JP6595270B2 - Food improver - Google Patents

Food improver Download PDF

Info

Publication number
JP6595270B2
JP6595270B2 JP2015176000A JP2015176000A JP6595270B2 JP 6595270 B2 JP6595270 B2 JP 6595270B2 JP 2015176000 A JP2015176000 A JP 2015176000A JP 2015176000 A JP2015176000 A JP 2015176000A JP 6595270 B2 JP6595270 B2 JP 6595270B2
Authority
JP
Japan
Prior art keywords
glucosidase
amino acid
food
processed
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015176000A
Other languages
Japanese (ja)
Other versions
JP2017051112A (en
Inventor
陽大 富永
雄治 松本
敦 河野
敦 寺田
望 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP2015176000A priority Critical patent/JP6595270B2/en
Publication of JP2017051112A publication Critical patent/JP2017051112A/en
Application granted granted Critical
Publication of JP6595270B2 publication Critical patent/JP6595270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、α−グルコシダーゼを用いて飲食品を改良する技術に関する。特に本発明は、α型のオリゴ糖類や多糖類に作用してα−1,2結合を有する糖質とα−1,3結合を有する糖質を生成するα−グルコシダーゼを用いて、飲食品の特性を改良する技術に関する。   The present invention relates to a technique for improving food and drink using α-glucosidase. In particular, the present invention uses α-glucosidase that acts on α-type oligosaccharides and polysaccharides to produce saccharides having α-1,2 bonds and saccharides having α-1,3 bonds. TECHNICAL FIELD

飲食品の価値は、その品質によって大きく左右されるが、近年、飲食品に求められる品質は多様性を増している。飲食品の品質の中でも、食感は、食品の価値に大きな影響を及ぼす要因の1つである。また、近年、食品の健康機能に対する消費者の要求も大きくなっている。澱粉類を含む原料を加工して製造する飲食品においても、その食感や健康機能性等の品質に対する消費者の要求が大きくなっており、飲食品に含まれる澱粉の構造や糖の結合様式が、飲食品の品質に影響する主な要因として挙げられる。   The value of food and drink is greatly influenced by its quality, but in recent years, the quality required for food and drink has increased in diversity. Among the quality of food and drink, the texture is one of the factors that greatly affect the value of food. In recent years, consumer demand for food health functions has also increased. Even in foods and beverages manufactured by processing raw materials containing starches, consumer demands for quality such as texture and health functionality are increasing, and the structure of starch and sugar binding patterns in foods and beverages Is a major factor affecting the quality of food and drink.

澱粉は、α−1,4結合によってグルコースが直鎖状に結合したアミロースと、α−1,4結合が連なった直鎖の途中でα−1,6結合で分岐した構造を有するアミロペクチンとの混合物である。澱粉に水を加えて加熱すると糊化して、糊化澱粉と呼ばれる状態になる。しかし、糊化した澱粉を放置すると、水が分離してしまい、「澱粉の老化」と呼ばれる現象が生じる。米飯やパンなどの澱粉を含む食品の食感を、室温またはそれ以下の温度に放置しておくと、時間とともに固くなるが、これは、澱粉の老化が原因であると考えられている。   Starch is composed of amylose in which glucose is linearly linked by α-1,4 bonds and amylopectin having a structure branched by α-1,6 bonds in the middle of the straight chain in which α-1,4 bonds are linked. It is a mixture. When water is added to starch and heated, it is gelatinized to a state called gelatinized starch. However, if the gelatinized starch is allowed to stand, water is separated, and a phenomenon called “starch aging” occurs. If the texture of food containing starch such as cooked rice or bread is left at room temperature or lower, it becomes harder with time, which is considered to be caused by aging of starch.

澱粉の老化を抑制する方法として酵素の使用が提案されている。澱粉に酵素を作用させることで、澱粉の構造を改良し、澱粉の老化を抑制することにより保存性を高めるなどの効果が得られる。糖転移活性を有するα−グルコシダーゼとして知られている、主に基質よりも重合度が1つ大きい糖質を生成するトランスグルコシダーゼ(アスペルギルス・ニジュール(Aspergillus niger)由来のα−グルコシダーゼ)を、例えば、米飯、米麺、パン、うどん、ポテトサラダ(特許文献1)、畜肉・水産加工食品(特許文献2)、改質澱粉(特許文献3)の製造に使用することが提案されている。また、清酒醸造に際して、α−アミラーゼ、上述したトランスグルコシダーゼおよび、酸性プロテアーゼを添加することにより、非発酵性オリゴ糖を主として含むことを特徴とするコクのある低アルコール清酒の製造方法が提案されている(特許文献4)。しかしながら、いずれも得られた飲食品の食感改良効果が低く、品質の良い食品を製造するには不十分であった。   The use of an enzyme has been proposed as a method for inhibiting starch aging. By causing the enzyme to act on the starch, effects such as improving the storage structure by improving the structure of the starch and suppressing the aging of the starch can be obtained. Transglucosidase (α-glucosidase derived from Aspergillus niger), which is known as α-glucosidase having transglycosylation activity and produces a carbohydrate mainly having a degree of polymerization one greater than that of the substrate, for example, It has been proposed to be used for the manufacture of cooked rice, rice noodles, bread, udon, potato salad (Patent Document 1), processed meat / fishery processed food (Patent Document 2), and modified starch (Patent Document 3). In addition, a method for producing rich, low-alcohol refined sake characterized by mainly containing non-fermentable oligosaccharides by adding α-amylase, the above-described transglucosidase, and acidic protease during sake brewing has been proposed. (Patent Document 4). However, the food texture improvement effect of all obtained food / beverage products is low, and it was inadequate for manufacturing a good quality food.

また、α1,2結合を有する糖質については、還元力が弱くメイラード反応性が弱い、う蝕原性菌によって酸醗酵されないなどの機能性(非特許文献1)が報告されている。   Moreover, about the saccharide | sugar which has (alpha) 1, 2 bond, functionality (nonpatent literature 1), such as not being fermented by a cariogenic microbe, has a weak reducing power and weak Maillard reactivity.

α1,3結合を有する糖質に特徴的な機能としては、食塩を含む食品の”塩かど”を緩和し、低食塩下での嗜好性を改良する食品風味改良剤(特許文献5)や、食品用の色素退色防止効果(特許文献6)などの物性改良剤としての用途のほか、生理機能として、ラクトバチルス属由来の菌と併用することによりインターロイキン12の産生を誘導する免疫賦活効果(特許文献7)やニゲロオリゴ糖を与えることにより、病原菌に暴露された植物が、病原菌に対する自己免疫作用として、抗菌作用を有するファイトアレキシンを植物体内に誘導蓄積させる機能(特許文献8)などが報告されている。   As a characteristic function of a carbohydrate having an α1,3 bond, a food flavor improver (patent document 5) that relaxes the “salt corner” of food containing salt and improves the preference under low salt, In addition to its use as a physical property improving agent such as a pigment fading prevention effect for food (Patent Document 6), as a physiological function, an immunostimulatory effect that induces the production of interleukin 12 when used in combination with bacteria derived from the genus Lactobacillus ( Patent Document 7) and a function that causes plants exposed to pathogenic bacteria to induce and accumulate phytoalexins having antibacterial activity in the plant body as an autoimmune action against the pathogenic bacteria (Patent Document 8) and the like are reported. Has been.

WO2005/096839WO2005 / 096839 WO2008/156126WO2008 / 156126 WO2011/021372WO2011 / 021372 特公昭62−10635号公報Japanese Patent Publication No.62-10635 特開平10−210949号公報JP-A-10-210949 特開2000−189101号公報JP 2000-189101 A 特開平11−228425号公報JP-A-11-228425 特開平10−36210号公報JP-A-10-36210

西本友之他,日本応用糖質科学会2001年度大会講演要旨集,第48巻、413頁(2001年)Tomoyuki Nishimoto et al., Japanese Society for Applied Glycoscience 2001 Annual Meeting Abstracts, Vol. 48, 413 (2001)

本発明の課題は、澱粉類を含む原料を加工して製造される飲食品について、その特性を改良する技術を提供することである。特に本発明においては、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合およびα−1,3結合を有する糖質を生成するα−グルコシダーゼを使用することによって、飲食品の特性を改良する技術を提供することをその目的とする。   The subject of this invention is providing the technique which improves the characteristic about the food-drinks manufactured by processing the raw material containing starch. In particular, in the present invention, it acts on a saccharide selected from the group consisting of α-type oligosaccharides and α-type polysaccharides to generate saccharides having α-1,2 bonds and α-1,3 bonds. The object is to provide a technique for improving the properties of food and drink by using α-glucosidase.

本発明者らは、アスペルギルス(Aspergillus)属に属するα−グルコシダーゼによってα−1,2結合およびα−1,3結合を有する糖質が生成されることを既に見出している(特開2011−177118号公報)。   The present inventors have already found that α-glucosidase belonging to the genus Aspergillus produces carbohydrates having α-1,2 bonds and α-1,3 bonds (Japanese Patent Laid-Open No. 2011-177118). Issue gazette).

本発明者らがさらに検討を進めたところ、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合およびα−1,3結合を有する糖質を生成するα−グルコシダーゼを使用することによって、意外にも、飲食品の特性を大きく改良できることを見出し、本発明を完成させるに至った。   As a result of further investigations by the present inventors, they acted on carbohydrates selected from the group consisting of α-type oligosaccharides and α-type polysaccharides, and have α-1,2 bonds and α-1,3 bonds. Surprisingly, it has been found that the characteristics of food and drink can be greatly improved by using an α-glucosidase that produces the carbohydrates it has, and the present invention has been completed.

すなわち、本発明は、これに限定されるものではないが、以下の態様を包含する。   That is, the present invention includes, but is not limited to, the following aspects.

本発明の一態様である食品改良剤は、α−グルコシダーゼを含む、澱粉含有原料を加工して製造される飲食品用の食品改良剤であって、前記α−グルコシダーゼが、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合を有する糖質とα−1,3結合を有する糖質を生成するものである、飲食品用の食品改良剤である。   The food improving agent which is one aspect of the present invention is a food improving agent for foods and drinks produced by processing starch-containing raw materials, which contains α-glucosidase, wherein the α-glucosidase is an α-type oligosaccharide And a saccharide selected from the group consisting of α-type polysaccharides and producing a saccharide having an α-1,2 bond and a saccharide having an α-1,3 bond. It is a food improver.

本発明は、米加工品の品質を改良するためのものであってもよく、小麦加工品の品質を改良するためのものであってもよく、大麦加工品の品質を改良するためのものであってもよく、いも類加工品の品質を改良するためのものであってもよい。   The present invention may be for improving the quality of processed rice products, for improving the quality of processed wheat products, and for improving the quality of processed barley products. It may be for improving the quality of processed potatoes.

本発明において、前記α−グルコシダーゼをコードするアミノ酸配列が、配列番号1〜10のいずれかに記載されたアミノ酸配列と60%以上の同一性を有してもよい。   In the present invention, the amino acid sequence encoding the α-glucosidase may have 60% or more identity with the amino acid sequence described in any one of SEQ ID NOs: 1 to 10.

本発明において、前記α−グルコシダーゼをコードするアミノ酸配列が、
配列1:FQSQY、
配列2:LWIDMNEA、
配列3:EYDTHNLYG、
配列4:VGHWLGDN、
配列5:GEPFL、及び、
配列6:FYDWYTG、
からなる群より選択されるいずれか1以上の配列を含有してもよい。
In the present invention, the amino acid sequence encoding the α-glucosidase is
Sequence 1: FQSQY,
Sequence 2: LWIMNNEA,
Sequence 3: EYDTHNLYG,
Sequence 4: VGHWLGDN,
Sequence 5: GEPFL and
Sequence 6: FYDWYTG,
Any one or more sequences selected from the group consisting of:

本発明において、前記α−グルコシダーゼが、アスペルギルス(Aspergillus)属菌由来のα−グルコシダーゼであってもよい。   In the present invention, the α-glucosidase may be α-glucosidase derived from Aspergillus.

本発明の他の一態様は、α−グルコシダーゼを澱粉に作用させることを含む、澱粉含有原料を加工して製造される飲食品の改良方法であって、前記α−グルコシダーゼが、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合を有する糖質とα−1,3結合を有する糖質を生成するものである、飲食品の改良方法である。   Another aspect of the present invention is a method for improving a food or drink produced by processing a starch-containing raw material, which comprises allowing α-glucosidase to act on starch, wherein the α-glucosidase is an α-type oligo. A food or drink that acts on a saccharide selected from the group consisting of saccharides and α-type polysaccharides to produce a saccharide having an α-1,2 bond and a saccharide having an α-1,3 bond. This is an improved method.

本発明の他の一態様は、
澱粉をα−グルコシダーゼで処理する工程、
処理した澱粉を加工食品に添加する工程、
を含む、加工食品の品質の改良方法であって、
α−グルコシダーゼがα型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α1,2結合を有する糖質とα−1,3結合を有する糖質を生成する加工食品の品質の改良方法である。
Another aspect of the present invention is:
Treating starch with α-glucosidase;
Adding processed starch to processed foods,
A method for improving the quality of processed foods, comprising:
α-Glucosidase acts on a saccharide selected from the group consisting of α-type oligosaccharides and α-type polysaccharides to generate saccharides having α1,2 bonds and saccharides having α-1,3 bonds. This is a method for improving the quality of processed foods.

本発明は、畜肉加工食品または水産加工食品の品質を改良するためのものであってもよい。   The present invention may be for improving the quality of processed meat products or processed fish products.

本発明に基づいて、α−1,2結合およびα−1,3結合を有する糖質を生成するα−グルコシダーゼを使用することによって、飲食品の特性を改良することが可能である。   Based on the present invention, it is possible to improve the properties of food and drink by using an α-glucosidase that produces a carbohydrate having α-1,2 bonds and α-1,3 bonds.

図1は、実験例1−2で得られたアスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来の精製酵素を用いて得られた反応生成物中の二,三糖類成分の組成を示すグラフである。FIG. 1 is a graph showing the composition of di- and trisaccharide components in the reaction product obtained using the purified enzyme derived from Aspergillus niger ATCC 10254 obtained in Experimental Example 1-2. 図2は、アスペルギルス・オリゼー(Aspergillus oryzae)RIB40由来の翻訳伸長因子TEF1のプロモーター領域とともに、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)遺伝子を組み込んだプラスミドベクターの構造を示す図である。FIG. 2 shows a plasmid vector incorporating an Aspergillus niger CBS513.88 strain α-glucosidase (Accession no. XP_001389510) gene together with a promoter region of the translation elongation factor TEF1 derived from Aspergillus oryzae RIB40. FIG. 図3は、実験例2−1で行った糊化特性測定条件を示す図である。FIG. 3 is a diagram showing conditions for measuring gelatinization characteristics performed in Experimental Example 2-1.

澱粉を含む原料(澱粉含有原料)
本発明は、澱粉を含む原料を加工して製造する飲食品に関する。本発明において、澱粉とは、穀類やイモ類、豆類等の植物の組織中に存在する貯蔵物質であり、D-グルコースを構成体とする水に不溶性のグルカンである。澱粉は、鎖状分子のアミロースと、多岐に分岐したアミロペクチンから構成される。本発明の澱粉含有原料に含まれる澱粉は、特に限定されないが、グルコース重合度が100以上であることが好ましく、1,000以上であることがより好ましく、10,000以上であることがさらに好ましい。
Raw materials containing starch (starch-containing raw materials)
The present invention relates to a food or drink produced by processing a raw material containing starch. In the present invention, starch is a storage substance present in plant tissues such as cereals, potatoes and beans, and is a water-insoluble glucan composed of D-glucose. Starch is composed of amylose, which is a chain molecule, and amylopectin that is divergently branched. The starch contained in the starch-containing raw material of the present invention is not particularly limited, but the degree of glucose polymerization is preferably 100 or more, more preferably 1,000 or more, and further preferably 10,000 or more.

本発明において、澱粉を含有する原料としては、特に限定されないが、米、小麦、とうもろこし、大麦等の穀類、じゃがいも、さつまいも、キャッサバ等のイモ類、大豆、えんどう豆等の豆類、さらに、これらの原料から公知の方法で抽出した澱粉などがあげられる。公知の方法で抽出した澱粉の例としては、特に限定されないが、米澱粉、小麦澱粉、馬鈴薯澱粉、タピオカ澱粉、コーンスターチ等が挙げられる。さらに、公知の方法で抽出した澱粉に、物理的処理または化学的処理を、単独または2種以上組合せて行った加工澱粉等が挙げられる。物理的に処理した加工澱粉の例としては、α化澱粉、湿熱処理澱粉等が挙げられ、化学的に処理した加工澱粉の例としては、ヒドロキシプロピル澱粉等のエーテル化誘導体、酢酸澱粉等のエステル化誘導体、リン酸架橋澱粉等の架橋誘導体等が挙げられる。   In the present invention, the raw material containing starch is not particularly limited, but grains such as rice, wheat, corn and barley, potatoes, sweet potatoes, potatoes such as cassava, beans such as soybeans and peas, and these And starch extracted from these raw materials by a known method. Examples of starch extracted by a known method include, but are not limited to, rice starch, wheat starch, potato starch, tapioca starch, and corn starch. Furthermore, the processed starch etc. which performed the physical process or the chemical process individually or in combination of 2 or more types to the starch extracted by the well-known method are mentioned. Examples of physically processed processed starch include pregelatinized starch and wet heat-treated starch. Examples of chemically processed processed starch include etherified derivatives such as hydroxypropyl starch and esters such as acetate starch. And cross-linked derivatives such as phosphoric acid cross-linked starch.

飲食品
本発明において、飲食品は、澱粉を含む原料を加工し製造するものであれば特に限定されないが、たとえば穀類加工品、イモ類加工品、豆類加工品等を挙げることができる。また、前記の公知の方法で抽出した澱粉を含有する原料を加工した飲食品も含まれる。穀類加工品の例としては、米加工品(米飯、もち、清酒、甘酒、米粉を原料とする和菓子等)、小麦加工品(パン、麺、中華饅頭や餃子の皮、ビザ生地、パイ生地、焼菓子、生菓子等)、大麦加工品(パン、ビール、ビール様飲料等)、コーン加工品(コーンミール、コーンフレーク、コーンウィスキー等)が挙げられるが、これらに限定されない。イモ類加工品の例としては、じゃがいも加工品(マッシュポテト、フライドポテト、ハッシュドポテト、ニョッキ、ポテトチップス等)、さつまいも加工品(スイートポテト、いもようかん等)が挙げられるが、これらに限定されない。また、本発明の飲食品には、公知の方法で抽出した澱粉に、本発明のα−グルコシダーゼを作用させた後、物理的処理または化学的処理を、単独または2種以上組合せて行った加工澱粉も含まれる。
Food / beverage products In the present invention, the food / beverage products are not particularly limited as long as they are produced by processing raw materials containing starch, and examples thereof include processed cereal products, processed potato products, processed legume products, and the like. Moreover, the food / beverage products which processed the raw material containing the starch extracted by the said well-known method are also contained. Examples of processed cereal products include processed rice products (boiled rice, rice cake, sake, amazake, Japanese sweets made from rice flour, etc.), processed wheat products (bread, noodles, Chinese buns and dumpling skins, visa dough, pie dough, Baked confectionery, fresh confectionery, etc.), processed barley products (bread, beer, beer-like beverages, etc.), and processed corn products (corn meal, corn flakes, corn whiskey, etc.), but are not limited thereto. Examples of processed potato products include, but are not limited to, potato processed products (mashed potatoes, french fries, hashed potatoes, gnocchi, potato chips, etc.) and sweet potato processed products (sweet potatoes, imoyokan, etc.). In addition, the food and drink of the present invention are processed by subjecting starch extracted by a known method to the α-glucosidase of the present invention, followed by physical treatment or chemical treatment alone or in combination of two or more. Starch is also included.

α−グルコシダーゼ
本発明は、α型のオリゴ糖類、およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合およびα−1,3結合を生成することのできるα−グルコシダーゼの使用等に関する。本発明は澱粉含有原料に含まれる澱粉そのものに直接的にα−グルコシダーゼを作用させて、原料中の澱粉の性質を変化させる。性質の変化した澱粉は、グルコース重合度が好ましくは100以上、より好ましくは1,000以上、さらに好ましくは10,000以上である。この性質が変化した澱粉を含む原料を用いて作製した飲食品は、性質を変化させていない澱粉を含む原料を用いて作製した飲食品よりも、飲食品としての品質が高い。例えば、本発明によれば、性質を変化させていない澱粉を含む原料を用いるよりも、より柔らかい食品を作製することができる。
α-Glucosidase The present invention acts on a carbohydrate selected from the group consisting of α-type oligosaccharides and α-type polysaccharides, and generates α-1,2 bonds and α-1,3 bonds. It relates to the use of α-glucosidase that can be produced. In the present invention, α-glucosidase is allowed to act directly on the starch itself contained in the starch-containing raw material, thereby changing the properties of the starch in the raw material. The starch having a changed property has a glucose polymerization degree of preferably 100 or more, more preferably 1,000 or more, and still more preferably 10,000 or more. The food and drink produced using the raw material containing starch whose properties have changed have higher quality as food and drink than the food and drink produced using raw materials containing starch whose properties are not changed. For example, according to the present invention, it is possible to produce a softer food than using a raw material containing starch whose properties are not changed.

本発明において、α型のオリゴ糖類とは、分子内にα−グルコシド結合を有する2糖〜9糖の糖質をいう。α型のオリゴ糖類の例としては、マルトース、コージビオース、ニゲロース、イソマルトース、トレハロース、マルトトリオース、パノース、イソマルトトリオース、マルトテトラオース、イソマルトテトラオース、マルトペンタオース、マルトヘキサオース、マルトヘプタオース、α−サイクロデキストリン、β−サイクロデキストリン、γ−サイクロデキストリン等が挙げられるが、これらに限定されない。   In the present invention, the α-type oligosaccharide refers to a disaccharide to 9-saccharide carbohydrate having an α-glucoside bond in the molecule. Examples of α-type oligosaccharides include maltose, cordobiose, nigerose, isomaltose, trehalose, maltotriose, panose, isomaltotriose, maltotetraose, isomalttetraose, maltopentaose, maltohexaose, malto Although heptaose, (alpha) -cyclodextrin, (beta) -cyclodextrin, (gamma) -cyclodextrin etc. are mentioned, It is not limited to these.

本発明において、α型の多糖類とは、分子内にα−グルコシド結合を有する10糖以上の糖質をいう。α型の多糖類の例としてはグリコーゲン、デキストラン、アミロース、可溶性澱粉等が挙げられるが、これらに限定されない。   In the present invention, the α-type polysaccharide refers to a saccharide having 10 or more sugars having an α-glucoside bond in the molecule. Examples of α-type polysaccharides include, but are not limited to, glycogen, dextran, amylose, soluble starch and the like.

本発明で使用するα−グルコシダーゼは、α−1,2結合およびα−1,3結合を有する糖質を生成することができる。α−1,2結合を有する糖質とは、分子内にα−1,2結合を有する糖質をいい、α−1,3結合を有する糖質とは、分子内にα−1,3結合を有する糖質をいう。糖質がα−1,2結合やα−1,3結合を有するかどうかは、たとえば、NMR分析法、メチル化分析法(Journal of Biochemistry 第55巻 第205項 1964年)等によって判断することができる。   The α-glucosidase used in the present invention can produce a carbohydrate having an α-1,2 bond and an α-1,3 bond. A saccharide having an α-1,2 bond refers to a saccharide having an α-1,2 bond in the molecule, and a saccharide having an α-1,3 bond is an α-1,3 in the molecule. A carbohydrate having a bond. Whether or not a carbohydrate has an α-1,2 bond or an α-1,3 bond is determined by, for example, NMR analysis, methylation analysis (Journal of Biochemistry 55, 205, 1964), etc. Can do.

本発明で使用するα−グルコシダーゼは、由来する生物を問わないが、
糸状菌(Absidia、Acremonium、Actinomadura、Alternaria、Aspergillus、Chaetomium、Coprinus、Coriolus、Geotrichum、Humicola、Monascus、Mortierella、Mucor、Nocardiopsis、Oidiodendron、Penicillium、Rhizomucor、Rhizopus、Trichoderma、Verticillium等)
担子菌(Coliolus、Corticium、Cyathus、Irpexs、Polyporus、Pycnoporus、Trametes等)、
細菌(Aeromonas、Agrobacterium、Alcaligenes、Agrobacterium、Alteromonas、Arthrobacter、Bacillus、Brevibacterium、Chromobacterium、Corynebacterium、Crypnohectria、Erwinia、Escherichia、Flavobacterium、Klebsiella、Lactobacillus、Lactococcus、Leuconostoc、Microbacterium、Micrococcus、Pimelobacter、Plesiomonas、Protaminobacter、Pseudomonas、Serratia、Streptococcus、Streptoverticillium、Sulfolobus、Thermus、Xanthomonas等)
放線菌(Actinomadura、Actinomyces、Actinoplanes、Amycolatopsis、Eupenicillium、Nocardiopsis、Streptomyces、Thermomonospora等)
酵母(Aureobasidium、Candida、Irpex、Kluyveromyces、Pycnoporus、Saccharomyces、Trichosporon等)など食品製造にて使用例のある株が望ましい。
The α-glucosidase used in the present invention is not limited to the organism from which it is derived,
Filamentous fungi (Absidia, Acremonium, Actinomadura, Alternaria, Aspergillus, Chaetomium, Coprinus, Coriolus, Geotrichum, Humicola, Monascus, Mortierella, Mucor, Nocardiopsis, Oidiodendron, Penicillium, Rhizomucor, Rhizopustic, Trichoderma, Ver.
Basidiomycetes (Coliolus, Corticium, Cyathus, Irpexs, Polyporus, Pycnoporus, Trametes, etc.),
Bacteria (Aeromonas, Agrobacterium, Alcaligenes, Agrobacterium, Alteromonas, Arthrobacter, Bacillus, Brevibacterium, Chromobacterium, Corynebacterium, Crypnohectria, Erwinia, Escherichia, Flavobacterium, Klebsiella, Lactobacillus, Lactococactus, Leuconimetactoccus, Leuconostactus Serratia, Streptococcus, Streptoverticillium, Sulfolobus, Thermus, Xanthomonas etc.)
Actinomycetes (Actinomadura, Actinomyces, Actinoplanes, Amycolatopsis, Eupenicillium, Nocardiopsis, Streptomyces, Thermomonospora, etc.)
A strain having a use example in food production such as yeast (Aureobasidium, Candida, Irpex, Kluyveromyces, Pycnoporus, Saccharomyces, Trichosporon, etc.) is desirable.

本発明で使用するα−グルコシダーゼは、たとえばアスペルギルス(Aspergillus)属に属する糸状菌(以下、単にアスペルギルス属菌と表記する)から、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合を有する糖質とα−1,3結合を有する糖質を生成する酵素として得ることができる。   The α-glucosidase used in the present invention is selected from the group consisting of, for example, filamentous fungi belonging to the genus Aspergillus (hereinafter simply referred to as Aspergillus), from the group consisting of α-type oligosaccharides and α-type polysaccharides. It can be obtained as an enzyme that acts on a saccharide and produces a saccharide having an α-1,2 bond and a saccharide having an α-1,3 bond.

本発明で使用するα−グルコシダーゼは、以下の酵素化学的性質をさらに有する酵素であることが好ましい。これにより、工業的に高温条件下や酸性条件下で飲食品を製造する場合でも、効率的に飲食品の品質を改良できる。
(1)温度安定性:pH4.0、30分間保持で、65℃では初期活性の90%以上の残存;
(2)pH安定性:4℃、24時間保持で、pH3.0〜5.5。
The α-glucosidase used in the present invention is preferably an enzyme further having the following enzyme chemical properties. Thereby, even when manufacturing food-drinks industrially on high temperature conditions or acidic conditions, the quality of food-drinks can be improved efficiently.
(1) Temperature stability: pH 4.0, maintained for 30 minutes, remaining at 90% or more of initial activity at 65 ° C .;
(2) pH stability: pH 3.0 to 5.5 at 4 ° C., maintained for 24 hours.

また、本発明で使用するα−グルコシダーゼは、以下の酵素化学的性質を有する酵素であってもよい:
(3)基質特異性:マルトース、ニゲロース、コージビオース、マルトオリゴ糖などα−グルコオリゴ糖および、アミロース、可溶性澱粉などのα−グルカンの非還元末端のαグルコシド結合を分解し、グルコースを遊離する。また、スクロースを分解する活性を有する;
(4)分子量:SDS−ポリアクリルアミドゲル電気泳動法により、48,000ダルトンおよび59,000ダルトン;
(5)等電点:pI4.9〜5.5(中心値5.2);
(6)至適温度:pH4.0、10分間反応で、65℃;
(7)至適pH:50℃、10分間反応で、pH3.5。
Moreover, the α-glucosidase used in the present invention may be an enzyme having the following enzyme chemical properties:
(3) Substrate specificity: Decomposes α-glucooligosaccharides such as maltose, nigerose, cordobiose, malto-oligosaccharide and non-reducing end α-glucoside bond of α-glucan such as amylose and soluble starch to release glucose. Also has activity of degrading sucrose;
(4) Molecular weight: 48,000 daltons and 59,000 daltons by SDS-polyacrylamide gel electrophoresis;
(5) Isoelectric point: pI 4.9 to 5.5 (central value 5.2);
(6) Optimal temperature: pH 4.0, reaction for 10 minutes, 65 ° C .;
(7) Optimal pH: pH 3.5 at 50 ° C. for 10 minutes reaction.

本発明で使用するα−グルコシダーゼを得るためのアスペルギルス属菌としては、アスペルギルス・ソヤ(Aspergillus sojae)、アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・ニデュランス(Aspergillus nidulans)、アスペルギルス・ニジュール(Aspergillus niger)、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アキュレタス(Aspergillus aculeatus)に属する菌を好適に用いることができる。中でも、アスペルギルス・ニジュールATCC10254株、アスペルギルス・ニジュールNBRC4043株、アスペルギルス・ニジュールCBS513.88株、アスペルギルス・ニジュールATCC1015株、アスペルギルス・ニジュールNBRC4066株、アスペルギルス・オリゼーRIB40、アスペルギルス・ニデュランスATCC38163株、アスペルギルス・カワチIFO4308株、アスペルギルス・アキュレタスATCC16872株、アスペルギルス・ソヤNBRC4239株などが好適な菌株として挙げられる。   Examples of the genus Aspergillus for obtaining α-glucosidase used in the present invention include Aspergillus sojae, Aspergillus oryzae, Aspergillus nidulans, and Aspergillus niger. Bacteria belonging to Aspergillus kawachii and Aspergillus aculeatus can be preferably used. Among them, Aspergillus nijur ATCC10254, Aspergillus nijur NBRC4043, Aspergillus nijur CBS513.88, Aspergillus nijur ATCC1015, Aspergillus nijur NBRC4066, Aspergillus oryzae RIB40, Aspergillus oryzalis 163 Aspergillus acuretus ATCC16872 strain, Aspergillus soya NBRC4239 strain, etc. are mentioned as suitable strains.

上記のアスペルギルス属菌を、液体培養および固体培養等の公知の培養方法を用いて培養し、その培養物から公知の方法によってα−グルコシダーゼ活性を有する酵素を採取することで、本発明で使用するα−グルコシダーゼを得ることができる。   The aforementioned Aspergillus spp. Is cultured using a known culture method such as liquid culture and solid culture, and an enzyme having α-glucosidase activity is collected from the culture by a known method and used in the present invention. α-Glucosidase can be obtained.

本発明で使用するα−グルコシダーゼは、アスペルギルス・ニジュールCBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510、配列番号1)のアミノ酸配列、アスペルギルス・ニジュールATCC1015株由来のα−グルコシダーゼ(Accession no.:EHA26885、配列番号2)のアミノ酸配列、アスペルギルス・カワチIFO4308株由来のα−グルコシダーゼ(Accession no.:GAA87366、配列番号3)、配列番号4に記載の配列を有するα−グルコシダーゼ、アスペルギルス・ニジュールNBRC4066株由来のα−グルコシダーゼ(配列番号5)、アスペルギルス・ニデュランスATCC38163株由来のα−グルコシダーゼ(Accession no.:ABF50846、配列番号6)、アスペルギルス・オリゼーRIB40株由来のα−グルコシダーゼ(Accession no.:XP_001818060、配列番号7)、アスペルギルス・ニデュランスATCC38163株由来のα−グルコシダーゼ(Accession no.:ABF50883、配列番号8)、アスペルギルス・アキュレタスATCC16872株由来のα−グルコシダーゼ(Accession no.:Aacu16872_025147、配列番号9)、又は、アスペルギルス・ソヤNBRC4239株由来のα−グルコシダーゼ(配列番号10)を基準として、60%又は65%以上の同一性を有することが好ましく、70%又は75%以上の同一性を有することがより好ましく、80%、85%、90%以上又は95%以上の同一性を有することがさらに好ましく、アスペルギルス・ニジュールCBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510、配列番号1)のアミノ酸配列を基準として、60%以上の同一性を有することが最も好ましい。   The α-glucosidase used in the present invention is an amino acid sequence of α-glucosidase derived from Aspergillus nidu CBS513.88 (Accession no .: XP_001389510, SEQ ID NO: 1), α-glucosidase derived from Aspergillus nidu ATCC1015 (Accession no. .: EHA26885, SEQ ID NO: 2), Aspergillus kawachi IFO4308-derived α-glucosidase (Accession no .: GAA87366, SEQ ID NO: 3), α-glucosidase having the sequence described in SEQ ID NO: 4, Aspergillus nidu Α-glucosidase derived from NBRC4066 strain (SEQ ID NO: 5), α-glucosidase derived from Aspergillus nidulans ATCC38163 strain (Accession no .: ABF50846, SEQ ID NO: 6), α-glucosidase derived from Aspergillus oryzae RIB40 strain (Accession no. : XP_001818060, SEQ ID NO: 7), Aspergillus nidulans ATCC Α-glucosidase derived from 38163 strain (Accession no .: ABF50883, SEQ ID NO: 8), α-glucosidase derived from Aspergillus acuretas ATCC16872 strain (Accession no .: Aacu16872_025147, SEQ ID NO: 9), or derived from Aspergillus soya NBRC4239 strain Based on α-glucosidase (SEQ ID NO: 10), it preferably has 60% or 65% identity, more preferably 70% or 75% identity, more preferably 80%, 85%, 90% % Or 95% or more, and more preferably 60% or more based on the amino acid sequence of α-glucosidase (Accession no .: XP_001389510, SEQ ID NO: 1) derived from Aspergillus nidu CBS513.88 strain Most preferably, they have identity.

本発明で使用するα−グルコシダーゼは、アミノ酸配列に、以下の配列1〜6からなる群より選択されるいずれか1以上の配列を含有することが好ましい。
配列1:FQSQY
配列2:LWIDMNEA
配列3:EYDTHNLYG
配列4:VGHWLGDN
配列5:GEPFL
配列6:FYDWYTG
2つのアミノ酸配列の同一性%は、視覚的検査および数学的計算によって決定することができる。また、コンピュータープログラムを用いて同一性%を決定することもできる。そのようなコンピュータープログラムとしては、例えば、BLAST、FASTA(Altschulら、 J. Mol. Biol., 215:403-410(1990))、及びClustalW(http://www.genome.jp/tools/clustalw/)等があげられ、デフォルトのパラメーターを用いることができる。また、BLASTプログラムによる同一性検索の各種条件(パラメーター)は、「Altschulら(Nucl. Acids. Res., 25, p.3389-3402, 1997)」に記載されたもので、米国バイオテクノロジー情報センター(NCBI)やDNA Data Bank of Japan(DDBJ)のウェブサイトから公的に入手することができる(BLASTマニュアル、Altschulら NCB/NLM/NIH Bethesda, MD 20894)。また、遺伝情報処理ソフトウエアGENETYX (ゼネティックス社製)、DNASIS Pro(日立ソフト社製)、Vector NTI(Infomax社製)等のプログラムを用いて決定することもできる。
The α-glucosidase used in the present invention preferably contains any one or more sequences selected from the group consisting of the following sequences 1 to 6 in the amino acid sequence.
Sequence 1: FQSQY
Array 2: LWIMNNEA
Sequence 3: EYDTHNLYG
Array 4: VGHWLGDN
Sequence 5: GEPFL
Sequence 6: FYDWYTG
The percent identity between two amino acid sequences can be determined by visual inspection and mathematical calculation. The percent identity can also be determined using a computer program. Examples of such computer programs include BLAST, FASTA (Altschul et al., J. Mol. Biol., 215: 403-410 (1990)), and ClustalW (http://www.genome.jp/tools/clustalw). /) Etc., and default parameters can be used. Various conditions (parameters) for identity searches using the BLAST program are described in “Altschul et al. (Nucl. Acids. Res., 25, p.3389-3402, 1997)”. US Biotechnology Information Center (NCBI) and DNA Data Bank of Japan (DDBJ) website (BLAST Manual, Altschul et al. NCB / NLM / NIH Bethesda, MD 20894). It can also be determined using a program such as genetic information processing software GENETYX (manufactured by Genetics), DNASIS Pro (manufactured by Hitachi Software), Vector NTI (manufactured by Infomax).

複数のアミノ酸配列を並列させる特定のアラインメントスキームは、配列のうち、特定の短い領域のマッチングをも示すことができるため、用いた配列の全長配列間に有意な関係がない場合であっても、そのような領域において、特定の配列同一性が非常に高い領域を検出することもできる。さらに、BLASTアルゴリズムは、BLOSUM62アミノ酸スコア付けマトリックスを用いることができるが、選択パラメーターとしては、以下のものを用いることができる:(A)低い組成複雑性を有するクエリー配列のセグメント(WoottonおよびFederhenのSEGプログラム(Computers and Chemistry, 1993)により決定される;Wootton及びFederhen, 1996「配列データベースにおける組成編重領域の解析(Analysis of compositionally biased regions in sequence databases)」Methods Enzymol., 266: 544-71も参照されたい)、又は、短周期性の内部リピートからなるセグメント(ClaverieおよびStates(Computers and Chemistry, 1993)のXNUプログラムにより決定される)をマスクするためのフィルターを含むこと、および(B)データベース配列に対する適合を報告するための統計学的有意性の閾値、又はE−スコア(KarlinおよびAltschul, 1990)の統計学的モデルにしたがって、単に偶然により見出される適合の期待確率;ある適合に起因する統計学的有意差がE−スコア閾値より大きい場合、この適合は報告されない。   A specific alignment scheme that juxtaposes multiple amino acid sequences can also show a match of a specific short region of the sequence, so even if there is no significant relationship between the full length sequences of the sequences used, In such a region, a region having a very high specific sequence identity can also be detected. In addition, the BLAST algorithm can use the BLOSUM62 amino acid scoring matrix, but the following can be used as selection parameters: (A) Segments of query sequences with low composition complexity (Wootton and Federhen's Determined by the SEG program (Computers and Chemistry, 1993); Wootton and Federhen, 1996 “Analysis of compositionally biased regions in sequence databases” Methods Enzymol., 266: 544-71 Including filters to mask segments consisting of short-period internal repeats (determined by the XNU program of Claverie and States (Computers and Chemistry, 1993)), and (B) the database Statistical significance threshold for reporting fits to sequences, or E-score According to the statistical model of Karlin and Altschul, 1990, the expected probability of a match found by chance only; if the statistically significant difference due to a match is greater than the E-score threshold, this match is not reported .

配列番号1〜10のいずれかで示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質は、公知の手法によって適宜調製することができるが、たとえば配列番号1〜10のいずれかで示されるアミノ酸配列に1若しくは複数個(例えば1〜190個、1〜90個、1〜50個、1〜30個、1〜25個、1〜20個、1〜15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個)のアミノ酸を欠失、置換若しくは付加して調製することができる。   A protein comprising an amino acid sequence having 60% or more identity with the amino acid sequence represented by any one of SEQ ID NOs: 1 to 10 can be appropriately prepared by a known technique. For example, any one of SEQ ID NOs: 1 to 10 1 or a plurality of amino acid sequences represented by (for example, 1 to 190, 1 to 90, 1 to 50, 1 to 30, 1 to 25, 1 to 20, 1 to 15, more preferably (10, 9, 8, 7, 6, 5, 4, 3, 2, or 1) amino acids may be deleted, substituted or added.

上記のうち、置換は、好ましくは保存的置換である。保存的置換とは、特定のアミノ酸残基を類似の物理化学的特徴を有する残基で置き換えることであるが、もとの配列の構造に関する特徴を実質的に変化させなければいかなる置換であってもよく、例えば、置換アミノ酸が、もとの配列に存在するらせんを破壊したり、もとの配列を特徴付ける他の種類の二次構造を破壊したりしなければいかなる置換であってもよい。   Of the above, the substitution is preferably a conservative substitution. A conservative substitution is the replacement of a particular amino acid residue with a residue having similar physicochemical characteristics, but any substitution that does not substantially change the structural characteristics of the original sequence. For example, any substitution may be made so long as the substituted amino acid does not destroy the helix present in the original sequence or other types of secondary structures characterizing the original sequence.

保存的置換は、一般的には、生物学的合成や化学的ペプチド合成で導入されるが、好ましくは、化学的ペプチド合成による。この場合、置換基には、非天然アミノ酸残基が含まれていてもよく、ペプチド模倣体や、アミノ酸配列のうち、置換されていない領域が逆転している逆転型又は同領域が反転している反転型も含まれる。   Conservative substitutions are generally introduced by biological synthesis or chemical peptide synthesis, but preferably by chemical peptide synthesis. In this case, the non-natural amino acid residue may be included in the substituent, and the reversed type or the same region in which the non-substituted region is reversed in the peptidomimetic or amino acid sequence is reversed. Inverted types are also included.

以下に、アミノ酸残基を置換可能な残基ごとに分類して例示するが、置換可能なアミノ酸残基は以下に記載されているものに限定されるものではない。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2−アミノブタン酸、メチオニン、O−メチルセリン、t−ブチルグリシン、t−ブチルアラニンおよびシクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2−アミノアジピン酸および2−アミノスベリン酸
C群:アスパラギンおよびグルタミン
D群:リジン、アルギニン、オルニチン、2,4−ジアミノブタン酸および2,3−ジアミノプロピオン酸
E群:プロリン、3−ヒドロキシプロリンおよび4−ヒドロキシプロリン
F群:セリン、スレオニンおよびホモセリン
G群:フェニルアラニンおよびチロシン
非保存的置換の場合は、上記種類のうち、ある1つのメンバーと他の種類のメンバーとを交換することができるが、この場合は、本発明で使用するタンパク質の生物学的機能を保持するために、アミノ酸のヒドロパシー指数(ヒドロパシーアミノ酸指数)を考慮することが好ましい(Kyteら, J. Mol. Biol., 157:105-131(1982))。
In the following, amino acid residues are classified and exemplified for each substitutable residue, but the substitutable amino acid residues are not limited to those described below.
Group A: leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine and cyclohexylalanine Group B: aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid and 2-aminosuberic acid group C: asparagine and glutamine group D: lysine, arginine, ornithine, 2,4-diaminobutanoic acid and 2,3-diaminopropionic acid group E: proline, 3 -Hydroxyproline and 4-hydroxyproline group F: serine, threonine and homoserine Group G: phenylalanine and tyrosine In the case of non-conservative substitution, one member of the above types is exchanged for another type of member. In this case, it is preferable to consider the amino acid hydropathic index (hydropathic amino acid index) in order to retain the biological function of the protein used in the present invention (Kyte et al., J. Mol). Biol., 157: 105-131 (1982)).

また、非保存的置換の場合は、親水性に基づいてアミノ酸の置換を行うことができる。   In the case of non-conservative substitution, amino acid substitution can be performed based on hydrophilicity.

本明細書および図面において、塩基やアミノ酸およびその略語は、IUPAC-IUB Commission on Biochemical Nomenclature に従うか、又は、例えば、Immunology-A Synthesis(第2版, E.S. GolubおよびD.R. Gren監修, Sinauer Associates,マサチューセッツ州サンダーランド(1991))等に記載されているような、当業界で慣用されている略語に基づく。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示す。   In the present specification and drawings, bases and amino acids and their abbreviations follow IUPAC-IUB Commission on Biochemical Nomenclature or, for example, Immunology-A Synthesis (2nd edition, supervised by ES Golub and DR Gren, Sinauer Associates, Mass.) Based on abbreviations commonly used in the industry, such as those described in Sunderland (1991). In addition, when there is an optical isomer with respect to an amino acid, L form is shown unless otherwise specified.

D−アミノ酸等の上記のアミノ酸の立体異性体、α,α−二置換アミノ酸等の非天然アミノ酸、N−アルキルアミノ酸、乳酸、およびその他の非慣用的なアミノ酸もまた、本発明で使用するタンパク質を構成する要素となりうる。   The stereoisomers of the above amino acids such as D-amino acids, unnatural amino acids such as α, α-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids are also used in the present invention. Can be a component of

上述したように、配列番号1〜10のいずれかで表されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質は、「Molecular Cloning, A Laboratory Manual 3rd ed.」(Cold Spring Harbor Press (2001))、「Current Protocols in Molecular Biology」(John Wiley & Sons (1987-1997)、「Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488-92、Kunkel (1988) Method. Enzymol. 85: 2763-6」等に記載の部位特異的変異誘発法等の方法に従って調製することができる。このようなアミノ酸の欠失、置換若しくは付加等の変異がなされた変異体の作製は、例えば、Kunkel法やGapped duplex法等の公知手法により、部位特異的突然変異誘発法を利用した変異導入用キット、例えばQuikChangeTM Site-Directed Mutagenesis Kit(ストラタジーン社製)、GeneTailorTM Site-Directed Mutagenesis System(インビトロジェン社製)、TaKaRa Site-Directed Mutagenesis System(Mutan-K、Mutan-Super Express Km等:タカラバイオ社製)等を用いて行うことができる。   As described above, a protein comprising an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence represented by any of SEQ ID NOs: 1 to 10 is “Molecular Cloning, A Laboratory Manual 3rd”. ed. "(Cold Spring Harbor Press (2001))," Current Protocols in Molecular Biology "(John Wiley & Sons (1987-1997)," Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488-92 , Kunkel (1988) Method. Enzymol. 85: 2763-6, etc.] and the like, and such mutations such as deletion, substitution or addition of amino acids. For example, a mutant introduction kit using a site-directed mutagenesis method such as the Kunkel method or the Gapped duplex method, for example, QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene) , GeneTailorTM Site-Directed Mutagenesis S ystem (manufactured by Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc .: manufactured by Takara Bio Inc.) and the like can be used.

なお、タンパク質のアミノ酸配列に、その活性を保持しつつ1又は複数個のアミノ酸の欠失、置換、若しくは付加を導入する方法としては、上記の部位特異的変異誘発法の他にも、遺伝子を変異源で処理する方法、および遺伝子を選択的に開裂して選択されたヌクレオチドを除去、置換若しくは付加した後に連結する方法があげられる。   In addition to the site-directed mutagenesis method described above, a gene can be used as a method for introducing a deletion, substitution, or addition of one or more amino acids into a protein amino acid sequence while retaining its activity. Examples thereof include a method of treating with a mutation source and a method of ligating after selectively cleaving a gene to remove, substitute or add selected nucleotides.

なお、本明細書で用いるタンパク質の表記法は、標準的用法および当業界で慣用されている標記法に基づき、左方向はアミノ末端方向であり、そして右方向はカルボキシ末端方向である。   The protein notation used herein is based on standard usage and notation commonly used in the art, with the left direction being the amino terminal direction and the right direction being the carboxy terminal direction.

当業者であれば、当業界で公知の技術を用いて、本明細書に記載したα−グルコシダーゼの適当な変異体を設計し、作製することができる。例えば、本発明で使用するα−グルコシダーゼの生物学的活性にさほど重要でないと考えられる領域をターゲティングすることにより、本発明で使用するタンパク質の生物学的活性を損なうことなくその構造を変化させることができる。タンパク質分子中の適切な領域を同定することができる。また、類似のタンパク質間で保存されている残基および領域を同定することもできる。さらに、本発明で使用するタンパク質の生物学的活性又は構造に重要と考えられる領域中に、生物学的活性を損なわず、かつ、タンパク質のポリペプチド構造に悪影響を与えずに、保存的アミノ酸置換を導入することもできる。   One skilled in the art can design and generate suitable variants of the α-glucosidase described herein using techniques known in the art. For example, by targeting a region that is considered to be less important for the biological activity of the α-glucosidase used in the present invention, the structure of the protein used in the present invention is changed without impairing the biological activity. Can do. Appropriate regions in the protein molecule can be identified. Residues and regions conserved among similar proteins can also be identified. Furthermore, conservative amino acid substitutions may be made in regions believed to be important for the biological activity or structure of the protein used in the present invention without compromising biological activity and without adversely affecting the polypeptide structure of the protein. Can also be introduced.

また、配列番号1〜10のいずれかで示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質は、α−グルコシダーゼ活性を有するアスペルギルス属菌等の微生物から単離してもよいし、公開されている配列データベース(たとえばNCBIデータベースhttp://www.ncbi.nlm.nih.gov/)を用いて配列番号1〜10のいずれかで示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列を有する微生物を検索し、その微生物から単離してもよい。また、後述するように、α−グルコシダーゼをコードする核酸をアスペルギルス属菌からクローニングし、その核酸をもとに、配列番号1〜10のいずれかで示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質を得てもよい。さらに、後述するように、公開されている配列データベース(たとえばNCBIデータベースhttp://www.ncbi.nlm.nih.gov/)を用いて、α−グルコシダーゼをコードする核酸を検索し、その核酸をもとに、配列番号1〜10のいずれかで示されるアミノ酸配列と60%以上の同一性を有するアミノ酸配列からなるタンパク質を得てもよい。   In addition, a protein comprising an amino acid sequence having 60% or more identity with the amino acid sequence represented by any one of SEQ ID NOs: 1 to 10 may be isolated from a microorganism such as Aspergillus having α-glucosidase activity. , By using a publicly available sequence database (for example, NCBI database http://www.ncbi.nlm.nih.gov/), the amino acid sequence represented by any one of SEQ ID NOs: 1 to 10 has an identity of 60% or more. A microorganism having an amino acid sequence having the amino acid sequence may be searched and isolated from the microorganism. In addition, as will be described later, a nucleic acid encoding α-glucosidase is cloned from Aspergillus, and based on the nucleic acid, the amino acid sequence represented by any one of SEQ ID NOs: 1 to 10 has an identity of 60% or more. You may obtain the protein which consists of an amino acid sequence which has. Further, as will be described later, using a publicly available sequence database (for example, NCBI database http://www.ncbi.nlm.nih.gov/), a nucleic acid encoding α-glucosidase is searched, and the nucleic acid is detected. Based on the amino acid sequence represented by any one of SEQ ID NOs: 1 to 10, a protein comprising an amino acid sequence having 60% or more identity may be obtained.

当業者であれば、本発明で使用するタンパク質の生物学的活性又は構造に重要であり、同タンパク質のペプチドと類似するペプチドの残基を同定し、この2つのペプチドのアミノ酸残基を比較して、本発明で使用するタンパク質と類似するタンパク質のどの残基が、生物学的活性又は構造に重要なアミノ酸残基に対応するアミノ酸残基であるかを予測する、いわゆる、構造−機能研究を行うことができる。さらに、このように予測したアミノ酸残基の化学的に類似のアミノ酸置換を選択することにより、本発明で使用するタンパク質の生物学的活性が保持されている変異体を選択することもできる。また、当業者であれば、本タンパク質の変異体の三次元構造およびアミノ酸配列を解析することもできる。さらに、得られた解析結果から、タンパク質の三次元構造に関する、アミノ酸残基のアラインメントを予測することもできる。タンパク質表面上にあると予測されるアミノ酸残基は、他の分子との重要な相互作用に関与する可能性があるが、当業者であれば、上記したような解析結果に基づいて、このようなタンパク質表面上にあると予測されるアミノ酸残基を変化させないような変異体を作製することができる。さらに、当業者であれば、本発明で使用するタンパク質を構成する各々のアミノ酸残基のうち、一つのアミノ酸残基のみを置換するような変異体を作製することもできる。このような変異体を公知のアッセイ方法によりスクリーニングし、個々の変異体の情報を収集することができる。それにより、ある特定のアミノ酸残基が置換された変異体の生物学的活性が、本発明で使用するタンパク質の生物学的活性に比して低下する場合、そのような生物学的活性を呈さない場合、又は、本タンパク質の生物学的活性を阻害するような不適切な活性を生じるような場合を比較することにより、本発明で使用するタンパク質を構成する個々のアミノ酸残基の有用性を評価することができる。また、当業者であれば、このような日常的な実験から収集した情報に基づいて、単独で、又は他の突然変異と組み合わせて、本発明で使用するタンパク質の変異体としては望ましくないアミノ酸置換を容易に解析することができる。   A person skilled in the art identifies residues of peptides that are important for the biological activity or structure of the protein used in the present invention and are similar to the peptides of the proteins, and compares the amino acid residues of the two peptides. So-called structure-function studies that predict which residues in proteins similar to those used in the present invention are amino acid residues corresponding to amino acid residues important for biological activity or structure. It can be carried out. Furthermore, by selecting a chemically similar amino acid substitution of the amino acid residue predicted in this way, a mutant that retains the biological activity of the protein used in the present invention can be selected. Moreover, those skilled in the art can analyze the three-dimensional structure and amino acid sequence of the mutant of this protein. Furthermore, the alignment of amino acid residues with respect to the three-dimensional structure of a protein can be predicted from the obtained analysis results. Amino acid residues predicted to be on the protein surface may be involved in important interactions with other molecules, but those skilled in the art will be able to do this based on the analysis results described above. Mutants that do not change the amino acid residues that are predicted to be on the surface of various proteins can be made. Furthermore, those skilled in the art can also produce mutants that substitute only one amino acid residue among the amino acid residues constituting the protein used in the present invention. Such mutants can be screened by known assay methods and information on individual mutants can be collected. Thereby, when the biological activity of the mutant in which a specific amino acid residue is substituted is reduced compared to the biological activity of the protein used in the present invention, such a biological activity is exhibited. The usefulness of the individual amino acid residues constituting the protein used in the present invention by comparing the cases in which the protein is used in the present invention. Can be evaluated. In addition, those skilled in the art will recognize amino acid substitutions that are undesirable as variants of the protein used in the present invention, either alone or in combination with other mutations, based on information collected from such routine experiments. Can be easily analyzed.

アスペルギルス属菌の培養に際して用いられる培地の炭素源としては、例えば、グルコース、フルクトース、ショ糖、乳糖、澱粉、グリセリン、デキストリン、レシチン等が、単独で又は組み合わせて用いられ、また、窒素源としては、有機および無機の窒素源の何れもが利用可能であり、そのうち、有機窒素源としては、例えば、ペプトン、酵母エキス、大豆、きなこ、米ぬか、コーンスティープリカー、肉エキス、カゼイン、アミノ酸等が用いられ、一方、無機窒素源としては、硫酸アンモニウム、硝酸アンモニウム、リン酸アンモニウム、リン酸二アンモニウム、塩化アンモニウム等が用いられることとなる。更に、そのような培地に添加される無機塩や微量栄養素としては、例えば、ナトリウム、マグネシウム、カリウム、鉄、亜鉛、カルシウム、マンガンの塩類の他、ビタミン等を挙げることができる。また、上記の各種成分を含有する培地成分として小麦ふすま等の天然物を用いることも可能である。   As the carbon source of the medium used for culturing Aspergillus, for example, glucose, fructose, sucrose, lactose, starch, glycerin, dextrin, lecithin and the like are used alone or in combination, and as the nitrogen source Any of organic and inorganic nitrogen sources can be used. Among them, for example, peptone, yeast extract, soybean, kinako, rice bran, corn steep liquor, meat extract, casein, amino acid, etc. are used as the organic nitrogen source. On the other hand, as the inorganic nitrogen source, ammonium sulfate, ammonium nitrate, ammonium phosphate, diammonium phosphate, ammonium chloride and the like are used. Furthermore, examples of inorganic salts and micronutrients added to such a medium include sodium, magnesium, potassium, iron, zinc, calcium, manganese salts, vitamins, and the like. Moreover, it is also possible to use natural products, such as wheat bran, as a culture medium component containing said various components.

アスペルギルス属菌の培養は、一般に10〜40℃の温度で行なわれるが、好ましくは25〜30℃の培養温度が有利に採用され、更に、培地pHは2.5〜8.0であれば良い。そして、必要な培養期間は、菌体濃度、培地pH、培地温度、培地の構成等によって異なるが、通常、3日〜9日程度であり、目的物であるα−グルコシダーゼが最大に達した頃に、その培養が停止される。   The culture of Aspergillus is generally carried out at a temperature of 10 to 40 ° C., preferably a culture temperature of 25 to 30 ° C. is advantageously employed, and the medium pH may be 2.5 to 8.0. . The necessary culture period varies depending on the bacterial cell concentration, medium pH, medium temperature, medium composition, etc., but is usually about 3 to 9 days, and when the target α-glucosidase reaches the maximum. Then, the culture is stopped.

このようにして、アスペルギルス属菌を培養した後、本発明で使用するα−グルコシダーゼを回収する。本発明で使用するα−グルコシダーゼの活性は、培養物の菌体と培地の両方に認められ、公知の方法によって精製して利用することができる。一例として、培養液の処理物を濃縮した粗酵素液を、カラムクロマトグラフィー等に供してグルコシダーゼ活性の高い画分を回収することによって精製し、続いて、精製画分をNative-ポリアクリルアミドゲル電気泳動(たとえばGEヘルスケア社製「PhastSystem」)に供して単一バンドを回収して精製することにより、単一の精製されたα−グルコシダーゼを得ることができる。   Thus, after culture | cultivating Aspergillus genus microbe, (alpha) -glucosidase used by this invention is collect | recovered. The activity of α-glucosidase used in the present invention is found in both the cells of the culture and the medium, and can be purified and used by a known method. As an example, the crude enzyme solution obtained by concentrating the processed product of the culture solution is purified by collecting the fraction with high glucosidase activity by column chromatography or the like, and then the purified fraction is purified by Native-polyacrylamide gel electrophoresis. A single purified α-glucosidase can be obtained by subjecting to electrophoresis (for example, “PhastSystem” manufactured by GE Healthcare) and collecting and purifying a single band.

α−グルコシダーゼを用いた飲食品の改質
本発明は、上記のα−グルコシダーゼを用いて、澱粉を含む原料を加工して得られる飲食品の改良方法に関する。本発明によって澱粉の特性を変化させることにより、飲食品の食感や味質を改善することが可能となる。
The modification | reformation of the food / beverage products which use (alpha) -glucosidase This invention relates to the improvement method of the food / beverage products obtained by processing the raw material containing starch using said (alpha) -glucosidase. By changing the characteristics of starch according to the present invention, the texture and taste of food and drink can be improved.

本発明により得られた、特性が変化した澱粉は、グルコース重合度が好ましくは100以上、より好ましくは1,000以上、さらに好ましくは10,000以上であり、α−1,2結合とα−1,3結合を有することが好ましい。   The starch having changed properties obtained by the present invention has a glucose polymerization degree of preferably 100 or more, more preferably 1,000 or more, and further preferably 10,000 or more, and α-1,2 bond and α-1,3 bond. It is preferable to have.

本発明においては、目的又は効果を考慮して、澱粉を含む原料を加工する飲食品の製造のいずれの段階においてもα−グルコシダーゼを適用してよい。たとえば、飲食品の原料にα−グルコシダーゼを作用させたものを、それに続く製造又は加工の工程に供してよい。また、飲食品の中間製造物または中間加工品にα−グルコシダーゼを作用させたものを、それに続く製造又は加工の工程に供してもよい。さらに、飲食品の製造又は加工の最終段階でα−グルコシダーゼを添加して、飲食品が消費者の使用に供されるまでの間にα−グルコシダーゼが作用するようにしてもよい。   In the present invention, in consideration of the purpose or effect, α-glucosidase may be applied at any stage of the production of food and drink that processes a raw material containing starch. For example, what made (alpha) -glucosidase act on the raw material of food-drinks may be used for the process of the subsequent manufacture or process. Moreover, you may use for the process of the subsequent manufacture or processing what made alpha-glucosidase act on the intermediate product or intermediate processed product of food-drinks. Further, α-glucosidase may be added at the final stage of the production or processing of the food or drink, and the α-glucosidase may act until the food or drink is used for consumers.

また、本発明においては、澱粉を含有する原料をα−グルコシダーゼで処理したものを加工食品に添加してもよい。加工食品は、原料に何らかの加工を施して得られる食品であれば特に制限はないが、例えば、畜肉加工食品、水産加工食品、乳加工食品、調味料等が挙げられる。   Moreover, in this invention, you may add what processed the raw material containing starch with (alpha) -glucosidase to processed food. The processed food is not particularly limited as long as it is a food obtained by subjecting the raw material to some kind of processing, and examples thereof include livestock processed foods, marine processed foods, milk processed foods, seasonings and the like.

さらに本発明は、一つの態様において、上記α−グルコシダーゼを含む飲食品用の食品改良剤である。本発明の飲食品用の食品改良剤は上記α−グルコシダーゼを含んでおり、澱粉を含む原料から製造される飲食品の特性を向上させることができる。本発明の食品改良剤は、上記α−グルコシダーゼの効果を損なわない範囲で、賦形剤、保存剤、香味料、抗酸化剤、ビタミン類等の追加の成分を含むものであってよい。   Furthermore, this invention is the foodstuff improving agent for food-drinks containing the said alpha-glucosidase in one aspect. The food improver for food and drink according to the present invention contains the α-glucosidase, and can improve the properties of the food and drink manufactured from the raw material containing starch. The food improving agent of the present invention may contain additional components such as excipients, preservatives, flavoring agents, antioxidants, and vitamins as long as the effects of the α-glucosidase are not impaired.

本発明の食品改良剤は、上記α−グルコシダーゼを乾燥重量として1〜99%含むものであってよく、5%〜80%含むものであってよく、10%〜50%含むものであってよい。   The food improver of the present invention may contain 1 to 99% of the above α-glucosidase as a dry weight, may contain 5% to 80%, and may contain 10% to 50%. .

本発明の食品改良剤は、調製後、必要に応じて殺菌処理を行った後、飲食品の食感や物性の改良剤として、種々の飲食品に使用することができる。   The food improver of the present invention can be used for various foods and drinks as a food texture and physical properties improver after preparation and after sterilizing treatment as necessary.

以下、実験例を示しつつ本発明をより具体的に説明するが、本発明は、下記の実験例に限定されるものではない。また、特に記載しない限り、本明細書において濃度などは重量基準であり、数値範囲はその端点を含むものとして記載される。   Hereinafter, the present invention will be described more specifically with reference to experimental examples, but the present invention is not limited to the following experimental examples. Unless otherwise specified, in this specification, the concentration and the like are based on weight, and the numerical range is described as including the end points.

実験例1:α−1,2結合およびα−1,3結合を有する糖質を生成する酵素の取得
(実験例1−1)分析法
1)α−グルコシダーゼ活性の分析方法
マルトースを基質とした加水分解活性にて評価した。具体的には、70μLの試料に対して、5%マルトース水溶液を10μL、100mM酢酸緩衝液(pH4.0)を20μL加え、50℃で10分間反応させた後、沸騰浴で5分間処理することで反応を停止した。反応液中に生成したグルコース量をグルコースCIIテストワコー(和光純薬工業製)にて測定した。1分間に1μmolのマルトースを分解する酵素量を1Uと定義した。
Experimental Example 1: Acquisition of an enzyme that produces a carbohydrate having an α-1,2 bond and an α-1,3 bond (Experimental Example 1-1) Analytical method 1) Analytical method of α-glucosidase activity Using maltose as a substrate The hydrolysis activity was evaluated. Specifically, 10 μL of a 5% maltose aqueous solution and 20 μL of 100 mM acetate buffer (pH 4.0) are added to a 70 μL sample, reacted at 50 ° C. for 10 minutes, and then treated in a boiling bath for 5 minutes. The reaction was stopped. The amount of glucose produced in the reaction solution was measured with Glucose CII Test Wako (manufactured by Wako Pure Chemical Industries). The amount of enzyme that decomposes 1 μmol of maltose per minute was defined as 1 U.

2)二,三糖類成分の分析方法
試料中の二,三糖類成分中の、α−1,2、α−1,3、α−1,4、α−1,6結合を有するオリゴ糖の組成は、試料を以下の条件でアミノカラムによる分析に供して算出した。各ピークは、あらかじめ同条件で分析した標準糖の溶出時間と比較して同定した。
標準糖:
二糖類の標準糖は市販試薬を用い、三糖類の標準糖には市販試薬または以下の手法で得られる組成物を用いた。ニゲロトリオース、ニゲロシルグルコースはBiochimica et Biophysica Acta 第1700巻 189ページ 2004年に記載された手法に従い調製し標準糖とした。コージビオシルグルコースは特開2003−169665号公報に記載された手法に従い調製し標準糖とした。
HPLC測定条件 :
カラム: Unison UK-Amino 250×3mm (インタクト製)
カラム温度 : 50℃
溶媒グラディエント:
2) Analytical method of di- and trisaccharide components Of disaccharide and trisaccharide components in a sample, oligosaccharides having α-1,2, α-1,3, α-1,4, α-1,6 linkages. The composition was calculated by subjecting the sample to analysis using an amino column under the following conditions. Each peak was identified by comparison with the elution time of a standard sugar analyzed in advance under the same conditions.
Standard sugar:
Commercially available reagents were used as standard sugars for disaccharides, and commercially available reagents or compositions obtained by the following procedures were used as standard sugars for trisaccharides. Nigerotriose and nigerosyl glucose were prepared according to the procedure described in Biochimica et Biophysica Acta Vol. 1700, page 189, 2004, and used as standard sugars. Kojibiosyl glucose was prepared as a standard sugar according to the method described in JP-A No. 2003-169665.
HPLC measurement conditions:
Column: Unison UK-Amino 250 x 3mm (Intact)
Column temperature: 50 ° C
Solvent gradient:

(実験例1−2)アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼの製造・精製
特開2011−177118に記載のアスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来のα−グルコシダーゼは以下のように調製した。
(Experimental example 1-2) Production and purification of α-glucosidase derived from Aspergillus niger ATCC10254 strain α-glucosidase derived from Aspergillus niger ATCC10254 strain described in JP2011-177118A is as follows. Prepared.

培地として、澱粉:2%、ペプトン:0.25%、酵母エキス:0.25%、大豆粉:1%、リン酸一カリウム:0.03%、硫酸マグネシウム:0.01%、塩化カルシウム:0.01%、及び塩化ナトリウム:0.01%を含み、pH6.5としたものを準備し、培地100mLを、500mL容の三角フラスコに入れて、蒸気滅菌した後、Aspergillus niger ATCC 10254株を植菌し、30℃の温度で3日間、振とう培養を行なった。   As media, starch: 2%, peptone: 0.25%, yeast extract: 0.25%, soybean flour: 1%, monopotassium phosphate: 0.03%, magnesium sulfate: 0.01%, calcium chloride: Prepare a solution containing 0.01% and sodium chloride: 0.01% and pH 6.5, put 100 mL of the medium into a 500 mL Erlenmeyer flask and sterilize by steam, and then remove Aspergillus niger ATCC 10254 strain. Inoculated and cultured with shaking at 30 ° C. for 3 days.

上記の種を滅菌水で80倍に希釈し、その10mLを500mLの三角フラスコ内に添加し、オートクレーブ滅菌した10gの小麦ふすまを入れて、水分が均一になるようによく攪拌した後、30℃で4日間、固体培養を行なった。培養終了後、100gの滅菌水で小麦ふすまを洗浄し、16,000×g、30分、4℃で遠心して不溶物を除いた培養液を得た。   Dilute the above seed 80 times with sterilized water, add 10 mL of it into a 500 mL Erlenmeyer flask, add 10 g of wheat bran that has been sterilized by autoclaving, and stir well so that the water content becomes uniform. The solid culture was performed for 4 days. After completion of the culture, the wheat bran was washed with 100 g of sterilized water, and centrifuged at 16,000 × g for 30 minutes at 4 ° C. to obtain a culture solution from which insoluble matters were removed.

得られた培養液を濃縮し、以下の4段階のクロマト分離を行った。   The obtained culture solution was concentrated, and the following four steps of chromatographic separation were performed.

(A)陰イオン交換クロマトグラフィー(1回目):培養液を限外ろ過により20mM酢酸ナトリウム緩衝液pH5.5に置換し、0.2μmのフィルターを通過したものを酵素原液として用いた。分離樹脂はTOYOPEARL DEAE-650M(東ソー社製)を用い、樹脂量(以後CVと記載)は100mLとした。   (A) Anion exchange chromatography (first time): The culture solution was replaced with 20 mM sodium acetate buffer pH 5.5 by ultrafiltration, and the solution passed through a 0.2 μm filter was used as the enzyme stock solution. The separation resin was TOYOPEARL DEAE-650M (manufactured by Tosoh Corporation), and the amount of resin (hereinafter referred to as CV) was 100 mL.

初発の緩衝液として20mM 酢酸ナトリム緩衝液pH5.5を用いて、0→0.4M塩化ナトリウムの直線的濃度勾配(8CV)で溶出した。溶出液を、(実験例1−1)、1)の方法に従って分析し、マルトース分解活性を含む画分を回収した。   Elution was performed using a linear concentration gradient (8 CV) of 0 to 0.4 M sodium chloride using 20 mM sodium acetate buffer pH 5.5 as an initial buffer. The eluate was analyzed according to the method of (Experimental Example 1-1) and 1), and fractions containing maltose decomposition activity were collected.

(B)陰イオン交換クロマトグラフィー(2回目):(A)の工程で得られた画分を、限外ろ過により(A)と同じ初発緩衝液に置換し、再度陰イオン交換樹脂による分離を行った。CV=25mL、0→0.25M 塩化ナトリウムの直線的濃度勾配(10CV)の直線的濃度勾配で溶出し、溶出液を、(実験例1−1)、1)の方法に従って分析し、マルトース分解活性を含む画分を回収した。   (B) Anion exchange chromatography (second time): The fraction obtained in the step (A) is replaced with the same initial buffer as in (A) by ultrafiltration, and again separated by an anion exchange resin. went. CV = 25 mL, eluting with a linear concentration gradient of 0 to 0.25 M sodium chloride (10 CV), the eluate was analyzed according to the method of (Experimental Example 1-1), 1), and maltose decomposition Fractions containing activity were collected.

(C)ゲルろ過クロマトグラフィー:上記(B)の工程で得られた画分を、ゲルろ過クロマトグラフィーにより分画した。(B)の工程で得られた画分は限外ろ過によって0.2Mの塩化ナトリウムを含む20mM 酢酸緩衝液pH5.5 に置換すると同時に、1mLまで濃縮した。同じ緩衝液で平衡化したカラムに供して分画した。得られた画分を、(実験例1−1)、1)の方法に従って分析し、マルトース分解活性を含む画分を回収した。分画は、HiLoad 16/60 Superdex 200pg(GEヘルスケア・ジャパン社製)を2本と、HiLoad 16/60 Superdex 75pg(GEヘルスケア・ジャパン社製)1本を連結したカラムを用いた。   (C) Gel filtration chromatography: The fraction obtained in the step (B) was fractionated by gel filtration chromatography. The fraction obtained in the step (B) was replaced by 20 mM acetate buffer pH 5.5 containing 0.2 M sodium chloride by ultrafiltration and simultaneously concentrated to 1 mL. Fractions were applied to a column equilibrated with the same buffer. The obtained fraction was analyzed according to the method of (Experimental Example 1-1) and 1), and the fraction containing maltose-degrading activity was collected. For the fractionation, a column in which two HiLoad 16/60 Superdex 200 pg (manufactured by GE Healthcare Japan) and one HiLoad 16/60 Superdex 75 pg (manufactured by GE Healthcare Japan) were connected was used.

(D)等電点クロマトグラフィー(クロマトフォーカシング):上記(C)の工程で得られた画分を回収し、クロマトフォーカシングを行った。カラムはMonoP 5/200 GL(GEヘルスケア・ジャパン社製)を使用した。初発緩衝液は25mM ヒスチジン−塩酸緩衝液pH5.5、溶出緩衝液はPolybuffer74−塩酸緩衝液pH3.5(GEヘルスケア・ジャパン社製)を使用してpH5.5から3.5の勾配で溶出した。溶出液を、(実験例1−1)、1)の方法に従って分析し、マルトース分解活性を含む画分を回収した。得られた画分を、α‐グルコシダーゼの精製酵素とした。   (D) Isoelectric focusing (chromatographic focusing): The fraction obtained in the step (C) was collected and chromatofocused. MonoP 5/200 GL (manufactured by GE Healthcare Japan) was used as the column. The initial buffer is 25 mM histidine-hydrochloric acid buffer pH 5.5, and the elution buffer is Polybuffer 74-hydrochloric acid buffer pH 3.5 (manufactured by GE Healthcare Japan) with a gradient of pH 5.5 to 3.5. did. The eluate was analyzed according to the method of (Experimental Example 1-1) and 1), and fractions containing maltose decomposition activity were collected. The obtained fraction was used as a purified enzyme for α-glucosidase.

(実験例1−3)アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼによるマルトース転移物の分析
(実験例1−2)で得られたアスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来の精製酵素0.5mL(0.9U/mL)を、45%マルトース1mLに作用させ、(最終濃度30%)、55℃で48時間反応後に、沸騰浴槽で10分間加熱し、酵素を失活させた。得られた反応生成物は(実験例1−1)、2)の方法に従って二,三糖類成分の組成を分析した。結果を図1に示す。反応生成物中にα−1,2結合およびα−1,3結合を有する糖質が認められた。
(Experimental example 1-3) Analysis of maltose transfer product by α-glucosidase derived from Aspergillus niger ATCC10254 strain Purified enzyme derived from Aspergillus niger ATCC10254 strain obtained in (Experimental example 1-2) 0.5 mL (0.9 U / mL) was allowed to act on 1 mL of 45% maltose (final concentration 30%), reacted at 55 ° C. for 48 hours, and then heated in a boiling bath for 10 minutes to deactivate the enzyme. The obtained reaction product was analyzed for the composition of the di- and trisaccharide components according to the method of (Experimental Example 1-1) and 2). The results are shown in FIG. Carbohydrates having α-1,2 bonds and α-1,3 bonds were observed in the reaction product.

(実験例1−4)アスペルギルス・ニジュール(Aspergillus niger)NBRC4043株由来α−グルコシダーゼの製造・精製および、転移物の分析
特開2011−177118に記載のアスペルギルス・ニジュール(Aspergillus niger)NBRC4043株を培養して得られた培養液よりα−グルコシダーゼの精製酵素を調製した。α−グルコシダーゼの精製方法は(実験例1−2)で行った精製方法と同様の方法で行った。得られた精製酵素を用いて、(実験例1−3)で行った分析方法と同様の方法でマルトースを基質とした場合の転移物を分析した。アスペルギルス・ニジュール(Aspergillus niger)NBRC4043株由来α−グルコシダーゼを用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。
(Experimental Example 1-4) Production and purification of α-glucosidase derived from Aspergillus niger NBRC4043 strain and analysis of transferred product Aspergillus niger NBRC4043 strain described in JP-A-2011-177118 is cultured. A purified enzyme of α-glucosidase was prepared from the obtained culture broth. The purification method of α-glucosidase was the same as the purification method performed in (Experimental Example 1-2). Using the purified enzyme thus obtained, the transferred product in the case where maltose was used as a substrate was analyzed in the same manner as in the analysis method performed in (Experimental Example 1-3). The reaction product obtained using α-glucosidase derived from Aspergillus niger NBRC4043 contains α-glucosidase in the same manner as the reaction product obtained using α-glucosidase derived from Aspergillus niger ATCC10254. Carbohydrates having 1,2 bonds and α-1,3 bonds were observed.

(実験例1−5)アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)を強発現する遺伝子組み換え株の作製
本発明者らは、特開2011−177118にて、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼに以下のアミノ酸配列群(a)〜(e)が含まれていることを確認している。
配列(a):LLVEYQTDERLHVMIYDADEEVYQVPESVLPR、
配列(b):TWLPDDPYVYGLGEHSDPMR、
配列(c):IPLETMWTDIDYMDKR、
配列(d):VFTLDPQR、
配列(e):WASLGAFYTFYR
上記配列群を5つすべて有するα−グルコシダーゼとして、特開2011−177118に記載されている、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)を強発現する遺伝子組み換え株を作製した。アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)のアミノ酸配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させたPCR産物を、In Fusion HD Cloning Kit(クロンテック製)を用いて、高発現プロモーターとしてアスペルギルス・オリゼー(Aspergillus oryzae)RIB40由来の翻訳伸長因子TEF1のプロモーター領域とともに、制限酵素Kpn I、Hind IIIで消化したpPTR II(タカラバイオ製)に導入しプラスミドベクターを構築した。プラスミドの設計を図2に示す。そしてアスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株を宿主としてプロトプラスト−PEG法(Agricultural and Biological Chemistry 第51巻 2549ページ 1987年)を行い、遺伝子組み換え株を作製した。
(Experimental Example 1-5) Production of a genetically modified strain that strongly expresses α-glucosidase derived from Aspergillus niger CBS513.88 strain (Accession no. XP — 001389510) The present inventors disclosed in JP2011-177118A Aspergillus niger ATCC 10254 strain-derived α-glucosidase has been confirmed to contain the following amino acid sequence groups (a) to (e).
Sequence (a): LLVEYQTDERLHVMIYDADEVYQVPESVLPR,
Sequence (b): TWLPDDPYVYGLGEHSDPMR,
Sequence (c): IPLETMWTDIDYMDKR,
Sequence (d): VFTLDPQR,
Sequence (e): WASLGAFYTFYR
As an α-glucosidase having all five of the above-mentioned sequence groups, a gene that strongly expresses α-glucosidase (Accession no. XP_001389510) derived from Aspergillus niger CBS513.88 strain described in JP2011-177118A A recombinant strain was produced. A PCR product obtained by amplifying from the start codon of the DNA encoding the amino acid sequence of Aspergillus niger CBS513.88 strain-derived α-glucosidase (Accession no. XP_001389510) to 300 bp downstream of the start codon so as to include a terminator , PPTR II digested with restriction enzymes Kpn I and Hind III together with the promoter region of translation elongation factor TEF1 derived from Aspergillus oryzae RIB40 as a high expression promoter using In Fusion HD Cloning Kit (Clontech) The plasmid vector was constructed by introducing the product into Takara Bio. The plasmid design is shown in FIG. Then, a protoplast-PEG method (Agricultural and Biological Chemistry Vol. 51, page 2549, 1987) was carried out using Aspergillus nidulans ATCC38163 as a host to produce a genetically modified strain.

(実験例1−6)アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)の製造および、転移物の分析
(実験例1−5)で作製した遺伝子組み換え株を培養し、α−グルコシダーゼ溶液を調製した。2L容の三角フラスコに、炭素源をグリセロールに改変したツァペック ドックス培地1Lを入れて、蒸気滅菌した後、ピリチアミンを添加し、遺伝子組換え株を植菌し、37℃の温度で4日間、振とう培養を行なった。そして、ミラクロス(メルク・ミリポア社製)で集菌、蒸留水で洗浄し、水分をよく搾った。
(Experimental Example 1-6) Production of α-glucosidase derived from Aspergillus niger CBS513.88 strain (Accession no. XP — 001389510) and analysis of transferred product Recombinant strain prepared in (Experimental Example 1-5) After culturing, an α-glucosidase solution was prepared. Into a 2 L Erlenmeyer flask, 1 L of Czapek Dox's medium in which the carbon source is changed to glycerol is put, steam sterilized, pyrithiamine is added, the genetically modified strain is inoculated, and shaken at a temperature of 37 ° C. for 4 days. Culture was performed. Then, the cells were collected with Miracloth (manufactured by Merck Millipore), washed with distilled water, and the water was squeezed well.

得られた菌体のうち100gに、20mM 酢酸ナトリウム緩衝液(pH5.5)を200mL加え、ヒスコトロン(日音医理科器械製作所社製)で20,000rpm、30秒間の破砕を5回繰り返した。そして10,000rpm、20分間遠心分離を行って上清を回収し、α−グルコシダーゼ溶液とした。取得した酵素は、(実験例1−3)で行った方法と同様の方法でマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no. XP_001389510)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   200 mL of 20 mM sodium acetate buffer solution (pH 5.5) was added to 100 g of the obtained bacterial cells, and disruption was repeated 5 times with Hiscotron (manufactured by Nisshin Medical Science Instrument Co., Ltd.) at 20,000 rpm for 5 seconds. The supernatant was recovered by centrifugation at 10,000 rpm for 20 minutes to obtain an α-glucosidase solution. The acquired enzyme analyzed the transfer thing at the time of making maltose a substrate by the method similar to the method performed by (Experimental example 1-3). As a result, α-glucosidase derived from Aspergillus niger CBS513.88 strain (Accession no. XP_001389510) was used as the reaction product obtained from Aspergillus niger ATCC10254 strain. Similar to the reaction product obtained, carbohydrates having α-1,2 bonds and α-1,3 bonds were observed.

(実験例1−7)アスペルギルス・ニジュール(Aspergillus niger)ATCC1015株および、アスペルギルス・カワチ(Aspergillus kawachii)IFO4308株由来のα−グルコシダーゼの製造および、転移物の分析
NCBIデータベース(http://www.ncbi.nlm.nih.gov/)を用いて、上記アミノ酸配列群(a)〜(e)の5つすべてのアミノ酸配列を有するα−グルコシダーゼと推測される配列を検索した。その結果、アスペルギルス・ニジュール(Aspergillus niger)ATCC1015株(α−グルコシダーゼのAccession no.:EHA26885)および、アスペルギルス・カワチ(Aspergillus kawachii)IFO4308株(α−グルコシダーゼのAccession no.:GAA87366)がアミノ酸配列群(a)〜(e)の5つをすべて有することが分かった。
(Experimental Example 1-7) Production of α-glucosidase derived from Aspergillus niger ATCC1015 strain and Aspergillus kawachii IFO4308 strain and analysis of transferred product
Using the NCBI database (http://www.ncbi.nlm.nih.gov/), a sequence presumed to be α-glucosidase having all five amino acid sequences of the above amino acid sequence groups (a) to (e) Searched for. As a result, an Aspergillus niger ATCC1015 strain (α-glucosidase Accession no .: EHA26885) and an Aspergillus kawachii IFO4308 strain (α-glucosidase Accession no .: GAA87366) are amino acid sequence groups ( It was found to have all five of a) to (e).

アスペルギルス・ニジュール(Aspergillus niger)ATCC1015株由来のα−グルコシダーゼ(Accession no.:EHA26885、配列番号2)および、アスペルギルス・カワチ(Aspergillus kawachii)IFO4308株由来のα−グルコシダーゼ(Accession no.:GAA87366、配列番号3)の各アミノ酸配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させるためのプライマーを用いてPCRを行い、得られたPCR産物を用いて、(実験例1−5)で行った遺伝子組み換え株作製方法と同様の方法で遺伝子組み換え株を作製した。ATCC1015株由来のα−グルコシダーゼ遺伝子を導入して得られた遺伝子組換え株から抽出したmRNAを鋳型として、逆転写反応によってcDNAを合成した。このcDNAについてシークエンス解析を行い、cDNAの全長配列を決定した。さらに、前記cDNA配列からα−グルコシダーゼのアミノ酸配列を決定した。決定したアミノ酸配列を配列番号4に示す。このアミノ酸配列を、NCBIデータベースでアスペルギルス・ニジュール(Aspergillus niger)ATCC1015株由来のα−グルコシダーゼ(Accession no.:EHA26885、配列番号2)のアミノ酸配列として公開されていたものと比較したところ、76残基長いアミノ酸配列となっていた。   Α-glucosidase derived from Aspergillus niger ATCC1015 strain (Accession no .: EHA26885, SEQ ID NO: 2) and α-glucosidase derived from Aspergillus kawachii IFO4308 strain (Accession no .: GAA87366, SEQ ID NO: 3) PCR was performed using a primer for amplifying from the start codon of DNA encoding each amino acid sequence to 300 bp downstream of the termination codon so as to include a terminator, and the obtained PCR product was used (Experimental example) A genetically modified strain was prepared in the same manner as the method for preparing a genetically modified strain performed in 1-5). CDNA was synthesized by reverse transcription using mRNA extracted from a gene recombinant strain obtained by introducing an α-glucosidase gene derived from ATCC1015 strain as a template. This cDNA was subjected to sequence analysis to determine the full-length sequence of the cDNA. Furthermore, the amino acid sequence of α-glucosidase was determined from the cDNA sequence. The determined amino acid sequence is shown in SEQ ID NO: 4. When this amino acid sequence was compared with that published as an amino acid sequence of α-glucosidase (Accession no .: EHA26885, SEQ ID NO: 2) derived from the Aspergillus niger ATCC1015 strain in the NCBI database, 76 residues The amino acid sequence was long.

(実験例1−6)で行った方法と同様の方法でα−グルコシダーゼ溶液を取得し、(実験例1−3)で行った分析方法と同様にマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・ニジュール(Aspergillus niger)ATCC1015株由来のα−グルコシダーゼ(配列番号4)および、アスペルギルス・カワチ(Aspergillus kawachii)IFO4308株由来のα−グルコシダーゼ(Accession no.:GAA87366)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来のα−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   An α-glucosidase solution is obtained in the same manner as in (Experimental Example 1-6), and the transferred product when maltose is used as a substrate is analyzed in the same manner as in the analytical method performed in (Experimental Example 1-3). did. As a result, α-glucosidase (SEQ ID NO: 4) derived from Aspergillus niger ATCC1015 strain and α-glucosidase (Accession no .: GAA87366) derived from Aspergillus kawachii IFO4308 strain were obtained. In the reaction product, saccharides having α-1,2 bond and α-1,3 bond were recognized as in the reaction product obtained using α-glucosidase derived from Aspergillus niger ATCC10254 strain. It was.

(実験例1−8)アスペルギルス・ニジュール(Aspergillus niger)NBRC4066株由来のα−グルコシダーゼの製造および、転移物の分析
(実験例1−7)で設計した、アスペルギルス・ニジュール(Aspergillus niger)ATCC1015株由来のα−グルコシダーゼ(Accession no.:EHA26885)のアミノ酸配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させるためのプライマーを用いて、アスペルギルス属の分譲株から抽出したゲノムDNAを鋳型としてPCRを行った。得られたPCR産物を用いて遺伝子配列を決定した(配列番号11)。PCRによる増幅が認められた分譲株について、得られたPCR産物を用いて、(実験例1−5)で行った遺伝子組み換え株作製方法と同様の方法で遺伝子組み換え株を作製した。(実験例1−6)で行った方法と同様の方法でα−グルコシダーゼ溶液を取得し、(実験例1−3)で行った分析方法と同様の方法でマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・ニジュール(Aspergillus niger)NBRC4066株由来のα−グルコシダーゼによる反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来のα−グルコシダーゼと同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。また、このアスペルギルス・ニジュールNBRC4066株由来のα−グルコシダーゼ遺伝子を導入して得られた遺伝子組換え株から抽出したmRNAを鋳型として、逆転写反応によってcDNAを合成した。このcDNAについてシークエンス解析を行い、cDNAの全長配列を決定した(配列番号12)。さらに、前記cDNA配列からα−グルコシダーゼのアミノ酸配列を決定した。決定したアミノ酸配列を配列番号5に示す。アスペルギルス・ニジュール(Aspergillus niger)NBRC4066株のα−グルコシダーゼ(配列番号5)のアミノ酸配列は、上記アミノ酸配列群(a)〜(e)の5つをすべて有していた。
(Experimental Example 1-8) Production of α-glucosidase derived from Aspergillus niger NBRC4066 strain and analysis of transferred product (Experimental Example 1-7), derived from Aspergillus niger ATCC1015 strain Extraction from Aspergillus genus strains using primers for amplifying from the start codon of DNA encoding the amino acid sequence of α-glucosidase (Accession no .: EHA26885) to 300 bp downstream of the stop codon so as to include a terminator PCR was performed using the genomic DNA as a template. The gene sequence was determined using the obtained PCR product (SEQ ID NO: 11). About the consignment strain in which amplification by PCR was observed, using the obtained PCR product, a genetically modified strain was prepared in the same manner as the method for preparing a genetically modified strain performed in (Experimental Example 1-5). An α-glucosidase solution was obtained in the same manner as in (Experimental Example 1-6), and the transferred product when maltose was used as a substrate in the same manner as the analytical method in (Experimental 1-3) Was analyzed. As a result, the reaction product of α-glucosidase derived from Aspergillus niger NBRC4066 strain contains α-1,2 bonds and α-glucosidase in the same manner as α-glucosidase derived from Aspergillus niger ATCC10254 strain. Carbohydrates having 1,3 bonds were observed. Moreover, cDNA was synthesized by reverse transcription reaction using as an template the mRNA extracted from the gene recombinant strain obtained by introducing the α-glucosidase gene derived from the Aspergillus nidu NBRC4066 strain. The cDNA was subjected to sequence analysis to determine the full-length cDNA sequence (SEQ ID NO: 12). Furthermore, the amino acid sequence of α-glucosidase was determined from the cDNA sequence. The determined amino acid sequence is shown in SEQ ID NO: 5. The amino acid sequence of α-glucosidase (SEQ ID NO: 5) of Aspergillus niger NBRC4066 strain had all five amino acid sequences (a) to (e).

(実験例1−9)アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株由来のα−グルコシダーゼの製造および、転移物の分析
NCBIデータベース(http://www.ncbi.nlm.nih.gov/)を用いて、上記アミノ酸配列群(a)〜(e)から選択される1以上のアミノ酸配列を有する、α−グルコシダーゼと推測される配列を検索した。その結果、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株(α−グルコシダーゼのAccession no.:ABF50846、配列番号6)が、アミノ酸配列(e)を有する、α−グルコシダーゼと推測される配列を持っていた。(実験例1−5)の手法に従って、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株由来のα−グルコシダーゼ(Accession no.:ABF50846)のアミノ酸配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させたPCR産物を用いて、遺伝子組み換え株を作製した。
(Experimental Example 1-9) Production of α-glucosidase derived from Aspergillus nidulans ATCC38163 strain and analysis of transferred product
Presumed to be α-glucosidase having one or more amino acid sequences selected from the above amino acid sequence groups (a) to (e) using NCBI database (http://www.ncbi.nlm.nih.gov/) The sequence to be searched was searched. As a result, the Aspergillus nidulans ATCC38163 strain (Accession no .: ABF50846, SEQ ID NO: 6 of α-glucosidase) had an amino acid sequence (e) and a sequence presumed to be α-glucosidase. . According to the method of (Experimental Example 1-5), a terminator is included from the start codon of DNA encoding the amino acid sequence of α-glucosidase (Accession no .: ABF50846) derived from Aspergillus nidulans ATCC38163 strain. A gene recombinant strain was prepared using a PCR product obtained by amplifying up to 300 bp downstream of the codon.

(実験例1−6)の方法に従ってα−グルコシダーゼ溶液を取得し、(実験例1−3)の方法に従ってマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株由来α−グルコシダーゼ(Accession no.:ABF50846)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来のα-グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   An α-glucosidase solution was obtained according to the method of (Experimental Example 1-6), and the transferred product was analyzed using maltose as a substrate according to the method of (Experimental Example 1-3). As a result, α-glucosidase derived from Aspergillus niger ATCC10254 was added to the reaction product obtained using α-glucosidase derived from Aspergillus nidulans ATCC38163 (Accession no .: ABF50846). Similar to the reaction product obtained by use, carbohydrates having α-1,2 bonds and α-1,3 bonds were observed.

(実験例1−10)アスペルギルス・オリゼー(Aspergillus oryzae)RIB40株、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株、アスペルギルス・アキュレタス(Aspergillus aculeatus)ATCC16872株由来のα−グルコシダーゼの製造および、転移物の分析
NCBIデータベース(http://www.ncbi.nlm.nih.gov/)を用いて(実験例1−5)に記載した、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と同一性の高い配列を検索した。CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と同一性の高い、α−グルコシダーゼと推測される配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させたPCR産物を用いて、(実験例1−5)で行った手法と同様の手法で遺伝子組み換え株を作製した。
Experimental Example 1-10 Production of α-glucosidase from Aspergillus oryzae RIB40 strain, Aspergillus nidulans ATCC38163 strain, Aspergillus aculeatus ATCC16872 strain and analysis of transferred product
Α-glucosidase derived from Aspergillus niger CBS513.88 strain (Accession) described in (Experimental Example 1-5) using NCBI database (http://www.ncbi.nlm.nih.gov/) no .: XP_001389510) was searched for a sequence having high identity. Downstream of the stop codon so that it contains a terminator from the start codon of DNA encoding the sequence presumed to be α-glucosidase, which is highly identical to the amino acid sequence of α-glucosidase (Accession no .: XP_001389510) derived from CBS513.88 Using the PCR product amplified up to 300 bp, a genetically engineered strain was prepared in the same manner as in (Experimental Example 1-5).

(実験例1−6)の手法に従ってα−グルコシダーゼ溶液を取得し、(実験例1−3)で行った分析方法と同様の方法でマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・オリゼー(Aspergillus oryzae)RIB40株の由来α−グルコシダーゼ(Accession no.:XP_001818060、配列番号7)、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株由来のα−グルコシダーゼ(Accession no.:ABF50883、配列番号8)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   An α-glucosidase solution was obtained according to the method of (Experimental Example 1-6), and the transferred product was analyzed using maltose as a substrate in the same manner as the analytical method performed in (Experimental Example 1-3). As a result, α-glucosidase derived from Aspergillus oryzae RIB40 strain (Accession no .: XP — 001818060, SEQ ID NO: 7), α-glucosidase derived from Aspergillus nidulans ATCC38163 strain (Accession no .: ABF50883) , SEQ ID NO: 8), the reaction product obtained using α-glucosidase derived from Aspergillus niger ATCC 10254 strain, α-1,2 bond and α-1 , Carbohydrates with 3 bonds were observed.

また、Aspergillus Genome Database(http://www.Aspergillusgenome.org/)を用いて(実験例1−5)に記載した、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と同一性の高い配列を検索した。CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と同一性の高い、α−グルコシダーゼと推測される配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させたPCR産物を用いて、(実験例1−5)で行った方法と同様の方法で遺伝子組み換え株を作製した。   In addition, α-glucosidase derived from Aspergillus niger CBS513.88 strain described in (Experimental Example 1-5) using Aspergillus Genome Database (http://www.Aspergillusgenome.org/) (Accession no .: XP_001389510) was searched for sequences with high identity. Downstream of the stop codon so that it contains a terminator from the start codon of DNA encoding the sequence presumed to be α-glucosidase, which is highly identical to the amino acid sequence of α-glucosidase (Accession no .: XP_001389510) derived from CBS513.88 Using the PCR product amplified up to 300 bp, a genetically modified strain was prepared in the same manner as in (Experimental Example 1-5).

(実験例1−6)で行った方法と同様の方法でα−グルコシダーゼ溶液を取得し、(実験例1−3)で行った方法と同様の方法でマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・アキュレタス(Aspergillus aculeatus)ATCC16872株の由来α−グルコシダーゼ(Accession no.:Aacu16872_025147、配列番号9)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   An α-glucosidase solution was obtained by the same method as that used in (Experimental Example 1-6), and the transferred product when maltose was used as a substrate by the same method as that used in (Experimental Example 1-3) was used. analyzed. As a result, the reaction product obtained using the α-glucosidase derived from Aspergillus aculeatus ATCC16872 (Accession no .: Aacu16872_025147, SEQ ID NO: 9) includes α derived from Aspergillus niger ATCC10254. -Carbohydrates having α-1,2 bonds and α-1,3 bonds were observed as in the reaction product obtained using glucosidase.

(実験例1−11)アスペルギルス・ソヤ(Aspergillus sojae)NBRC4239株由来のα−グルコシダーゼの製造および、転移物の分析
NCBIデータベース(http://www.ncbi.nlm.nih.gov/)を用いて、アスペルギルス・ソヤ(Aspergillus sojae)由来のゲノムシーケンスを得た。ゲノムシーケンスよりα−グルコシダーゼと推定されるアミノ酸配列を定義し、(実験例1−5)に記載した、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と同一性の高い配列を抽出した。抽出したアミノ酸配列をコードするDNAの開始コドンからターミネーターを含むように終始コドンの下流300bpまでを増幅させたPCR産物を用いて、(実験例1−5)で行った方法と同様の方法で遺伝子組み換え株を作製した。
(Experimental example 1-11) Production of α-glucosidase derived from Aspergillus sojae NBRC4239 strain and analysis of transferred product
Genomic sequences derived from Aspergillus sojae were obtained using the NCBI database (http://www.ncbi.nlm.nih.gov/). An amino acid sequence deduced to be α-glucosidase from the genome sequence is defined, and α-glucosidase derived from Aspergillus niger CBS513.88 strain described in (Experimental Example 1-5) (Accession no .: XP_001389510) A sequence having high identity with the amino acid sequence of was extracted. Using a PCR product obtained by amplifying from the start codon of the DNA encoding the extracted amino acid sequence to 300 bp downstream of the stop codon so as to include a terminator, the gene was produced in the same manner as in (Experimental Example 1-5). A recombinant strain was produced.

(実験例1−6)で行った方法と同様の方法でα−グルコシダーゼ溶液を取得し、(実験例1−3)で行った方法と同様の方法でマルトースを基質とした場合の転移物を分析した。その結果、アスペルギルス・ソヤ(Aspergillus sojae)NBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて得た反応生成物には、アスペルギルス・ニジュール(Aspergillus niger)ATCC10254株由来α−グルコシダーゼを用いて得た反応生成物と同様にα−1,2結合およびα−1,3結合を有する糖質が認められた。   An α-glucosidase solution was obtained by the same method as that used in (Experimental Example 1-6), and the transferred product when maltose was used as a substrate by the same method as that used in (Experimental Example 1-3) was used. analyzed. As a result, the reaction product obtained using Aspergillus sojae NBRC4239 strain α-glucosidase (SEQ ID NO: 10) was obtained using Aspergillus niger ATCC10254 strain α-glucosidase. Similar to the reaction product, carbohydrates having α-1,2 bonds and α-1,3 bonds were observed.

(実験例1−12)α−1,2結合とα−1,3結合を有する糖質を生成するα−グルコシダーゼのアミノ酸配列の比較
(実験例1−5)〜(実験例1−11)で精製したAspergillus niger、ATCC1015株由来のα−グルコシダーゼ(配列番号4)、NBRC4066株由来のα−グルコシダーゼ(配列番号5)、アスペルギルス・カワチ(Aspergillus kawachii)IFO4308株由来のα−グルコシダーゼ(Accession no.:GAA87366)、アスペルギルス・オリゼー(Aspergillus oryzae)RIB40株由来のα−グルコシダーゼ(Accession no.:XP_001818060)、アスペルギルス・ソヤ(Aspergillus sojae)NBRC4239株由来のα−グルコシダーゼ(配列番号10)、アスペルギルス・アキュレタス(Aspergillus aculeatus)ATCC16872株由来のα−グルコシダーゼ(Accession no.:Aacu16872_025147)および、アスペルギルス・ニデュランス(Aspergillus nidulans)ATCC38163株由来のα−グルコシダーゼ(Accession no.:ABF50846、ABF50883)のアミノ酸配列について、ClustalW(http://www.genome.jp/tools/clustalw/)を用いて、アスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列と比較したところ、いずれも60%以上の同一性を示した。さらに、これらのα−グルコシダーゼは、共通して、以下のアミノ酸配列群1〜6を有することが分かった。
配列1:FQSQY、
配列2:LWIDMNEA、
配列3:EYDTHNLYG、
配列4:VGHWLGDN、
配列5:GEPFL、
配列6:FYDWYTG
(実験例1−13)その他のα−グルコシダーゼのアミノ酸配列との比較
主に基質よりも重合度が1つ大きいα−1,6結合を有する糖質を生成するアスペルギルス・ニジュール(Aspergillus niger)CBS513.88株由来α−グルコシダーゼ(Accession no.:XP_001402053)のアミノ酸配列は、アスペルギルス・ニジュール(Aspergillus niger)CBS 513.88株由来α−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列とClustalW(http://www.genome.jp/tools/clustalw/)を用いて比較すると同一性は36%であった。また、上記アミノ酸配列群1〜6を有していなかった。
(Experimental example 1-12) Comparison of amino acid sequences of α-glucosidase that produces a carbohydrate having α-1,2 bond and α-1,3 bond (Experimental example 1-5) to (Experimental example 1-11) Aspergillus niger, α-glucosidase derived from ATCC1015 strain (SEQ ID NO: 4), α-glucosidase derived from NBRC4066 strain (SEQ ID NO: 5), α-glucosidase derived from Aspergillus kawachii IFO4308 strain (Accession no. : GAA87366), α-glucosidase derived from Aspergillus oryzae RIB40 strain (Accession no .: XP — 001818060), α-glucosidase derived from Aspergillus sojae NBRC4239 strain (SEQ ID NO: 10), Aspergillus acuretus ( Aspergillus aculeatus) α-glucosidase derived from ATCC16872 strain (Accession no .: Aacu16872_025147) and Aspergillus nidulans (Asp ergillus nidulans) About the amino acid sequence of α-glucosidase (Accession no .: ABF50846, ABF50883) derived from ATCC38163 strain, using ClustalW (http://www.genome.jp/tools/clustalw/), Aspergillus nidu (Aspergillus nidulans) niger) When compared with the amino acid sequence of α-glucosidase (Accession no .: XP — 001389510) derived from strain CBS513.88, all showed 60% or more identity. Further, these α-glucosidases were found to have the following amino acid sequence groups 1 to 6 in common.
Sequence 1: FQSQY,
Sequence 2: LWIMNNEA,
Sequence 3: EYDTHNLYG,
Sequence 4: VGHWLGDN,
Sequence 5: GEPFL,
Sequence 6: FYDWYTG
(Experimental Example 1-13) Comparison with other α-glucosidase amino acid sequences Aspergillus niger CBS513 which mainly produces a saccharide having an α-1,6 bond whose degree of polymerization is one higher than that of the substrate. The amino acid sequence of the .88 strain-derived α-glucosidase (Accession no.:XP_001402053) is the amino acid sequence of the Aspergillus niger CBS 513.88 strain α-glucosidase (Accession no .: XP_001389510) and ClustalW (http: // When compared using www.genome.jp/tools/clustalw/), the identity was 36%. Moreover, it did not have the said amino acid sequence groups 1-6.

また、本発明者らが見出した連続するα−1,6結合を有する糖質を生成するアスペルギルス・ソヤ(Aspergillus sojae)NBRC4239株由来のα−グルコシダーゼ(PCT/JP2014/077849)のアミノ酸配列は、アスペルギルス・ニジュール(Aspergillus niger)CBS 513.88株由来のα−グルコシダーゼ(Accession no.: XP_001389510)のアミノ酸配列とClustalW(http://www.genome.jp/tools/clustalw/)を用いて比較すると同一性は53%であった。また、アミノ酸配列群1〜6を有していなかった。   In addition, the amino acid sequence of α-glucosidase (PCT / JP2014 / 077849) derived from Aspergillus sojae NBRC4239 strain that produces a carbohydrate having a continuous α-1,6 bond found by the present inventors, Aspergillus niger CBS 513.88 strain derived α-glucosidase (Accession no .: XP_001389510) amino acid sequence and identity using ClustalW (http://www.genome.jp/tools/clustalw/) Was 53%. Moreover, it did not have the amino acid sequence groups 1-6.

以上の実験例において行った、各α−グルコシダーゼの配列についての解析結果を、以下の表に示す。   The analysis results of the sequences of each α-glucosidase performed in the above experimental examples are shown in the following table.

実験例2:澱粉含有原料を加工した各種食品の調製
本実験例では、本発明にかかる飲食品用の食品改良剤を用いて澱粉含有原料を処理し、これにより得られた糖質を加工して製造した食品の特性を示す。
Experimental Example 2: Preparation of various foods processed from starch-containing raw materials In this experimental example, the starch-containing raw material was processed using the food improver for food and drink according to the present invention, and the resulting saccharide was processed. This shows the characteristics of the food produced.

(実験例2−1)小麦澱粉
市販の小麦澱粉10gを原料とし、原料小麦澱粉1gに対して、0.2Uとなるよう酵素を添加した緩衝液(12mM リン酸緩衝液pH6.0)を20mL加え、25℃で24時間撹拌し、酵素反応を行った。反応終了後、反応液をろ過し、ろ物を100mLの水で洗浄後、乾燥させ、小麦澱粉を得た。
(Experimental example 2-1) Wheat starch 20 mL of buffer solution (12 mM phosphate buffer solution pH 6.0) which used 10 g of commercially available wheat starch, and added the enzyme so that it might become 0.2 U with respect to 1 g of raw material wheat starch. In addition, the mixture was stirred at 25 ° C. for 24 hours to carry out an enzyme reaction. After completion of the reaction, the reaction solution was filtered, and the filtrate was washed with 100 mL of water and dried to obtain wheat starch.

酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製した小麦澱粉をそれぞれ、実施例1、実施例2、実施例3とした。トランスグルコシダーゼL「アマノ」(天野エンザイム社製、以下TGLともいう。)を用いて作製した小麦澱粉を比較例1とした。また、酵素を添加しないこと以外は同様の条件で作製した小麦澱粉を参考例1とした。   As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) Wheat starch produced using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) was designated as Example 1, Example 2, and Example 3, respectively. The wheat starch produced using transglucosidase L “Amano” (manufactured by Amano Enzyme Co., Ltd., hereinafter also referred to as TGL) was used as Comparative Example 1. Moreover, the wheat starch produced on the same conditions except not adding an enzyme was made into the reference example 1.

作製した実施例1〜3、比較例1および参考例1の小麦澱粉の老化性を、RVA4500(Perten Instruments社製)を用いて評価した。各試料を、固形分6質量%になるよう水に懸濁して、図3に示す糊化特性測定条件で処理し、セットバック値(最終粘度と糊化後の最小粘度の差)を算出した。結果を下表に示す。   The aging properties of the produced wheat starches of Examples 1 to 3, Comparative Example 1 and Reference Example 1 were evaluated using RVA4500 (manufactured by Perten Instruments). Each sample was suspended in water so as to have a solid content of 6% by mass, and processed under the gelatinization property measurement conditions shown in FIG. 3 to calculate a setback value (difference between final viscosity and minimum viscosity after gelatinization). . The results are shown in the table below.

酵素無添加条件で作製した小麦澱粉(参考例1)に比べ、本発明の酵素を用いて作製した小麦澱粉(実施例1、2、3)およびTGLを用いて作製した小麦澱粉(比較例1)のセットバック値は小さい値であった。また、本酵素を用いて作製した小麦澱粉(実施例1、2、3)およびTGLを用いて作製した小麦澱粉(比較例1)のセットバック値を比較すると、本酵素で処理した小麦澱粉(実施例1、2、3)の方が小さい値を示した。このことから、本発明にかかる飲食品用の食品改良剤を用いることで、老化しにくい澱粉を得られることがわかる。   Compared to wheat starch prepared in the absence of enzyme (Reference Example 1), wheat starch prepared using the enzyme of the present invention (Examples 1, 2, and 3) and wheat starch prepared using TGL (Comparative Example 1) ) Was a small setback value. Moreover, when the setback value of the wheat starch produced using this enzyme (Examples 1, 2, 3) and the wheat starch produced using TGL (Comparative Example 1) was compared, wheat starch treated with this enzyme ( Examples 1, 2, and 3) showed smaller values. From this, it turns out that the starch which does not age easily can be obtained by using the foodstuff improving agent for food-drinks concerning this invention.

(実験例2−2)米飯
米飯の調製は、「応用糖質科学 第4巻 p.93−102 2014年」を参照して行った。市販の生米一粒(約20mg)に、原料生米1g当り25Uとなるよう酵素を添加した緩衝液(12mM リン酸緩衝液pH6.0)を70μL加え、常温で2時間浸漬した。米は10℃で1か月保存した米を用いた。その後、GeneAmp PCR System9700(Applied Biosystems社製)を使用して、下の表に示す条件で炊飯した。
(Experimental example 2-2) Cooked rice Preparation of cooked rice was performed with reference to "Applied carbohydrate science Vol.4 p.93-102 2014". 70 μL of a buffer solution (12 mM phosphate buffer solution pH 6.0) added with an enzyme to 25 U per 1 g of raw raw rice was added to one commercially available raw rice grain (about 20 mg), and immersed for 2 hours at room temperature. Rice was stored at 10 ° C. for 1 month. Thereafter, rice was cooked using the GeneAmp PCR System 9700 (Applied Biosystems) under the conditions shown in the table below.

酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を使用して調製した米飯をそれぞれ、実施例4、実施例5、実施例6とし、TGLを使用して調製した米飯を比較例2とした。また、酵素を添加しないこと以外は同じ条件で調製した米飯を参考例2とした。   As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) The cooked rice prepared using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) was designated as Example 4, Example 5 and Example 6, respectively, and the cooked rice prepared using TGL was designated as Comparative Example 2. . Moreover, the cooked rice prepared on the same conditions except not adding an enzyme was made into the reference example 2. FIG.

炊飯後、米飯の硬さを測定した。硬さの測定にはテクスチャーアナライザーTA.XT Plus(Stable Micro Systems社製、以下TAともいう。)を用い、直径20mmの円柱プランジャー、プランジャースピード2mm/s、ロードセル5kgの条件で90%圧縮による応力(N)を測定し、その値を米一粒の硬さとした。各サンプルについて10粒を測定し、その平均値を求めた。結果を下表に示す。   After cooking, the hardness of the cooked rice was measured. Hardness was measured using a texture analyzer TA.XT Plus (Stable Micro Systems, also referred to as TA), 90% compression under the conditions of a 20 mm diameter cylindrical plunger, plunger speed 2 mm / s, and load cell 5 kg. The stress (N) was measured and the value was regarded as the hardness of one grain of rice. Ten grains were measured for each sample, and the average value was determined. The results are shown in the table below.

参考例2の米飯に比べ、実施例4〜6と比較例2の米飯は、硬さの値(N)が低く、柔らかかった。また、実施例4〜6と比較例2の米飯の比較では、実施例4〜6の方が柔らかかった。また、実施例4〜6の米飯は、喫食した際の風味も比較例2や参考例2と比較して高かった。   Compared with the cooked rice of Reference Example 2, the cooked rice of Examples 4 to 6 and Comparative Example 2 had a low hardness value (N) and was soft. Moreover, in the comparison of the cooked rice of Examples 4-6 and Comparative Example 2, Examples 4-6 were softer. In addition, the cooked rice of Examples 4 to 6 also had a higher flavor when eaten than Comparative Example 2 and Reference Example 2.

これらの結果より、本発明にかかる飲食品用の食品改良剤を用いることで、柔らかく好ましい食感の米飯を得られること、及び、喫食した際の風味の向上した米飯を得られることがわかる。   From these results, it can be seen that by using the food improver for foods and drinks according to the present invention, it is possible to obtain cooked rice with a soft and preferable texture and to obtain cooked rice with improved flavor when eaten.

(実験例2−3)もち
もち米250gを洗米し、原料生米1g当り0.02Uとなるよう酵素を添加した緩衝液(12mM リン酸緩衝液pH6.0)を160mL加え、常温で30分間浸漬した。その後、ホームベーカリー SD−BMS102(Panasonic社製)のもちコースにて、もちを作製した。
(Experimental Example 2-3) Washed 250 g of glutinous rice, added 160 mL of a buffer solution (12 mM phosphate buffer pH 6.0) to which 0.02 U of enzyme was added per 1 g of raw raw rice, and heated at room temperature for 30 minutes. Soaked. After that, the rice cake was produced at the rice cake course of the home bakery SD-BMS102 (Panasonic).

酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を使用して作製したもちをそれぞれ、実施例7、実施例8、実施例9とし、TGLを使用して作製したもちを比較例3とした。また、酵素を添加せずに作製したもちを参考例3とした。   As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) The rice cakes produced using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) were designated as Example 7, Example 8 and Example 9, respectively, and the rice cake produced using TGL was designated as Comparative Example 3. . The rice cake prepared without adding the enzyme was used as Reference Example 3.

作製したもちは、20gずつプラスチック製のシャーレに詰めて成形後、常温まで放冷したもの、およびその後4℃で24時間保存したものについて硬さを測定した。測定には、TAを用い、直径40mmの円柱プランジャー、プランジャースピード2mm/s、ロードセル5kgの条件で、放冷後のものは30%圧縮、1日保存したものは5%圧縮による応力(N)を測定し、その値をもちの硬さとした。各サンプルについて10点測定し、その平均値を求めた。結果を下表に示す。   The produced rice cakes were measured for 20 g each in a plastic petri dish, molded and then allowed to cool to room temperature, and then stored at 4 ° C. for 24 hours. For the measurement, TA was used, a cylinder plunger with a diameter of 40 mm, a plunger speed of 2 mm / s, and a load cell of 5 kg. N) was measured and the value was taken as the hardness. Ten points were measured for each sample, and the average value was determined. The results are shown in the table below.

放冷後において、参考例3に比べ、実施例7、8、9および比較例3は、硬さの値(N)が低く、柔らかかった。また、実施例7、8、9と比較例3を添加して作製したもちの比較では、本発明の酵素を添加した場合の方が柔らかい結果であった。また、4℃で24時間保存後においても同様に、実施例7、8、9は、参考例3および比較例3を添加して作製したもちよりも顕著に柔らかかった。また、本発明の酵素を用いて作製したもちは、いずれも、喫食した際の風味も向上していた。   After standing to cool, compared to Reference Example 3, Examples 7, 8, 9 and Comparative Example 3 had a low hardness value (N) and were soft. In addition, in the comparison made by adding Examples 7, 8, and 9 and Comparative Example 3, the softer results were obtained when the enzyme of the present invention was added. Similarly, after storage at 4 ° C. for 24 hours, Examples 7, 8, and 9 were significantly softer than those prepared by adding Reference Example 3 and Comparative Example 3. Moreover, all the rice prepared using the enzyme of the present invention also improved the flavor when eaten.

これらの結果より、本発明にかかる飲食品用の食品改良剤を用いることで、作製直後も柔らかく、しかもその柔らかさが持続するもちを得られることがわかる。また、喫食した際の風味が向上したもちを得られることがわかる。   From these results, it can be seen that by using the food improver for foods and drinks according to the present invention, it is possible to obtain a soft texture immediately after the production, and that the softness can be maintained. Moreover, it turns out that the rice cake which the flavor at the time of eating improved can be obtained.

(実験例2−4)甘酒
乾燥米麹200gに、原料米麹1g当り1.5Uとなるよう酵素を添加した緩衝液(12mM リン酸緩衝液pH6.0)を800mL加え、50℃で6時間浸漬し、甘酒を得た。
(Experimental example 2-4) Amazake To 200 g of dried rice bran, 800 mL of a buffer solution (12 mM phosphate buffer solution pH 6.0) added with an enzyme to give 1.5 U per 1 g of raw rice bran was added, and the mixture was stirred at 50 ° C. for 6 hours. Immersion was obtained to obtain amazake.

酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製した甘酒をそれぞれ、実施例10、実施例11、実施例12とし、TGLを用いて作製した甘酒を比較例4とした。また、酵素を添加しないこと以外は同様の条件で作製した甘酒を参考例4とした。   As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) Amazake produced using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) was designated as Example 10, Example 11 and Example 12, respectively, and Amazake produced using TGL was designated as Comparative Example 4. Amazake prepared under the same conditions except that no enzyme was added was used as Reference Example 4.

得られた甘酒は、遠心分離により上清を回収し、液中の水溶性食物繊維含有量を酵素−HPLC法(AOAC 2001.03)により求めた。その結果を下表に示す。   The obtained amazake was collected by centrifugation and the water-soluble dietary fiber content in the liquid was determined by enzyme-HPLC method (AOAC 2001.03). The results are shown in the table below.

得られた甘酒中の水溶性食物繊維含有量は、参考例4では0.8%、比較例4では0.9%であったが、実施例10〜12では、1.3〜1.4%と顕著に増加した。また、本発明の酵素を添加して作製した甘酒は、口あたりが向上していた。このことから、本発明にかかる飲食品用の食品改良剤を用いることで、水溶性食物繊維が増量した甘酒を得られること、及び、口あたりの向上した甘酒を得られることがわかる。   The water-soluble dietary fiber content in the obtained amazake was 0.8% in Reference Example 4 and 0.9% in Comparative Example 4, but in Examples 10-12, it was 1.3-1.4. % Significantly increased. Moreover, the amazake produced by adding the enzyme of the present invention had improved mouthfeel. From this, it can be seen that by using the food improver for foods and drinks according to the present invention, amazake with an increased amount of water-soluble dietary fiber can be obtained and amazake with improved mouthfeel can be obtained.

(実験例2−5)清酒の調製
さらに、清酒の仕込み工程に酵素を添加することを想定し、低温にて(実験例2−4)と同様の試験を行った。原料米麹1g当り1.5Uとなるように、乾燥米麹と酵素溶液を混合したものを、10℃で3週間保持した。その結果を下表に示す。
(Experimental example 2-5) Preparation of sake Sake Furthermore, the test similar to (Experimental example 2-4) was done at low temperature supposing that an enzyme was added to the preparation process of sake. A mixture of the dried rice bran and the enzyme solution was held at 10 ° C. for 3 weeks so as to be 1.5 U per 1 g of the raw rice bran. The results are shown in the table below.

酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製した反応溶液をそれぞれ、実施例13、実施例14、実施例15とし、TGLを用いて作製した反応溶液を比較例5とした。また、酵素を用いないこと以外は同様の方法で作製した反応溶液を参考例5とした。その結果を下表に示す。   As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) The reaction solutions prepared using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) were respectively Example 13, Example 14, and Example 15, and the reaction solutions prepared using TGL were Comparative Example 5. . Moreover, the reaction solution produced by the same method except not using an enzyme was made into the reference example 5. The results are shown in the table below.

得られた反応溶液中の水溶性食物繊維含有量は、参考例5および、比較例5で0.5%であったが、実施例13、14、15では、1.1〜1.2%と顕著に増加した。   The water-soluble dietary fiber content in the obtained reaction solution was 0.5% in Reference Example 5 and Comparative Example 5, but 1.1 to 1.2% in Examples 13, 14, and 15. And increased significantly.

食物繊維は酵母により資化されないため、仕込み工程に本発明の酵素を添加することで、水溶性食物繊維が増量した清酒を得ることができる。   Since dietary fiber is not assimilated by yeast, it is possible to obtain sake with an increased amount of water-soluble dietary fiber by adding the enzyme of the present invention to the preparation process.

(実験例2−6)パン
下表に示す配合の製パン原料に対し、強力粉1g当り0.2Uとなるように酵素を水に添加し、ホームベーカリー SD−BH105(Panasonic社製)の食パン・早焼きコースにて、食パンを作製した。
(Experimental example 2-6) Bread The ingredients shown in the table below are added to the water to make 0.2 U per gram of strong flour, and the home bakery SD-BH105 (Panasonic) bread Bread bread was prepared at the baking course.

(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製したパンをそれぞれ、実施例16、実施例17、実施例18とし、TGLを用いて作製したパンを比較例6とした。また、酵素を用いないこと以外は同様の方法で作製したパンを参考例6とした。   ATCC10254 strain-derived α-glucosidase obtained in (Experimental Example 1-2), NBRC4066 strain-derived α-glucosidase obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and NBRC4239 obtained in (Experimental Example 1-11) Bread produced using strain-derived α-glucosidase (SEQ ID NO: 10) was designated as Example 16, Example 17, and Example 18, respectively, and bread produced using TGL was designated as Comparative Example 6. Moreover, the bread produced by the same method except not using an enzyme was made into the reference example 6.

作製した食パンは、室温まで放冷し、25℃で1日および2日保存したものを厚さ10mmにスライスし、クラム部分を33mm四方にカットして硬さを測定した。測定には、SUN RHEO METER COMPAC−100 II(SUN SCIENTIFIC社製)を用い、直径40mmのフラットプランジャー、架台スピード60mm/minの条件で、厚さ5mmまで圧縮したときの応力(N)を測定し、食パンの硬さとした。各サンプルについて10点測定し、その平均値を求めた。結果を下表に示す。   The prepared bread was allowed to cool to room temperature, stored at 25 ° C. for 1 day and 2 days, sliced to a thickness of 10 mm, and the crumb portion was cut into a 33 mm square to measure the hardness. For measurement, SUN RHEO METER COMPAC-100 II (manufactured by SUN SCIENTIFIC) is used to measure the stress (N) when compressed to a thickness of 5 mm under the conditions of a flat plunger with a diameter of 40 mm and a gantry speed of 60 mm / min. And the bread was hard. Ten points were measured for each sample, and the average value was determined. The results are shown in the table below.

1日保存後は、参考例6及び比較例6に比べ、実施例16、17、18は、硬さの値(N)が低く、柔らかかった。また、2日保存後も、実施例16、17、18を添加した食パンは柔らかさを保っていた。また、本発明の酵素を添加して作製したパンは、喫食した際の風味も向上していた。このことから、本発明にかかる飲食品用の食品改良剤を用いることで、柔らかさが持続する食パンを得られること、また、喫食した際の風味が向上した食パンを得られることがわかる。   After storage for 1 day, Examples 16, 17, and 18 had lower hardness values (N) and were softer than Reference Example 6 and Comparative Example 6. In addition, even after storage for 2 days, the breads to which Examples 16, 17, and 18 were added remained soft. Moreover, the bread | pan produced by adding the enzyme of this invention also improved the flavor at the time of eating. From this, it can be seen that by using the food improver for foods and drinks according to the present invention, bread having a softness can be obtained, and bread having an improved flavor when eaten can be obtained.

(実験例2−7)うどん
下表に示す配合の製麺原料に対し、中力粉1g当り2Uとなるように酵素を水に添加し、Noodle MakerHR2365/01(PHILIPS社製)にて2mm丸麺用製麺キャップを使用して製麺した。酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製したうどんをそれぞれ、実施例19、実施例20、実施例21とし、TGLを用いて作製したうどんを比較例7とした。また、酵素を添加せずに作製したうどんを参考例7とした。
(Experimental example 2-7) Udon Noodles with the composition shown in the table below are mixed with water to make 2U per gram of medium strength flour, and 2mm round with Noodle MakerHR2365 / 01 (manufactured by PHILIPS). Noodles were made using a noodle cap. As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) The noodles produced using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) were designated as Example 19, Example 20, and Example 21, respectively, and the noodle produced using TGL was designated as Comparative Example 7. Moreover, the udon produced without adding an enzyme was used as Reference Example 7.

作製したうどんは、茹でた後に冷水で締めたものを評価した。10人の被験者に試食してもらい、硬さ、弾力、粘りについて良いと答えた人数を下表に示す。   The prepared udon was evaluated after being boiled and then tightened with cold water. The table below shows the number of people who sampled 10 subjects and answered that they had good hardness, elasticity, and stickiness.

参考例7に比べ、実施例19、20、21および比較例7を用いて作製したうどんは、硬さ、弾力感、および粘りについて良好な評価となった。また、比較例7を比較すると、実施例19、20、21は、硬さ、弾力感、および粘り全てについて、より好ましい結果であった。また、本発明の酵素を添加して作製したうどんは、喫食した際の風味も向上していた。これらの結果から、本発明にかかる飲食品用の食品改良剤を用いることで、好ましい硬さで弾力感、粘りのある好ましい食感のうどんを得られること、及び、喫食した際の風味が向上したうどんを得られることがわかる。   Compared to Reference Example 7, the udon produced using Examples 19, 20, and 21 and Comparative Example 7 were evaluated well for hardness, elasticity, and stickiness. Further, when Comparative Example 7 was compared, Examples 19, 20, and 21 were more preferable results for all of hardness, elasticity, and stickiness. Moreover, the udon produced by adding the enzyme of the present invention had improved flavor when eaten. From these results, by using the food improver for foods and drinks according to the present invention, it is possible to obtain a udon with a preferable hardness and elasticity, a preferable texture, and a flavor when eating. You can get the udon you made.

(実験例2−8)大麦入りパン
下表に示す配合の製パン原料に対して、強力粉1g当り0.2Uとなるよう水に酵素を溶解し、添加ホームベーカリーSD−BH105の食パン・早焼きコースにて、大麦入り食パンを作製した。酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を使用して作製したパンをそれぞれ、実施例22、実施例23、実施例24とし、TGLを使用して作製したパンを比較例8とした。また、酵素を使用しないこと以外は同じ条件で作製したパンを参考例8とした。
(Experimental example 2-8) Bread with barley For bread-making ingredients with the composition shown in the table below, the enzyme is dissolved in water to make 0.2 U per 1 g of strong flour, and added home bakery SD-BH105. A barley-containing bread was prepared. As an enzyme, α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2), α-glucosidase derived from NBRC4066 strain obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and (Experimental Example 1-11) The breads produced using the obtained NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) were designated as Example 22, Example 23, and Example 24, respectively, and the bread produced using TGL was designated as Comparative Example 8. . Moreover, the bread produced on the same conditions except not using an enzyme was made into the reference example 8.

作製した大麦入り食パンは、室温まで放冷し、25℃で2日および3日保存したものを厚さ10mmにスライスし、クラム部分を33mm四方にカットして硬さを測定した。測定には、SUN RHEO METER COMPAC−100 IIを用い、直径40mmのフラットプランジャー、架台スピード60mm/minの条件で、厚さ5mmまで圧縮したときの応力(N)を測定し、大麦入り食パンの硬さとした。各サンプルについて10点測定し、その平均値を求めた。結果を下表に示す。   The prepared barley bread was allowed to cool to room temperature, stored at 25 ° C. for 2 days and 3 days, sliced into a thickness of 10 mm, and the crumb portion was cut into a 33 mm square to measure the hardness. For the measurement, SUN RHEO METER COMPAC-100 II was used to measure the stress (N) when compressed to a thickness of 5 mm under the conditions of a flat plunger with a diameter of 40 mm and a gantry speed of 60 mm / min. It was hard. Ten points were measured for each sample, and the average value was determined. The results are shown in the table below.

2日保存後において、参考例8および比較例8に比べ、実施例22〜24を添加して作製した大麦入り食パンは、硬さの値(N)が低く、柔らかかった。また、3日保存後においても、実施例22〜24は柔らかさを保っていた。また、本発明の酵素を添加して作製した大麦入り食パンは、喫食した際の風味も向上していた。このことから、本発明にかかる飲食品用の食品改良剤を用いることで、柔らかさが持続する大麦入り食パンを得ることができることがわかる。   After storage for 2 days, compared to Reference Example 8 and Comparative Example 8, the barley bread produced by adding Examples 22 to 24 had a low hardness value (N) and was soft. In addition, even after storage for 3 days, Examples 22 to 24 remained soft. Moreover, the barley-containing bread produced by adding the enzyme of the present invention also improved the flavor when eaten. From this, it can be seen that by using the food improver for food and drink according to the present invention, it is possible to obtain a barley-containing bread that maintains its softness.

(実験例2−9)ビール、ビール様飲料
麦芽200gに対して、麦芽1g当り1U又は5Uとなるよう酵素を添加した酵素溶液800mLを加え、50℃で1.5時間、更に60℃で1.5時間、その後80℃で15分間の加熱処理を行った。酵素として、(実験例1−2)で得たATCC10254株由来α−グルコシダーゼを用いたものを実施例25及び実施例26、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)を用いたものを実施例27及び実施例28、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いたものを実施例29及び実施例30とし、TGLを用いたものを比較例8及び比較例9とした。また、コントロールとして酵素を用いないこと以外は同様の条件で処理したものを参考例8とした。加熱処理後、遠心分離にて上清を回収し、液中の水溶性食物繊維含有量を酵素-HPLC法(AOAC 2001.03)により求めた。その結果を下表に示す。
(Experimental example 2-9) Beer and beer-like beverages To 200 g of malt, 800 mL of an enzyme solution added with an enzyme so as to be 1 U or 5 U per 1 g of malt was added, and 1.5 hours at 50 ° C. and 1 at 60 ° C. Heat treatment was performed for 5 minutes at 80 ° C. for 15 minutes. As the enzyme, α-glucosidase derived from NBRC4066 strain obtained in Example 25 and Example 26 (Experimental Example 1-8) using the α-glucosidase derived from ATCC10254 strain obtained in (Experimental Example 1-2) (sequence) Examples using No. 5) and those using the NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) obtained in Example 27 and Example 28 (Experimental Example 1-11) are referred to as Example 29 and Example 30. , TGL was used as Comparative Example 8 and Comparative Example 9. Further, Reference Example 8 was treated under the same conditions except that no enzyme was used as a control. After the heat treatment, the supernatant was collected by centrifugation, and the water-soluble dietary fiber content in the liquid was determined by enzyme-HPLC method (AOAC 2001.03). The results are shown in the table below.

得られた反応溶液中の水溶性食物繊維含有量は、参考例8では1.3%、比較例8では1.5%、比較例9では1.7%であったが、実施例25、27、29では、2.6〜2.8%と大きく増加した。さらに、酵素を5U添加した、実施例26、28、30では、4.0〜4.3%とさらに顕著に増加した。このことから、本酵素を添加することによって、水溶性食物繊維が増量した麦芽糖化液を得られることがわかる。   The water-soluble dietary fiber content in the obtained reaction solution was 1.3% in Reference Example 8, 1.5% in Comparative Example 8, and 1.7% in Comparative Example 9, but Example 25, In 27 and 29, it increased greatly to 2.6 to 2.8%. Furthermore, in Examples 26, 28, and 30 to which 5 U of enzyme was added, the number was further significantly increased to 4.0 to 4.3%. From this, it is understood that a malt saccharified solution with an increased amount of water-soluble dietary fiber can be obtained by adding this enzyme.

ビールの製造では、前述の処理である糖化工程の後にビール酵母による醗酵工程がある。食物繊維はビール酵母により資化されないため、本発明の酵素の添加により、水溶性食物繊維を増量したビールを得ることができる。また、本発明の酵素を添加して作製した麦芽糖化液は、雑穀由来の雑味が低減したので、本発明の酵素を添加することで、雑味が低減した飲み心地の良いビールを得ることができる。   In the production of beer, there is a fermentation process using brewer's yeast after the saccharification process, which is the aforementioned process. Since dietary fiber is not assimilated by brewer's yeast, beer with an increased amount of water-soluble dietary fiber can be obtained by adding the enzyme of the present invention. In addition, since the malt saccharified solution prepared by adding the enzyme of the present invention has reduced miscellaneous taste derived from millet grains, by adding the enzyme of the present invention, it is possible to obtain a pleasant beer with reduced miscellaneous taste. Can do.

次に、さらに、原料の麦芽に大麦を混ぜ同様の試験を行った。麦芽20g、大麦180gに対して、麦芽と大麦を合わせた原料1g当り1Uのとなるよう酵素を添加した酵素溶液800mLを加え、50℃で1時間、更に60℃で1時間、その後80℃で10分間の加熱処理を行った。その結果を下表に示す。(実験例1−2)で得たATCC10254株由来α−グルコシダーゼ、(実験例1−8)で得たNBRC4066株由来α−グルコシダーゼ(配列番号5)、(実験例1−11)で得たNBRC4239株由来α−グルコシダーゼ(配列番号10)を用いて作製した反応溶液をそれぞれ、実施例31、実施例32、実施例33とし、TGLを用いて作製した反応溶液を比較例10とした。また、酵素を用いないこと以外は同じ条件で作製した反応溶液を参考例9とした。加熱処理後、遠心分離にて上清を回収し、液中の水溶性食物繊維含有量を酵素-HPLC法(AOAC 2001.03)により求めた。その結果を下表に示す。   Next, barley was mixed with the raw material malt and the same test was conducted. Add 800 mL of enzyme solution with enzyme added to 1 U per 1 g of malt and barley combined with 20 g of malt and 180 g of barley, add 1 hour at 50 ° C., 1 hour at 60 ° C., then 80 ° C. Heat treatment for 10 minutes was performed. The results are shown in the table below. ATCC10254 strain-derived α-glucosidase obtained in (Experimental Example 1-2), NBRC4066 strain-derived α-glucosidase obtained in (Experimental Example 1-8) (SEQ ID NO: 5), and NBRC4239 obtained in (Experimental Example 1-11) The reaction solutions prepared using strain-derived α-glucosidase (SEQ ID NO: 10) were designated as Example 31, Example 32, and Example 33, respectively, and the reaction solution prepared using TGL was designated as Comparative Example 10. Moreover, the reaction solution produced on the same conditions except not using an enzyme was made into the reference example 9. After the heat treatment, the supernatant was collected by centrifugation, and the water-soluble dietary fiber content in the liquid was determined by enzyme-HPLC method (AOAC 2001.03). The results are shown in the table below.

得られた反応液中の水溶性食物繊維含有量は、参考例9で1.2%、比較例10では1.5%であったが、実施例31、32、33では2.2%〜2.4%と顕著に増加した。これらの結果から、本発明にかかる飲食品用の食品改良剤を用いることで、麦芽の配合率に関わらず水溶性食物繊維を増量できることがわかる。   The water-soluble dietary fiber content in the obtained reaction solution was 1.2% in Reference Example 9 and 1.5% in Comparative Example 10, but in Examples 31, 32, and 33, 2.2% to It increased significantly to 2.4%. From these results, it can be seen that by using the food improver for food and drink according to the present invention, the amount of water-soluble dietary fiber can be increased regardless of the malt blending ratio.

(実験例2−10)マッシュポテト
じゃがいも1個を、皮をむいて1.5cmの厚さに切り、じゃがいも1g当り2Uとなるよう酵素を添加した緩衝液(12mM リン酸緩衝液pH6.0)を180mL加え、常温で2時間浸漬した。その後、じゃがいもを茹で、水を切ってマッシャ−でつぶしマッシュポテトを作製した。ATCC10254株由来α−グルコシダーゼ、NBRC4066株由来α−グルコシダーゼ(配列番号5)、NBRC4239株由来α−グルコシダーゼ(配列番号10)を添加して作製したマッシュポテトをそれぞれ、実施例34、実施例35、実施例36とし、TGLを添加して作製したマッシュポテトを比較例11とした。また、酵素を添加せずに作製したマッシュポテトを参考例10とした。
(Experimental example 2-10) Mashed potatoes One potato was peeled and cut into a thickness of 1.5 cm, and a buffer solution (12 mM phosphate buffer pH 6.0) to which 2 U / g of potato was added was added. 180 mL was added and immersed at room temperature for 2 hours. After that, the potatoes were boiled, drained and crushed with a masher to make mashed potatoes. Mashed potatoes prepared by adding ATCC10254 strain-derived α-glucosidase, NBRC4066 strain-derived α-glucosidase (SEQ ID NO: 5), and NBRC4239 strain-derived α-glucosidase (SEQ ID NO: 10) were obtained in Example 34, Example 35 and Example, respectively. The mashed potato prepared by adding TGL to 36 was designated as Comparative Example 11. A mashed potato prepared without adding an enzyme was used as Reference Example 10.

作製したマッシュポテトは、作製直後、およびその後25℃で2時間保存した後評価した。結果を下表に示す。なお、評価は10人の被験者に試食してもらい、しっとり感および柔らかさについて、酵素無添加で作製したマッシュポテトに対して良いと答えた人数をとした。   The produced mashed potato was evaluated immediately after production and after being stored at 25 ° C. for 2 hours. The results are shown in the table below. The evaluation was made by the number of respondents who had 10 test subjects and answered that the moist sensation and softness were good for mashed potatoes prepared without the addition of enzymes.

作製直後のマッシュポテトでは、参考例10に比べ、実施例34〜36および比較例11は、しっとり感および柔らかさについて良好な評価となった。また、実施例34〜36は、喫食した際の風味が参考例10及び比較例11と比べて向上していた。   In the mashed potatoes immediately after production, Examples 34 to 36 and Comparative Example 11 were better evaluated for moist feeling and softness than Reference Example 10. In addition, in Examples 34 to 36, the flavor when eating was improved as compared with Reference Example 10 and Comparative Example 11.

2時間保存後のマッシュポテトでは、比較例11と比較して、実施例34〜36は良好な食感を持続しており、特に柔らかさについてより好ましい結果となった。また、実施例34〜36は、参考例10及び比較例11と比べて喫食した際の風味が向上していた。これらの結果より、本発明にかかる飲食品用の食品改良剤を用いることで、作製直後の食感及び風味が良く、さらに、良好な食感及び風味が維持されるマッシュポテトを得られることがわかる。   In the mashed potato after storage for 2 hours, as compared with Comparative Example 11, Examples 34 to 36 maintained a good texture, and in particular, the softness was more favorable. Moreover, the flavor at the time of eating Examples 34-36 compared with the reference example 10 and the comparative example 11 was improving. From these results, it can be seen that by using the food improver for foods and drinks according to the present invention, the texture and flavor immediately after production are good, and further, mashed potatoes that maintain a good texture and flavor can be obtained. .

(実験例2−11)酵素処理澱粉を添加した食品
(実験例2−1)で作製した酵素処理澱粉を用いて、澱粉含有食品を製造した。具体的には、畜肉加工品として下表の配合ソーセージを常法によって作製した。
(Experimental example 2-11) The foodstuff which added the enzyme treatment starch The starch containing foodstuff was manufactured using the enzyme treatment starch produced in (Experimental example 2-1). Specifically, the blended sausages shown in the table below were produced by a conventional method as processed meat products.

また水産加工品として下表の配合で蒲鉾を常法によって作製した。   In addition, as a marine processed product, straw was prepared by a conventional method with the composition shown in the table below.

得られたソーセージは、獣臭が抑えられた良好な風味であった。また、蒲鉾は、魚臭が抑えられた良好な風味であった。このことから、本発明にかかる飲食品用の食品改良剤を用いることで、良好な風味のソーセージ及び蒲鉾が得られることがわかる。なお、ソーセージ及び蒲鉾の作製において、澱粉含有食品の製造工程中に、本発明の飲食品用の食品改良剤を添加することによって、澱粉に酵素処理を行うこともできる。   The obtained sausage had a good flavor with reduced animal odor. In addition, the salmon had a good flavor with suppressed fishy odor. From this, it is understood that sausage and koji with good flavor can be obtained by using the food improver for food and drink according to the present invention. In the production of sausage and koji, starch can be enzymatically treated by adding the food improver for food and drink of the present invention during the production process of the starch-containing food.

Claims (9)

粉含有原料を加工して製造される飲食品用の食品改良剤であって、
食品改良剤が、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合を有する糖質とα−1,3結合を有する糖質を生成するα−グルコシダーゼを含有し、
α−グルコシダーゼをコードするアミノ酸配列が、配列番号1〜10のいずれかに記載されたアミノ酸配列と90%以上の同一性を有しており、α−グルコシダーゼをコードするアミノ酸配列が、以下:
・配列1:FQSQY、
・配列2:LWIDMNEA、
・配列3:EYDTHNLYG、
・配列4:VGHWLGDN、
・配列5:GEPFL、および、
・配列6:FYDWYTG、
からなる群より選択されるいずれか1以上の配列を含有する、上記食品改良剤。
A food improving agent for foods and drinks which are produced by processing a Starch-containing raw materials,
The food improving agent acts on a saccharide selected from the group consisting of an α-type oligosaccharide and an α-type polysaccharide, and has a saccharide having an α-1,2 bond and a saccharide having an α-1,3 bond. Containing α-glucosidase to produce
The amino acid sequence encoding α-glucosidase has 90% or more identity with the amino acid sequence described in any of SEQ ID NOs: 1 to 10, and the amino acid sequence encoding α-glucosidase is:
Array 1: FQSQY,
Array 2: LWIMNNEA,
Array 3: EYDTHNLYG,
Array 4: VGHWLGDN,
Sequence 5: GEPFL and
Array 6: FYDWYTG
Containing any one or more sequences selected from the group consisting of, the food modifier.
小麦加工品、大麦加工品、いも類加工品または米加工品の品質を改良するための、請求項1に記載の食品改良剤。 The food improver according to claim 1 for improving the quality of processed wheat products, processed barley products, processed potato products or processed rice products. 前記α−グルコシダーゼが、アスペルギルス(Aspergillus)属菌由来のα−グルコシダーゼである、請求項1または2に記載の食品改良剤。 The food improving agent according to claim 1 or 2 , wherein the α-glucosidase is an α-glucosidase derived from an Aspergillus genus. α−グルコシダーゼを澱粉に作用させることを含む、澱粉含有原料を加工して製造される飲食品の改良方法であって、
前記α−グルコシダーゼが、α型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α−1,2結合を有する糖質とα−1,3結合を有する糖質を生成
するものであり、
α−グルコシダーゼをコードするアミノ酸配列が、配列番号1〜10のいずれかに記載されたアミノ酸配列と90%以上の同一性を有しており、α−グルコシダーゼをコードするアミノ酸配列が、以下:
・配列1:FQSQY、
・配列2:LWIDMNEA、
・配列3:EYDTHNLYG、
・配列4:VGHWLGDN、
・配列5:GEPFL、および、
・配列6:FYDWYTG、
からなる群より選択されるいずれか1以上の配列を含有する、上記方法。
A method for improving a food or drink produced by processing a starch-containing raw material, comprising causing α-glucosidase to act on starch,
The α-glucosidase acts on a saccharide selected from the group consisting of an α-type oligosaccharide and an α-type polysaccharide, and a saccharide having an α-1,2 bond and a saccharide having an α-1,3 bond. all SANYO to produce a quality,
The amino acid sequence encoding α-glucosidase has 90% or more identity with the amino acid sequence described in any of SEQ ID NOs: 1 to 10, and the amino acid sequence encoding α-glucosidase is:
Array 1: FQSQY,
Array 2: LWIMNNEA,
Array 3: EYDTHNLYG,
Array 4: VGHWLGDN,
Sequence 5: GEPFL and
Array 6: FYDWYTG
Containing any one or more sequences selected from the group consisting of the above methods.
小麦加工品、大麦加工品、いも類加工品または米加工品の品質を改良するための、請求項4に記載の方法。 5. The method according to claim 4, for improving the quality of processed wheat products, processed barley products, processed potato products or processed rice products. 前記α−グルコシダーゼが、アスペルギルス(Aspergillus)属菌由来のα−グルコシダーゼである、請求項に記載の方法。 The method according to claim 5 , wherein the α-glucosidase is α-glucosidase derived from an Aspergillus genus. 澱粉をα−グルコシダーゼで処理する工程、
処理した澱粉を加工食品に添加する工程、
を含む、加工食品の品質の改良方法であって、
前記α−グルコシダーゼがα型のオリゴ糖類およびα型の多糖類からなる群より選択される糖質に作用し、α1,2結合を有する糖質とα−1,3結合を有する糖質を生成するものであり、
α−グルコシダーゼをコードするアミノ酸配列が、配列番号1〜10のいずれかに記載されたアミノ酸配列と90%以上の同一性を有しており、α−グルコシダーゼをコードするアミノ酸配列が、以下:
・配列1:FQSQY、
・配列2:LWIDMNEA、
・配列3:EYDTHNLYG、
・配列4:VGHWLGDN、
・配列5:GEPFL、および、
・配列6:FYDWYTG、
からなる群より選択されるいずれか1以上の配列を含有する、上記方法。
Treating starch with α-glucosidase;
Adding processed starch to processed foods,
A method for improving the quality of processed foods, comprising:
The α-glucosidase acts on a saccharide selected from the group consisting of an α-type oligosaccharide and an α-type polysaccharide to produce a saccharide having an α1,2 bond and a saccharide having an α-1,3 bond. der which is,
The amino acid sequence encoding α-glucosidase has 90% or more identity with the amino acid sequence described in any of SEQ ID NOs: 1 to 10, and the amino acid sequence encoding α-glucosidase is:
Array 1: FQSQY,
Array 2: LWIMNNEA,
Array 3: EYDTHNLYG,
Array 4: VGHWLGDN,
Sequence 5: GEPFL and
Array 6: FYDWYTG
Containing any one or more sequences selected from the group consisting of the above methods.
畜肉加工食品または水産加工食品の品質を改良するためのものである、請求項に記
載の方法。
The method of Claim 7 which is for improving the quality of livestock meat processed food or fishery processed food.
前記α−グルコシダーゼが、アスペルギルス(Aspergillus)属菌由来のα−グルコシ
ダーゼである、請求項7または8に記載の方法。
The method according to claim 7 or 8 , wherein the α-glucosidase is α-glucosidase derived from an Aspergillus genus.
JP2015176000A 2015-09-07 2015-09-07 Food improver Active JP6595270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176000A JP6595270B2 (en) 2015-09-07 2015-09-07 Food improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176000A JP6595270B2 (en) 2015-09-07 2015-09-07 Food improver

Publications (2)

Publication Number Publication Date
JP2017051112A JP2017051112A (en) 2017-03-16
JP6595270B2 true JP6595270B2 (en) 2019-10-23

Family

ID=58316041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176000A Active JP6595270B2 (en) 2015-09-07 2015-09-07 Food improver

Country Status (1)

Country Link
JP (1) JP6595270B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770268A4 (en) * 2018-03-20 2021-12-22 Mitsubishi Corporation Life Sciences Limited METHOD FOR PRODUCING ß-NMN AND COMPOSITION CONTAINING SAME
CN112159828B (en) * 2020-09-30 2022-07-05 江南大学 Refractory branched glucan and processing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096839A1 (en) * 2004-04-05 2005-10-20 Ajinomoto Co., Inc. Method of improving properties of starch-containing food and property-improving agent
JP4706607B2 (en) * 2005-10-04 2011-06-22 味の素株式会社 Method for producing frozen bread dough and quality improving agent for frozen bread dough
JPWO2008059992A1 (en) * 2006-11-17 2010-03-04 味の素株式会社 Starch-containing food and method for producing modified starch
ATE535160T1 (en) * 2008-03-17 2011-12-15 Ajinomoto Kk METHOD FOR PRODUCING A FISH PASTE PRODUCT AND ENZYME PREPARATION FOR FISH PASTE PRODUCTS
AU2010285965B2 (en) * 2009-08-18 2013-08-29 Glico Nutrition Co., Ltd. Food product containing starch gel
JP4971511B2 (en) * 2010-03-02 2012-07-11 昭和産業株式会社 Sugar composition and food and drink
JP4830031B2 (en) * 2010-03-02 2011-12-07 昭和産業株式会社 Transferase, sugar production method, glycoside production method, transferase production method

Also Published As

Publication number Publication date
JP2017051112A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
AU2010285965B2 (en) Food product containing starch gel
JP5715346B2 (en) Food modification method using β-amylase
US8765434B2 (en) Polynucleotide encoding a maltotriosyl transferase
JP6280962B2 (en) New uses of maltotriosyltransferase
JP6595270B2 (en) Food improver
JP6434983B2 (en) Uses of new α-glucosidase
JP6830762B2 (en) Sugar composition and its production method
JP4971511B2 (en) Sugar composition and food and drink
KR100921979B1 (en) Yeast expressing cyclodextrin glucanotransferase and method for using the same
JP6469127B2 (en) Novel α-glucosidase
KR100645993B1 (en) Novel thermostable ?-glucanotransferase and use thereof
Oyeyinka et al. Fermentation of Starch
JP2022085988A (en) Composition for improving texture of cooked rice, composition for improving stickiness of cooked rice, composition for improving particulate appearance of cooked rice, composition for improving soft feeling of cooked rice, and method for producing cooked rice
WO2012111327A1 (en) Food product containing rice starch gel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250