc cgg ggc ttt gaa gcc tac tgg gag atc 912 Leu Val Arg Ile Asp His Phe Arg Gly Phe Glu Ala Tyr Trp Glu Ile 290 295 300 cct gcc tcc tgc ccc acg gca gtg gag gga cgc tgg gtg aag gcc ccg 960 Pro Ala Ser Cys Pro Thr Ala Val Glu Gly Arg Trp Val Lys Ala Pro 305 310 315 320 ggg gag aag ctc ttt cag aag att cag gaa acc ttt ggc cgg gtg ccc 1008 Gly Glu Lys Leu Phe Gln Lys Ile Gln Glu Thr Phe Gly Arg Val Pro 325 330 335 atc ctg gcg gag gac ctg ggg gtg atc acc ccc gag gtg gag gcc ctg 1056 Ile Leu Ala Glu Asp Leu Gly Val Ile Thr Pro Glu Val Glu Ala Leu 340 345 350 agg gac cgg ttt ggc ctt ccg ggg atg aag gtc ctg cag ttc gcc ttt 1104 Arg Asp Arg Phe Gly Leu Pro Gly Met Lys Val Leu Gln Phe Ala Phe 355 360 365 gac ggg ggg atg gaa aac ccc ttc ctg ccc cac aac tac ccc tcc cac 1152 Asp Gly Gly Met Glu Asn Pro Phe Leu Pro His Asn Tyr Pro Ser His 370 375 380 ggc cgg gtg gtg gtc tac acc ggc acc cac gac aac gac acc acc ttg 1200 Gly Arg Val Val Val Tyr Thr Gly Thr His Asp Asn Asp Thr Thr Leu 385 390 395 400 ggc tgg tac cgc acc gct acc ccc cac gag cgg gct ttc ctt ggg cgc 1248 Gly Trp Tyr Arg Thr Ala Thr Pro His Glu Arg Ala Phe Leu Gly Arg 405 410 415 tac ctg gcg gag tgg ggg att ggg ttc cag agg gaa gag gag atc ccc 1296 Tyr Leu Ala Glu Trp Gly Ile Gly Phe Gln Arg Glu Glu Glu Ile Pro 420 425 430 tgg gcc ctc atg cac ctg ggg atg aag tcg gtg gcc agg ctg gcc gtc 1344 Trp Ala Leu Met His Leu Gly Met Lys Ser Val Ala Arg Leu Ala Val 435 440 445 tac ccc gtg cag gat gtg ttg gcg ttg gga agc gag gcc cgg atg aac 1392 Tyr Pro Val Gln Asp Val Leu Ala Leu Gly Ser Glu Ala Arg Met Asn 450 455 460 tac cct ggg cgc ccc tcg ggc aac tgg gct tgg cgg ctt agg ccc ggc 1440 Tyr Pro Gly Arg Pro Ser Gly Asn Trp Ala Trp Arg Leu Arg Pro Gly 465 470 475 480 cag ctc ctg ccc gag cac ggg gaa cgg ctt cgc tgg atg gcc gag gcc 1488 Gln Leu Leu Pro Glu His Gly Glu Arg Leu Arg Trp Met Ala Glu Ala 485 490 495 acg ggc agg gtg taa 1503 Thr Gly Arg Val 500 <210> 4 <211> 500 <212> PRT <213> Thermus scotoductus <400> 4 Met Glu Leu Pro Arg Ala Tyr Gly Leu Leu Leu His Pro Thr Ser Leu 1 5 10 15 Pro Gly Pro Tyr Gly Val Gly Val Xaa Lys Xaa Glu Ala Phe Ala Phe 20 25 30 Leu Arg Phe Leu Gly Glu Ser Gly Ala Arg Tyr Trp Gln Val Leu Pro 35 40 45 Leu Gly Pro Thr Gly Tyr Gly Asp Ser Pro Tyr Gln Ser Phe Ser Ala 50 55 60 Phe Ala Gly Asn Pro Tyr Leu Ile Asp Leu Arg Leu Arg Arg Arg Arg 65 70 75 80 Gly Tyr Leu Arg Leu Glu Asp Pro Gly Phe Pro Glu Gly Arg Val Val 85 90 95 Tyr Gly Trp Leu Tyr Ala Trp Lys Trp Pro Ala Leu Arg Glu Ala Phe 100 105 110 Arg Gly Phe Gln Glu Arg Ala Ser Arg Glu Glu Lys Glu Ala Phe Gln 115 120 125 Pro Phe Gly Thr Arg Glu Arg Ser Trp Leu Asp Asp Tyr Thr Leu Phe 130 135 140 Met Ala Leu Lys Pro Thr His Gly Gly Leu Pro Trp Asn Arg Trp Pro 145 150 155 160 Met Pro Leu Arg Leu Arg Glu Glu Lys Ala Leu Arg Glu Ala Ser Leu 165 170 175 Ala Leu Ser Gln Glu Val Ala Phe His Ala Trp Thr Gln Trp Phe Phe 180 185 190 Phe Arg Gln Trp Gln Ala Leu Arg Glu Ala Ala Glu Ala Leu Gly Leu 195 200 205 Ser Leu Ile Gly Asp Met Pro Ile Phe Val Ala Glu Asp Ser Ala Glu 210 215 220 Val Trp Ala His Pro Glu Trp Phe His Leu Asp Glu Glu Gly Arg Pro 225 230 235 240 Thr Val Val Ala Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln 245 250 255 Arg Trp Gly Asn Pro Leu Tyr Arg Trp Glu Val Leu Glu Arg Glu Gly 260 265 270 Phe Ser Phe Trp Ile Glu Arg Leu Arg Lys Ala Leu Glu Leu Phe His 275 280 285 Leu Val Arg Ile Asp His Phe Arg Gly Phe Glu Ala Tyr Trp Glu Ile 290 295 300 Pro Ala Ser Cys Pro Thr Ala Val Glu Gly Arg Trp Val Lys Ala Pro 305 310 315 320 Gly Glu Lys Leu Phe Gln Lys Ile Gln Glu Thr Phe Gly Arg Val Pro 325 330 335 Ile Leu Ala Glu Asp Leu Gly Val Ile Thr Pro Glu Val Glu Ala Leu 340 345 350 Arg Asp Arg Phe Gly Leu Pro Gly Met Lys Val Leu Gln Phe Ala Phe 355 360 365 Asp Gly Gly Met Glu Asn Pro Phe Leu Pro His Asn Tyr Pro Ser His 370 375 380 Gly Arg Val Val Val Tyr Thr Gly Thr His Asp Asn Asp Thr Thr Leu 385 390 395 400 Gly Trp Tyr Arg Thr Ala Thr Pro His Glu Arg Ala Phe Leu Gly Arg 405 410 415 Tyr Leu Ala Glu Trp Gly Ile Gly Phe Gln Arg Glu Glu Glu Ile Pro 420 425 430 Trp Ala Leu Met His Leu Gly Met Lys Ser Val Ala Arg Leu Ala Val 435 440 445 Tyr Pro Val Gln Asp Val Leu Ala Leu Gly Ser Glu Ala Arg Met Asn 450 455 460 Tyr Pro Gly Arg Pro Ser Gly Asn Trp Ala Trp Arg Leu Arg Pro Gly 465 470 475 480 Gln Leu Leu Pro Glu His Gly Glu Arg Leu Arg Trp Met Ala Glu Ala 485 490 495 Thr Gly Arg Val 500 <210> 5 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 5 ggatccagat catcggggac atgcccatct tcgtggccga ggactcggcc gaggtctggg 60 cccaccccga gtggttccac ctggacgagg agggaaggcc cctggtggtg gcgggggtgc 120 cccccgacta cttctcggag accggccagc gctggggcaa ccccctctac cgctgggacg 180 tcctggagag agaggggttc tccttttgga tagcccggct cgccaaggcc ctggagctat 240 tccacctggt gcgcgtggac cacttccggg gctttgaggc ctactgggag atcccggcct 300 cctgccccac ggcggtggag gggcgctggg tgaaggcttc cggggagaag ctctttgacc 360 gcatccagga agttttcggc gaagtgccca tcctggccga agacctgggg gtcatcaccc 420 ccgaggtgga gcccctgcgg gaccgctacg gccttccggg gatgaaagtc ctgcaattcg 480 cctttgacca cggcatggaa aacccctttc ttccccacaa ctaccccgcc catggccggg 540 tggtggttta caccggcacc cacgacaacg acaccaccct gggctggtac c 591<110> PARK, Kwan-Hwa <120> NOVEL THERMOSTABLE alpha-GLUCANOTRANSFERASE AND USE THEREOF <130> dpp20033768kr <160> 5 <170> KopatentIn 1.71 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Nde-TSaGT primer <400> 1 gggtaaactg ggcatatgga gcttccg 27 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> TSaGT-Hd primer <400> 2 cccttaagct tcccaccctg gccg 24 <210> 3 <211> 1503 <212> DNA <213> Thermus scotoductus <220> <221> CDS <222> (1) .. (1500) <223> alpha-glucanotransferase <400> 3 atg gag ctt ccg cgc gcc tat ggc ctg ctt ctg cac ccc acc agc ctt 48 Met Glu Leu Pro Arg Ala Tyr Gly Leu Leu Leu His Pro Thr Ser Leu 1 5 10 15 ccc gga ccc tat ggg gtt ggc gtt nna aaa nag gag gct ttt gcc ttc 96 Pro Gly Pro Tyr Gly Val Gly Val Xaa Lys Xaa Glu Ala Phe Ala Phe 20 25 30 ctc cga ttc ctg ggg gag tct ggg gcc cgc tac tgg cag gtt ttg ccc 144 Leu Arg Phe Leu Gly Glu Ser Gly Ala Arg Tyr Trp Gln Val Leu Pro 35 40 45 tta ggg ccc aca gga tac gga gac tcc ccc tac cag tcc ttc agc gcc 192 Leu Gly Pro Thr Gly Tyr Gly Asp Ser Pro Tyr Gln Ser Phe Ser Ala 50 55 60 ttt gcc ggg aac ccc tac ctc atc gac ctc cgc cta agg cgg agg cgg 240 Phe Ala Gly Asn Pro Tyr Leu Ile Asp Leu Arg Leu Arg Arg Arg Arg 65 70 75 80 ggg tac ctc cgc ctc gag gac ccc ggt ttt ccc gag ggc cgg gtg gta 288 Gly Tyr Leu Arg Leu Glu Asp Pro Gly Phe Pro Glu Gly Arg Val Val 85 90 95 tac ggc tgg ctc tac gcc tgg aaa tgg ccg gcg ctt agg gaa gcc ttc 336 Tyr Gly Trp Leu Tyr Ala Trp Lys Trp Pro Ala Leu Arg Glu Ala Phe 100 105 110 cgg ggt ttc cag gag cgg gct agc cgg gag gaa aag gag gcc ttt cag 384 Arg Gly Phe Gln Glu Arg Ala Ser Arg Glu Glu Lys Glu Ala Phe Gln 115 120 125 cct ttt ggg acc cgg gaa agg agc tgg ttg gat gac tac acc ctc ttc 432 Pro Phe Gly Thr Arg Glu Arg Ser Trp Leu Asp Asp Tyr Thr Leu Phe 130 135 140 atg gcc ttg aag ccc acc cac gga ggc ctt cct tgg aac cgc tgg ccc 480 Met Ala Leu Lys Pro Thr His Gly Gly Leu Pro Trp Asn Arg Trp Pro 145 150 155 160 atg ccc cta cgc ctg agg gag gaa aag gct tta agg gaa gca tct ttg 528 Met Pro Leu Arg Leu Arg Glu Glu Lys Ala Leu Arg Glu Ala Ser Leu 165 170 175 gcc ctc tcc caa gag gtg gcc ttc cac gcc tgg acc cag tgg ttt ttc 576 Ala Leu Ser Gln Glu Val Ala Phe His Ala Trp Thr Gln Trp Phe Phe 180 185 190 ttc cgg cag tgg cag gcc ttg agg gag gcg gcg gag gcc ttg ggc ctc 624 Phe Arg Gln Trp Gln Ala Leu Arg Glu Ala Ala Glu Ala Leu Gly Leu 195 200 205 tcc ttg atc ggc gac atg ccc atc ttc gtg gcc gag gac tcc gcg gag 672 Ser Leu Ile Gly Asp Met Pro Ile Phe Val Ala Glu Asp Ser Ala Glu 210 215 220 gtc tgg gcc cac ccc gag tgg ttc cac ctg gat gag gag gga agg ccc 720 Val Trp Ala His Pro Glu Trp Phe His Leu Asp Glu Glu Gly Arg Pro 225 230 235 240 acg gtg gtg gcg ggg gtg ccg ccg gat tac ttt tcg gaa acg ggc cag 768 Thr Val Val Ala Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln 245 250 255 cgc tgg ggg aat ccc ctg tac cgc tgg gag gtg ctg gaa agg gag ggg 816 Arg Trp Gly Asn Pro Leu Tyr Arg Trp Glu Val Leu Glu Arg Glu Gly 260 265 270 ttc tcc ttc tgg ata gag cgc ctg agg aag gcc ttg gag ctt ttc cac 864 Phe Ser Phe Trp Ile Glu Arg Leu Arg Lys Ala Leu Glu Leu Phe His 275 280 285 ctg gtg cgc atc gac cac ttc cgg ggc ttt gaa gcc tac tgg gag atc 912 Leu Val Arg Ile Asp His Phe Arg Gly Phe Glu Ala Tyr Trp Glu Ile 290 295 300 cct gcc tcc tgc ccc acg gca gtg gag gga cgc tgg gtg aag gcc ccg 960 Pro Ala Ser Cys Pro Thr Ala Val Glu Gly Arg Trp Val Lys Ala Pro 305 310 315 320 ggg gag aag ctc ttt cag aag att cag gaa acc ttt ggc cgg gtg ccc 1008 Gly Glu Lys Leu Phe Gln Lys Ile Gln Glu Thr Phe Gly Arg Val Pro 325 330 335 atc ctg gcg gag gac ctg ggg gtg atc acc ccc gag gtg gag gcc ctg 1056 Ile Leu Ala Glu Asp Leu Gly Val Ile Thr Pro Glu Val Glu Ala Leu 340 345 350 agg gac cgg ttt ggc ctt ccg ggg atg aag gtc ctg cag ttc gcc ttt 1104 Arg Asp Arg Phe Gly Leu Pro Gly Met Lys Val Leu Gln Phe Ala Phe 355 360 365 gac ggg ggg atg gaa aac ccc ttc ctg ccc cac aac tac ccc tcc cac 1152 Asp Gly Gly Met Glu Asn Pro Phe Leu Pro His Asn Tyr Pro Ser His 370 375 380 ggc cgg gtg gtg gtc tac acc ggc acc cac gac aac gac acc acc ttg 1200 Gly Arg Val Val Val Tyr Thr Gly Thr His Asp Asn Asp Thr Thr Leu 385 390 395 400 ggc tgg tac cgc acc gct acc ccc cac gag cgg gct ttc ctt ggg cgc 1248 Gly Trp Tyr Arg Thr Ala Thr Pro His Glu Arg Ala Phe Leu Gly Arg 405 410 415 tac ctg gcg gag tgg ggg att ggg ttc cag agg gaa gag gag atc ccc 1296 Tyr Leu Ala Glu Trp Gly Ile Gly Phe Gln Arg Glu Glu Glu Ile Pro 420 425 430 tgg gcc ctc atg cac ctg ggg atg aag tcg gtg gcc agg ctg gcc gtc 1344 Trp Ala Leu Met His Leu Gly Met Lys Ser Val Ala Arg Leu Ala Val 435 440 445 tac ccc gtg cag gat gtg ttg gcg ttg gga agc gag gcc cgg atg aac 1392 Tyr Pro Val Gln Asp Val Leu Ala Leu Gly Ser Glu Ala Arg Met Asn 450 455 460 tac cct ggg cgc ccc tcg ggc aac tgg gct tgg cgg ctt agg ccc ggc 1440 Tyr Pro Gly Arg Pro Ser Gly Asn Trp Ala Trp Arg Leu Arg Pro Gly 465 470 475 480 cag ctc ctg ccc gag cac ggg gaa cgg ctt cgc tgg atg gcc gag gcc 1488 Gln Leu Leu Pro Glu His Gly Glu Arg Leu Arg Trp Met Ala Glu Ala 485 490 495 acg ggc agg gtg taa 1503 Thr Gly Arg Val 500 <210> 4 <211> 500 <212> PRT <213> Thermus scotoductus <400> 4 Met Glu Leu Pro Arg Ala Tyr Gly Leu Leu Leu His Pro Thr Ser Leu 1 5 10 15 Pro Gly Pro Tyr Gly Val Gly Val Xaa Lys Xaa Glu Ala Phe Ala Phe 20 25 30 Leu Arg Phe Leu Gly Glu Ser Gly Ala Arg Tyr Trp Gln Val Leu Pro 35 40 45 Leu Gly Pro Thr Gly Tyr Gly Asp Ser Pro Tyr Gln Ser Phe Ser Ala 50 55 60 Phe Ala Gly Asn Pro Tyr Leu Ile Asp Leu Arg Leu Arg Arg Arg Arg 65 70 75 80 Gly Tyr Leu Arg Leu Glu Asp Pro Gly Phe Pro Glu Gly Arg Val Val 85 90 95 Tyr Gly Trp Leu Tyr Ala Trp Lys Trp Pro Ala Leu Arg Glu Ala Phe 100 105 110 Arg Gly Phe Gln Glu Arg Ala Ser Arg Glu Glu Lys Glu Ala Phe Gln 115 120 125 Pro Phe Gly Thr Arg Glu Arg Ser Trp Leu Asp Asp Tyr Thr Leu Phe 130 135 140 Met Ala Leu Lys Pro Thr His Gly Gly Leu Pro Trp Asn Arg Trp Pro 145 150 155 160 Met Pro Leu Arg Leu Arg Glu Glu Lys Ala Leu Arg Glu Ala Ser Leu 165 170 175 Ala Leu Ser Gln Glu Val Ala Phe His Ala Trp Thr Gln Trp Phe Phe 180 185 190 Phe Arg Gln Trp Gln Ala Leu Arg Glu Ala Ala Glu Ala Leu Gly Leu 195 200 205 Ser Leu Ile Gly Asp Met Pro Ile Phe Val Ala Glu Asp Ser Ala Glu 210 215 220 Val Trp Ala His Pro Glu Trp Phe His Leu Asp Glu Glu Gly Arg Pro 225 230 235 240 Thr Val Val Ala Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln 245 250 255 Arg Trp Gly Asn Pro Leu Tyr Arg Trp Glu Val Leu Glu Arg Glu Gly 260 265 270 Phe Ser Phe Trp Ile Glu Arg Leu Arg Lys Ala Leu Glu Leu Phe His 275 280 285 Leu Val Arg Ile Asp His Phe Arg Gly Phe Glu Ala Tyr Trp Glu Ile 290 295 300 Pro Ala Ser Cys Pro Thr Ala Val Glu Gly Arg Trp Val Lys Ala Pro 305 310 315 320 Gly Glu Lys Leu Phe Gln Lys Ile Gln Glu Thr Phe Gly Arg Val Pro 325 330 335 Ile Leu Ala Glu Asp Leu Gly Val Ile Thr Pro Glu Val Glu Ala Leu 340 345 350 Arg Asp Arg Phe Gly Leu Pro Gly Met Lys Val Leu Gln Phe Ala Phe 355 360 365 Asp Gly Gly Met Glu Asn Pro Phe Leu Pro His Asn Tyr Pro Ser His 370 375 380 Gly Arg Val Val Val Tyr Thr Gly Thr His Asp Asn Asp Thr Thr Leu 385 390 395 400 Gly Trp Tyr Arg Thr Ala Thr Pro His Glu Arg Ala Phe Leu Gly Arg 405 410 415 Tyr Leu Ala Glu Trp Gly Ile Gly Phe Gln Arg Glu Glu Glu Ile Pro 420 425 430 Trp Ala Leu Met His Leu Gly Met Lys Ser Val Ala Arg Leu Ala Val 435 440 445 Tyr Pro Val Gln Asp Val Leu Ala Leu Gly Ser Glu Ala Arg Met Asn 450 455 460 Tyr Pro Gly Arg Pro Ser Gly Asn Trp Ala Trp Arg Leu Arg Pro Gly 465 470 475 480 Gln Leu Leu Pro Glu His Gly Glu Arg Leu Arg Trp Met Ala Glu Ala 485 490 495 Thr Gly Arg Val 500 <210> 5 <211> 591 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 5 ggatccagat catcggggac atgcccatct tcgtggccga ggactcggcc gaggtctggg 60 cccaccccga gtggttccac ctggacgagg agggaaggcc cctggtggtg gcgggggtgc 120 cccccgacta cttctcggag accggccagc gctggggcaa ccccctctac cgctgggacg 180 tcctggagag agaggggttc tccttttgga tagcccggct cgccaaggcc ctggagctat 240 tccacctggt gcgcgtggac cacttccggg gctttgaggc ctactgggag atcccggcct 300 cctgccccac ggcggtggag gggcgctggg tgaaggcttc cggggagaag ctctttgacc 360 gcatccagga agttttcggc gaagtgccca tcctggccga agacctgggg gtcatcaccc 420 ccgaggtgga gcccctgcgg gaccgctacg gccttccggg gatgaaagtc ctgcaattcg 480 cctttgacca cggcatggaa aacccctttc ttccccacaa ctaccccgcc catggccggg 540 tggtggttta caccggcacc cacgacaacg acaccaccct gggctggtac c 591

Claims (11)

서열번호 4로 기재된 아미노산 서열을 포함하는 펩타이드로 이루어진 내열성-알파 글루카노트랜스퍼라제.A heat resistant alpha alpha glucanotransferase consisting of a peptide comprising the amino acid sequence set forth in SEQ ID NO: 4. 제 1항의 펩타이드를 암호하는 핵산 서열을 포함하는 폴리뉴클레오티드.A polynucleotide comprising a nucleic acid sequence encoding the peptide of claim 1. 제 2항에 있어서, 상기 핵산 서열은 서열번호 3으로 기재된 서열인 것인 폴리뉴클레오티드.The polynucleotide of claim 2 wherein the nucleic acid sequence is the sequence set forth in SEQ ID NO: 3. 제 1항의 폴리뉴클레오티드를 발현가능하도록 포함하는 벡터.A vector comprising the polynucleotide of claim 1 expressably. 제 4항의 벡터로 형질전환된 세포주.Cell line transformed with the vector of claim 4. 제 5항에 있어서, 상기 세포주는 E.coli, 효모 및 곰팡이로 이루어진 군으로부터 선택되는 것인 세포주.The cell line of claim 5, wherein said cell line is selected from the group consisting of E. coli , yeast and fungi. 제 5항 또는 6항에 따른 세포주로부터 생산되는 내열성 알파-글루카노트랜스퍼라제.A heat resistant alpha-glucanotransferase produced from the cell line according to claim 5. 청구항 1항의 내열성 알파-글루카노트랜스퍼라제를 전분, 전분이 함유된 곡물 또는 식품에 가하여 반응시키는 것을 포함하는 알파-글루카노트랜스퍼라제가 처리된 가공식품 제조방법. A method for preparing a processed food product treated with alpha-glucanotransferase, comprising adding the heat resistant alpha-glucanotransferase of claim 1 to starch, starch-containing grains or foods. 제 8항에 있어서, 상기 전분이 함유된 곡물은 쌀, 밀, 감자, 옥수수 및 콩으로 이루어진 군으로부터 선택되는 것인 제조방법.The method of claim 8, wherein the starch-containing grain is selected from the group consisting of rice, wheat, potatoes, corn and soybeans. 제 8항에 있어서, 상기 내열성 알파-글루카노트랜스퍼라제는 150 내지 200 U로 가하며, 상기 반응은 75 내지 80 ℃에서 실시되는 것인 제조방법.The method of claim 8, wherein the heat resistant alpha-glucanotransferase is added at 150 to 200 U and the reaction is performed at 75 to 80 ° C. 10. 제 8항 내지 11항 중 어느 한 항에 따른 방법으로 제조된 가공식품. Processed food prepared by the method according to any one of claims 8 to 11.
KR1020030075978A 2003-10-29 2003-10-29 Novel thermostable ?-glucanotransferase and use thereof KR100645993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030075978A KR100645993B1 (en) 2003-10-29 2003-10-29 Novel thermostable ?-glucanotransferase and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030075978A KR100645993B1 (en) 2003-10-29 2003-10-29 Novel thermostable ?-glucanotransferase and use thereof

Publications (2)

Publication Number Publication Date
KR20050041069A true KR20050041069A (en) 2005-05-04
KR100645993B1 KR100645993B1 (en) 2006-11-13

Family

ID=37242599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030075978A KR100645993B1 (en) 2003-10-29 2003-10-29 Novel thermostable ?-glucanotransferase and use thereof

Country Status (1)

Country Link
KR (1) KR100645993B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093911A1 (en) * 2007-02-01 2008-08-07 Cj Cheiljedang Corporation A method for preparing enzymatically highly branched-amylose and amylopectin cluster
KR101444876B1 (en) * 2012-12-17 2014-09-30 상명대학교서울산학협력단 Anti-leaching agent comprising cyclodextrin glucanotransferase and method for producing grain processed food using cyclodextrin glucanotransferase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093911A1 (en) * 2007-02-01 2008-08-07 Cj Cheiljedang Corporation A method for preparing enzymatically highly branched-amylose and amylopectin cluster
KR100868329B1 (en) * 2007-02-01 2008-11-12 씨제이제일제당 (주) A method for preparing enzymatically highly branched-amylose and amylopectin cluster
KR101444876B1 (en) * 2012-12-17 2014-09-30 상명대학교서울산학협력단 Anti-leaching agent comprising cyclodextrin glucanotransferase and method for producing grain processed food using cyclodextrin glucanotransferase

Also Published As

Publication number Publication date
KR100645993B1 (en) 2006-11-13

Similar Documents

Publication Publication Date Title
JP4792134B2 (en) Starch gel-containing food
JP5715346B2 (en) Food modification method using β-amylase
JP6115921B2 (en) Maltotriosyltransferase, production method thereof and use
JP5944839B2 (en) Anti-aging starch granules and method for producing the same
JP4187305B2 (en) Thermostable amylomaltase
WO2019189065A1 (en) Method for manufacturing starch-containing food
KR100645993B1 (en) Novel thermostable ?-glucanotransferase and use thereof
JP6595270B2 (en) Food improver
WO2020145371A1 (en) Method for manufacturing starch-containing food
JP2657801B2 (en) Glycosyl transfer reaction method
KR101444876B1 (en) Anti-leaching agent comprising cyclodextrin glucanotransferase and method for producing grain processed food using cyclodextrin glucanotransferase
JP2017190427A (en) Saccharide composition and manufacturing method therefor
JP2001103991A (en) New starchy composition and method for producing the same
JP2754486B2 (en) Production method of food and drink using glycosyl transfer reaction
WO2012111327A1 (en) Food product containing rice starch gel
JP2001197898A (en) Method of producing trehalose-containing saccharide solution, product therefrom and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121106

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141104

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee