KR20050031597A - Method for purifying oxygen and apparatus thereof - Google Patents

Method for purifying oxygen and apparatus thereof Download PDF

Info

Publication number
KR20050031597A
KR20050031597A KR1020030067797A KR20030067797A KR20050031597A KR 20050031597 A KR20050031597 A KR 20050031597A KR 1020030067797 A KR1020030067797 A KR 1020030067797A KR 20030067797 A KR20030067797 A KR 20030067797A KR 20050031597 A KR20050031597 A KR 20050031597A
Authority
KR
South Korea
Prior art keywords
oxygen
carbon molecular
molecular sieve
pressure
valves
Prior art date
Application number
KR1020030067797A
Other languages
Korean (ko)
Other versions
KR100547981B1 (en
Inventor
이창하
Original Assignee
이창하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창하 filed Critical 이창하
Priority to KR1020030067797A priority Critical patent/KR100547981B1/en
Publication of KR20050031597A publication Critical patent/KR20050031597A/en
Application granted granted Critical
Publication of KR100547981B1 publication Critical patent/KR100547981B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/0266Carbon based materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

To provide an oxygen production method and an oxygen production apparatus capable of simplifying structure of the apparatus, obtaining a very high oxygen recovery ratio at low cost and effectively producing oxygen having 99.9% of high purity. A oxygen production method is provided by using a plurality of carbon molecular sieve beds in which an adsorbent for adsorbing oxygen only from air is embedded. The oxygen production method comprises: a first oxygen adsorption/production step in which oxygen is produced as pressure of a second carbon molecular sieve bed(200) is reduced to the atmospheric the pressure through number 6 and 12 valves when pressurization/relief and oxygen adsorption processes are performed in a first carbon molecular sieve bed(100) after blowing of a blower(B) is controlled by number 1,2,3 and 9 valves and flow rate/pressure control valves(30,40); a pressure equalization step in which impurities are discharged from the first carbon molecular sieve bed, and initial pressurization is conducted in the second carbon molecular sieve bed in a pressure equalization process of the first and second carbon molecular sieve beds through number 7 and 8 valves; and a second oxygen adsorption/production step in which when oxygen is produced as pressure of the first carbon molecular sieve bed is reduced to the atmospheric pressure through number 4 and 12 valves, blowing of the blower is controlled by number 1,2,5 and 10 valves and the flow rate/pressure control valves such that pressurization/relief and oxygen adsorption processes are performed in the second carbon molecular sieve bed.

Description

산소정제방법 및 그 장치{METHOD FOR PURIFYING OXYGEN AND APPARATUS THEREOF}Oxygen Purification Method and Apparatus {METHOD FOR PURIFYING OXYGEN AND APPARATUS THEREOF}

본 발명은 산소생산방법 및 그 장치에 관한 것으로, 더욱 상세하게는 2개의 탄소분자체탑을 이용하여 99.9%의 고순도 산소를 저비용 및 고효율적으로 생산해 낼 수 있도록 구성되는 산소생산방법 및 그 장치에 관한 것이다.The present invention relates to an oxygen production method and apparatus, and more particularly, to an oxygen production method and apparatus configured to produce 99.9% high purity oxygen at low cost and high efficiency by using two carbon molecular sieve towers. will be.

일반적으로, 공기에서 산소를 분리 생산하기 위한 방법으로는 공기중의 산소나 질소, 알곤 등의 원소가 특정 액체에 흡수되도록 하여 분리하는 흡수법이 있으며, 이와 달리 액체가 아닌 고체의 미세공극에 공기중의 원소가 선택적으로 흡착되도록 하여 분리하는 흡착법과, 상온에서 기체의 온도를 급격히 저하시켜 액체로 만든후 증류를 통해 산소를 분리하는 심냉법 등이 있다.In general, as a method for separating and producing oxygen from air, there is an absorption method in which oxygen, nitrogen, argon, and other elements in the air are absorbed by a specific liquid and separated. Adsorption methods for allowing the elements in to be selectively adsorbed and separated, and deep cooling method for rapidly reducing the temperature of the gas at room temperature to make a liquid and to separate the oxygen through distillation.

그러나, 흡수법은 많은 양의 산소를 생산하여야 할 경우 흡수용 액체를 다량으로 준비하여야 하는 등의 문제가 있으며, 그 액체에 공기중의 개별 원소들을 흡수시키기가 매우 어려울 뿐만 아니라 흡수시간이 많이 소요되는 문제가 있다.However, the absorption method has a problem of preparing a large amount of absorption liquid when a large amount of oxygen is to be produced, and it is very difficult to absorb individual elements in the air in the liquid, and also takes a long time for absorption. There is a problem.

또한, 심냉법은 공기를 급속냉각 하는 대형의 냉각장치와, 냉각된 공기를 증류하는 대형의 증류장치를 모두 구비하여야 하므로, 장치 구입 및 설치에 따른 과다한 투자비용이 발생하는 문제가 있다.In addition, since the deep cooling method must include both a large-sized cooling device for rapidly cooling air and a large-sized distillation device for distilling the cooled air, there is a problem in that excessive investment costs are caused by the purchase and installation of the device.

물론, 심냉법의 경우 전술된 흡수법이나 흡착법 보다 투자비용이 많이 든다는 단점이 있는 반면, 순도 99% 이상의 산소를 생산할 수 있다는 이점이 있으므로 선호되지만, 장치의 거대화 및 과다한 투자비로 인하여 중소규모에서는 사실상 설치가 불가능하다.Of course, the deep cooling method is more expensive than the above-described absorption method and adsorption method, while the advantage of producing oxygen with a purity of 99% or more is preferred, but due to the large size and excessive investment of the device, It is not possible to install.

따라서, 현재는 공기중 특정 원소의 벌크(bulk)에 대응하는 미세공극이 형성된 고체를 이용하여 원소를 분리하는 흡착법이 주로 사용된다.Therefore, at present, an adsorption method is mainly used in which elements are separated using solids having micropores corresponding to the bulk of specific elements in the air.

이러한 흡착법에서 사용되는 흡착재로는 제올라이트(Zeolite)가 주로 사용되며, 그 까닭은 제올라이트가 질소에 대해서는 강 흡착질로 작용하고 산소에 대해서는 약 흡착질로 작용하는 특성을 갖기 때문이다.Zeolite is mainly used as an adsorbent in the adsorption method, because zeolite acts as a strong adsorbent for nitrogen and a weak adsorbent for oxygen.

그러므로, 제올라이트에 공기를 공급하면 질소는 제올라이트에 흡착되고 산소는 투과되어 배출되므로 질소가 현저히 배제된 산소를 생산할 수 있으며, 이때 생산된 산소는 제올라이트에서 제거되지 않은 미량의 질소 및 산소와 비슷한 흡착능으로 인하여 흡착되지 않는 아르곤을 포함한다.Therefore, when air is supplied to the zeolite, nitrogen is adsorbed to the zeolite and oxygen is permeated and discharged, thereby producing oxygen that is significantly excluded from the nitrogen. At this time, the produced oxygen has an adsorption capacity similar to that of a small amount of nitrogen and oxygen not removed from the zeolite. It contains argon that is not adsorbed.

따라서, 일반적인 흡착법에 의한 산소생산 시스템은 내부가 제올라이트로 충전된 제올라이트탑으로 구성되며, 경우에 따라서는 생산되는 산소의 순도를 높이기 위하여 2중이나 3중으로 제올라이트탑이 구성된 시스템도 있다. Therefore, the oxygen production system by the general adsorption method is composed of a zeolite tower filled with a zeolite inside, there is also a system in which the zeolite tower is composed of double or triple to increase the purity of the oxygen produced in some cases.

그러나, 이와 같은 흡착식 산소생산 시스템에 의하여 생산된 산소는 아르곤 분리의 어려움으로 인하여 산소의 순도가 최대 95%에 불과하므로, 산소생산회사들은 1980년대 이후부터 이 시스템을 이용하여 99% 이상의 고순도 산소를 생산하기 위한 공정을 개발하고 있다.However, the oxygen produced by this adsorption oxygen production system is only up to 95% of the purity of oxygen due to the difficulty of argon separation, and oxygen producers have been using this system since the 1980s to obtain more than 99% high purity oxygen. We are developing a process for production.

그리고, 현재는 미국의 BOC 및 Crew Technology Division Amstrong Raboratory사와, 일본의 Sumitomo Seike 주식회사가 그 분야에 선두로 두각을 나타내고 있으며, 이 회사들은 현재 99.7%의 고순도 산소를 생산할 수 있는 시스템을 곧 상용화 시킬 예정이다.Currently, the US BOC and Crew Technology Division Amstrong Raboratory and Japan's Sumitomo Seike Co., Ltd. are leading the field, and the companies will soon commercialize systems capable of producing 99.7% high purity oxygen. to be.

하지만, 이 회사들의 산소생산 시스템은 벌크 분리를 위한 흡착공정과 정화를 위한 흡착공정으로 이루어져 있기 때문에 벌크 분리용 흡착공정을 완전히 종료한 후, 다시 정화용 흡착공정을 수행하여야 하므로 각각의 흡착공정 운전으로 인하여 산소의 생산 단가가 고가인 것이 가장 큰 문제이다.However, the oxygen production system of these companies is composed of adsorption process for bulk separation and adsorption process for purification, so it is necessary to complete the adsorption process for bulk separation and perform the adsorption process for purification again. Due to the high production cost of oxygen is the biggest problem.

한편, 흡착법을 이용하여 고순도의 질소도 생산할 수 있으며, 이러한 경우에는 CMS(탄소분자체: Carbon molecular sieve)가 흡착제로 사용되며, 그 이유는 CMS에 산소가 질소나 아르곤 보다 수십 내지 수백배 이상 빠른 속도로 흡착되기 때문이다.On the other hand, it is also possible to produce high-purity nitrogen by the adsorption method, in which case CMS (Carbon molecular sieve) is used as the adsorbent, because the oxygen in the CMS dozens to hundreds times faster than nitrogen or argon This is because it is adsorbed by.

즉, CMS에 대한 산소와 질소 및 아르곤의 흡착속도 차이로 인하여 산소는 CMS에 빠르게 흡착되는 반면, 질소와 아르곤은 흡착되지 못하고 CMS를 투과하게 되어 고순도의 질소를 생산할 수 있다.That is, due to the difference in the adsorption rate of oxygen and nitrogen and argon to the CMS, oxygen is quickly adsorbed to the CMS, while nitrogen and argon are not adsorbed and permeate the CMS to produce high purity nitrogen.

이러한, CMS를 이용한 질소생산 시스템은 보통 CMS가 충전된 CMS탑으로 구성되며, CMS탑 역시 생산되는 질소의 순도 및 생산량을 높이기 위하여 2중이나 3중탑으로 구성할 수 있다.Such a nitrogen production system using CMS is usually composed of a CMS tower filled with CMS, CMS tower can also be configured as a double or triple tower to increase the purity and production of nitrogen produced.

한편, 최근에는 전술된 제올라이트탑 시스템을 이용하여 질소 및 아르곤 등의 불순물을 포함하는 90~95%의 산소를 생산해 내고, 다시 그 산소를 전술된 CMS탑 시스템으로 정화하여 99% 이상의 산소를 생산하는 공정이 개발되었다.On the other hand, recently, the zeolite tower system described above produces 90-95% of oxygen containing impurities such as nitrogen and argon, and then purifies the oxygen with the aforementioned CMS tower system to produce more than 99% of oxygen. The process was developed.

하지만, 이 공정은 제올라이트탑 시스템과 CMS탑 시스템이 별개로 이루어져 독립적으로 운전되는 단순한 다단식 시스템이므로, 각각의 시스템을 모두 구비하여야할 뿐만 아니라 개별적 독립운전으로 인한 이중의 운전비용 및 이중 에너지비용을 부담하여야 하며, 원료가 각각의 개별 시스템을 거쳐야하므로 산소의 회수율이 급격히 저하되는 등의 단점이 있다.However, this process is a simple multi-stage system that operates independently because the zeolite tower system and the CMS tower system are separately operated. Therefore, not only each system should be equipped, but also the dual operation cost and the double energy cost due to individual independent operation. Since the raw material has to go through each individual system, the recovery rate of oxygen is sharply lowered.

특히, 공기분리를 위한 심냉법에서 산소가 제조되는 경우, 미량의 질소 및 아르곤 등의 불순물을 포함한 산소를 1차적으로 생산한 후, 이를 더욱 정제하여 99.8%이상의 순도를 갖도록 하기 위해서 초저온 상태에서 흡착제 등을 이용한 흡착공정을 다시 거쳐야 한다.In particular, when oxygen is produced in a deep cooling method for air separation, an oxygen-containing adsorbent in ultra low temperature state is produced in order to have a purity of 99.8% or more after primarily producing oxygen containing impurities such as trace amounts of nitrogen and argon. It is necessary to go through the adsorption process again.

그러나, 이러한 별도의 정제공정은 초저온 상태에서 운영되기 때문에 높은 에너지비용이 소요되고, 이는 결국 산소의 제조단가를 상승시키는 요인으로 작용하게 된다.However, such a separate purification process requires a high energy cost because it operates in an ultra-low temperature state, which eventually increases the production cost of oxygen.

본 발명은 이러한 종래의 문제를 개선하기 위하여 안출된 것으로, 2개의 탄소분자체탑(Carbon Molecular Sieve Bed)에 대한 가압에 의한 산소흡착공정 또는 감압에 의한 산소생산공정을 교대로 실시하면서 압력균등화공정을 통해 고순도의 산소를 정제한 후, 생산해낼 수 있도록 구성함으로써 그 구조가 간단하면서 저비용으로도 산소의 회수율이 매우 높고, 99.9%의 고순도 산소를 효과적으로 생산해 낼 수 있는 산소생산방법 및 그 장치를 제공함에 그 목적이 있다. The present invention has been made to improve such a conventional problem, the pressure equalization process while alternately performing the oxygen adsorption process by the pressure or the oxygen production process by reduced pressure to the two carbon molecular sieve bed (Carbon Molecular Sieve Bed) By purifying high-purity oxygen and producing it through the structure, the structure is simple and the recovery rate of oxygen is very high even at low cost, and it provides an oxygen production method and apparatus that can effectively produce high purity oxygen of 99.9%. The purpose is.

상기한 목적을 달성하기 위하여 본 발명은 공기중 산소만을 흡착하는 흡착제가 내장되는 다수의 탄소분자체탑을 이용한 산소생산방법에 있어서, 송풍기의 송풍이 1,2,3,9번밸브와 유량/압력제어밸브에 의해 제어되어 제1탄소분자체탑에서 가압/배출 및 산소흡착공정이 이루어지면 제2탄소분자체탑은 6,12번밸브를 통해 대기압으로 감압되면서 산소를 생산하게 되는 제1산소흡착/생산단계와; 7,8번밸브를 통한 상기 제1탄소분자체탑과 제2탄소분자체탑의 압력균등화과정에서 제1탄소분자체탑은 불순물을 배출하고, 제2탄소분자체탑은 초기가압이 이루어지는 압력균등화단계와; 상기 제1탄소분자체탑에서 4,12번밸브를 통해 대기압으로 감압되면서 산소를 생산하면, 송풍기의 송풍이 1,2,5,10번밸브와 유량/압력제어밸브에 의헤 제어되어 제2탄소분자체탑에서 가압/배출 및 산소흡착공정이 이루어지는 제2산소흡착/생산단계;로 구성되는 것을 특징으로 하는 산소생산방법을 제공하게 된다.In order to achieve the above object, the present invention provides a method for producing oxygen using a plurality of carbon molecular sieve towers in which an adsorbent adsorbs only oxygen in the air, and the blower blows the valves 1,2,3,9 and flow rate / pressure. When controlled by a control valve and pressurized / discharged and oxygen adsorption is performed in the first carbon molecular tower, the second carbon molecular tower is decompressed to atmospheric pressure through valves 6 and 12 to produce oxygen while producing oxygen. Steps; A pressure equalization step in which the first carbon molecular sieve discharges impurities and the second carbon molecular sieve tower has an initial pressure in the pressure equalization process of the first carbon molecular sieve tower and the second carbon molecular sieve tower through valves 7,8; When oxygen is produced while the pressure is reduced to atmospheric pressure through the valves 4 and 12 in the first carbon molecular tower, the blower of the blower is controlled by the valves 1,2,5,10 and the flow rate / pressure control valve, so that the second carbon molecular sieve It provides a method for producing oxygen, characterized in that consisting of; a second oxygen adsorption / production step in which the pressure / discharge and oxygen adsorption process is performed in the tower.

그리고, 본 발명은 공기중 산소만을 흡착하는 흡착제가 내장되는 다수의 탄소분자체탑을 이용한 산소생산장치에 있어서, 제1,2탄소분자체탑에서 가압에 의한 산소흡착공정과, 감압에 의한 산소생산공정이 교대로 실시되도록 구성하되, 압력균등화공정을 통해 제1,2탄소분자체탑에서 감압에 의한 산소정제와 초기가압이 각각 이루어지도록 구성되는 것을 특징으로 하는 산소생산장치를 제공하게 된다.In addition, the present invention is an oxygen production apparatus using a plurality of carbon molecular sieve towers containing an adsorbent adsorbing only oxygen in the air, the oxygen adsorption process by pressure in the first and second carbon molecular sieve tower, and the oxygen production process by reduced pressure It is configured to be carried out alternately, through the pressure equalization process to provide an oxygen production apparatus characterized in that the first and second carbon molecular sieve purification by the reduced pressure and the initial pressure is configured to be respectively.

도1은 본 발명의 일 실시예를 예시하는 구성도이다.1 is a block diagram illustrating an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 그 일 실시예에 따르면, 도1에 도시한 바와 같이 내부로 공급되는 공기중에서 산소만을 선택하여 흡착하는 흡착제가 내장되는 제1,2탄소분자체탑(Carbon Molecular Sieve Bed)(100,200)과, 제1,2탄소분자체탑의 내압을 유지하는 유량제어밸브(30) 및 압력제어밸브(40)와, 제1탄소분자체탑 또는 제2탄소분자체탑의 가압, 감압, 압력균등화 공정을 제어하는 다수의 솔레노이드밸브(1,2,3,4,5,6,7,8,9,10,11,12)로 구성되어 있다.According to an embodiment of the present invention, as shown in FIG. 1, a first and second carbon molecular sieve bed (100,200) having an adsorbent for selecting and adsorbing only oxygen from the air supplied to the inside is adsorbed. To control the pressurization, depressurization, and pressure equalization processes of the flow control valve 30 and the pressure control valve 40 maintaining the internal pressure of the first and second carbon molecular sieves and the first carbon molecular sieve or the second carbon molecular sieve. It consists of a plurality of solenoid valves (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

이하에서는 본 발명의 산소생산공정을 통해 본 발명의 구성 및 작용을 자세히 살펴보기로 한다.Hereinafter will be described in detail the configuration and operation of the present invention through the oxygen production process of the present invention.

제1산소흡착/생산단계에서는 예컨대, 제1탄소분자체탑(100)이 송풍기(B)에서 공급되는 공기에 의해 가압되면서 산소흡착공정을 거치는 동안, 제2탄소분자체탑(200)가 대기압으로 감압되면서 고순도의 산소를 생산하도록 구성되어 있다.In the first oxygen adsorption / production step, for example, while the first carbon molecular sieve 100 is subjected to an oxygen adsorption process while being pressurized by air supplied from the blower B, the second carbon molecular sieve 200 is decompressed to atmospheric pressure. It is configured to produce high purity oxygen.

먼저, 제1탄소분자체탑(100)이 일정압력으로 가압되고 제2제올라이트탑(200)이 대기압으로 감압되도록 제어되는 제1산소흡착/생산단계를 가정해 보면, 송풍기(B)에 의해 공급되는 일정기압의 공기는 개방된 1번밸브와 3번밸브를 통해 제1탄소분자체탑(100)으로 공급되고, 제1탄소분자체탑(100)에서는 그 내부로 공급되는 공기에 의해 일정압력까지 가압되면서 이 가압상태에서 내장된 흡착제를 이용하여 공기중의 산소를 선택 흡착하게 된다.First, suppose that the first oxygen adsorption / production stage in which the first carbon molecular sieve 100 is pressurized to a constant pressure and the second zeolite tower 200 is controlled to be reduced to atmospheric pressure is supplied by the blower B. Air of a predetermined pressure is supplied to the first carbon molecular sieve 100 through the open valve 1 and the valve 3, the first carbon molecular sieve 100 is pressurized to a predetermined pressure by the air supplied to the inside In this pressurized state, the built-in adsorbent is used to selectively adsorb oxygen in the air.

그리고, 제1탄소분자체탑(100)의 내압이 일정압력에 도달하면 1번밸브를 폐쇄하는 대신에 2번밸브와 9번밸브, 11번밸브를 개방하게 되는데, 유량제어밸브(30)는 송풍기(B)로부터 제1탄소분자체탑(100)으로 공급되는 공기의 유량을 일정하게 조절하게 된다.Then, when the internal pressure of the first carbon molecular sieve 100 reaches a predetermined pressure, instead of closing the valve 1, valves 2, 9, and 11 are opened, and the flow control valve 30 is a blower. The flow rate of the air supplied to the first carbon molecular sieve 100 from (B) is constantly adjusted.

또한, 개방된 9번밸브를 통해 제1탄소분자체탑(100)내의 공기를 외부로 배출되는데, 이때 압력제어밸브(40)는 공기가 배출되는 과정에서 제1탄소분자체탑(100)의 압력이 일정하게 유지되도록 제어하게 된다.In addition, the air in the first carbon molecular sieve 100 is discharged to the outside through the open valve 9, the pressure control valve 40 is the pressure of the first carbon molecular sieve 100 in the air discharge process The control is to be kept constant.

특히, 개방된 9번밸브를 통해 배출되는 공기에는 송풍기(B)로부터 공급되는 공기에 비해 산소의 농도가 현저히 낮아진 상태인데, 이는 제1탄소분자체탑(100)을 거치는 동안 탑내부의 흡착제에 의해 산소가 흡착되어 질소, 아르곤 등의 불순물 농도가 상대적으로 높아지기 때문이다.In particular, the air discharged through the open valve 9 has a significantly lower oxygen concentration than the air supplied from the blower (B), which is caused by the adsorbent in the tower during the first carbon molecular sieve 100. This is because oxygen is adsorbed and the concentration of impurities such as nitrogen and argon is relatively high.

이때, 제1탄소분자체탑(100)에서 가압 및 산소흡착의 공정을 거치는 동안, 제2탄소분자체탑(200)에서는 개방된 6번밸브와 12번밸브를 통해 대기압으로 감압이 이루어지게 되는데, 연속산소생산작업이 이루어진 경우에는 이 감압과정을 통해 그 내부의 흡착제가 흡착하고 있는 산소가 외부로 배출되면서 99.9%의 고순도 산소를 생산하게 되지만 최초산소생산작업인 경우에는 감압상태에서 정지된다.At this time, while the first carbon molecular sieve 100 undergoes a process of pressurization and oxygen adsorption, the second carbon molecular sieve 200 receives a reduced pressure to atmospheric pressure through valves 6 and 12 opened. In the case of the oxygen production operation, the oxygen adsorbed by the adsorbent inside is discharged to the outside to produce high purity oxygen of 99.9%, but the first oxygen production operation is stopped under the reduced pressure.

한편, 압력균등화단계는 7번밸브와 8번밸브만을 개방한 상태에서 제1탄소분자체탑(100)과 제2탄소분자체탑(200)내의 압력을 균등화하는 단계로서, 상대적으로 고압상태인 제1탄소분자체탑(100)은 감압이 이루어지지만, 상대적으로 낮은 저압상태인 제2탄소분자체탑(200)은 가압이 이루어지게 된다.On the other hand, the pressure equalization step is to equalize the pressure in the first carbon molecular sieve 100 and the second carbon molecular sieve 200 in a state in which only valves 7 and 8 are opened, and the first pressure is relatively high. Although the carbon molecular sieve tower 100 is decompressed, the second carbon molecular sieve tower 200 in a relatively low pressure state is pressurized.

여기서, 압력균등화단계에서 제1탄소분자체탑(100)은 내부의 압력을 개방된 7번밸브와 8번밸브를 통해 두 탑간의 압력이 동일해질 때까지 제2탄소분자체탑(200)으로 배출하게 되는데, 이때 압력배출과정에서 제1탄소분자체탑내의 공기중 질소와 아르곤 등의 불순물이 주로 배출된다.Here, in the pressure equalization step, the first carbon molecular sieve 100 discharges the internal pressure to the second carbon molecular sieve 200 until the pressure between the two towers is the same through the open valve 7 and valve 8. In this case, impurities such as nitrogen and argon in the air in the first carbon molecular sieve are mainly discharged during the pressure discharge process.

결국, 압력균등화단계를 거치게 되면 제1탄소분자체탑(100)에서는 일정압력까지 감압이 이루어지면서 그 내부에 잔존하고 있는 질소, 아르곤 등의 불순물을 제2탄소분자체탑(200)으로 배출함으로써 그 내부에 순도 99.9%의 산소를 보유하게 된다.As a result, when the pressure equalization step is performed, the first carbon molecular sieve 100 reduces the pressure to a predetermined pressure and discharges impurities such as nitrogen and argon remaining therein to the second carbon molecular sieve 200. It has oxygen of 99.9% purity.

반면에, 압력균등화단계를 거치면서 제2탄소분자체탑(200)에서는 제1탄소분자체탑으로부터 공급되는 압력에 의해 일정압력까지 초기가압이 이루어지게 되어 송풍기(B)에 의한 가압시간을 현저히 줄일 수 있게 된다.On the other hand, in the second carbon molecular sieve 200 through the pressure equalization step, the initial pressurization is performed to a predetermined pressure by the pressure supplied from the first carbon molecular sieve tower, thereby significantly reducing the pressurization time by the blower (B). Will be.

그리고, 제2산소흡착/생산단계에서는 송풍기(B)에 의해 공급되는 일정기압의 공기가 개방된 1번밸브와 5번밸브를 통해 제2탄소분자체탑(200)으로 공급되고, 압력균등화단계에서 초기가압된 상태인 제2탄소분자체탑(200)에서는 그 내부로 공급되는 공기에 의해 일정압력까지 보다 짧은 시간내에 가압되면서 이 가압상태에서 내장된 흡착제를 이용하여 공기중의 산소를 선택 흡착하게 된다.In the second oxygen adsorption / production step, the air of a predetermined atmospheric pressure supplied by the blower B is supplied to the second carbon molecular sieve tower 200 through the first valve and the fifth valve which are opened, and in the pressure equalization step, In the second carbon molecular sieve 200, which is in the initial pressurized state, it is pressurized within a shorter time to a predetermined pressure by the air supplied therein to selectively adsorb oxygen in the air by using the built-in adsorbent in this pressurized state. .

그리고, 제2탄소분자체탑(200)의 내압이 일정압력에 도달하면 1번밸브를 폐쇄하는 대신에 2번밸브와 10번밸브, 11번밸브를 개방하게 되는데, 유량제어밸브(30)는 송풍기(B)로부터 제2탄소분자체탑(200)으로 공급되는 공기의 유량을 일정하게 조절하게 된다.When the internal pressure of the second carbon molecular tower 200 reaches a predetermined pressure, instead of closing the valve 1, the valve 2, the valve 10, and the valve 11 are opened, and the flow control valve 30 is a blower. The flow rate of the air supplied to the second carbon molecular sieve 200 from (B) is constantly adjusted.

또한, 개방된 10번밸브를 통해 제2탄소분자체탑(200)내의 공기를 외부로 배출되는데, 이때 압력제어밸브(40)는 공기가 배출되는 과정에서 제2탄소분자체탑(200)의 압력이 일정하게 유지되도록 제어하게 된다.In addition, through the open valve 10, the air in the second carbon molecular sieve 200 is discharged to the outside, wherein the pressure control valve 40 is the pressure of the second carbon molecular sieve 200 in the air discharge process The control is to be kept constant.

특히, 개방된 10번밸브를 통해 배출되는 공기에는 송풍기(B)로부터 공급되는 공기에 비해 산소의 농도가 현저히 낮아진 상태인데, 이는 제2탄소분자체탑(200)을 거치는 동안 탑내부의 흡착제에 의해 산소가 흡착되어 질소, 아르곤 등의 불순물 농도가 상대적으로 높아지기 때문이다.In particular, the air discharged through the open valve 10 has a significantly lower oxygen concentration than the air supplied from the blower (B), which is caused by the adsorbent inside the tower during the second carbon molecular sieve 200. This is because oxygen is adsorbed and the concentration of impurities such as nitrogen and argon is relatively high.

이때, 제2탄소분자체탑(200)에서 가압 및 산소흡착의 공정을 거치는 동안, 제1탄소분자체탑(100)에서는 개방된 4번밸브와 12번밸브를 통해 대기압으로 감압이 이루어지게 되는데, 이 감압과정을 통해 그 내부의 흡착제가 흡착하고 있는 산소가 외부로 배출되면서 99.9%의 고순도 산소를 생산하게 된다.At this time, while undergoing a process of pressurization and oxygen adsorption in the second carbon molecular tower 200, the first carbon molecular sieve 100 is decompressed to atmospheric pressure through the open valve 4 and valve 12, As the oxygen adsorbed by the adsorbent inside is discharged to the outside through the decompression process, high purity oxygen of 99.9% is produced.

그리고, 다시 이어지는 제1,2탄소분자체탑(100,200)내의 압력을 균등화하는압력균등화단계에서는 7번밸브와 8번밸브만을 개방한 상태에서 상대적으로 고압상태인 제2탄소분자체탑(200)은 감압이 이루어지지만, 상대적으로 낮은 저압상태인 제1탄소분자체탑(100)은 가압이 이루어지게 된다.In the pressure equalization step of equalizing the pressure in the first and second carbon molecular sieves 100 and 200, the second carbon molecular sieve 200 having a relatively high pressure in the state where only the seventh and eighth valves are opened is decompressed. Although this is made, the first carbon molecular sieve 100 in a relatively low pressure state is made to be pressurized.

여기서, 제2탄소분자체탑(200)은 내부의 압력을 개방된 7번밸브와 8번밸브를 통해 두 탑간의 내부압력이 동일해질 때까지 제1탄소분자체탑(100)으로 배출하게 되는데, 이때 압력배출과정에서 제2탄소분자체탑내의 공기중 질소와 아르곤 등의 불순물이 주로 배출된다.Here, the second carbon molecular sieve tower 200 discharges the pressure inside the first carbon molecular sieve tower 100 until the internal pressure between the two towers is the same through the seventh valve and the eighth valve which are opened. In the pressure discharge process, impurities such as nitrogen and argon in the air in the second carbon molecular sieve are mainly discharged.

결국, 압력균등화단계를 거치게 되면 제2탄소분자체탑(200)에서는 일정압력까지 감압이 이루어지면서 그 내부에 잔존하고 있는 질소, 아르곤 등의 불순물을 제1탄소분자체탑(100)으로 배출함으로써 그 내부에 순도 99.9%의 산소를 보유하게 된다.As a result, when the pressure equalization step is performed, the second carbon molecular sieve 200 depressurizes to a predetermined pressure and discharges impurities such as nitrogen and argon remaining therein to the first carbon sieve 100 to discharge the inside thereof. It has oxygen of 99.9% purity.

반면에, 압력균등화단계를 거치면서 제1탄소분자체탑(100)에서는 제2탄소분자체탑(200)으로부터 공급되는 압력에 의해 일정압력까지 초기가압이 이루어지게 되어 송풍기(B)에 의한 가압시간을 현저히 줄일 수 있게 된다.On the other hand, during the pressure equalization step, the first carbon molecular sieve 100 receives initial pressure up to a predetermined pressure by the pressure supplied from the second carbon molecular sieve 200, thereby increasing the pressurization time by the blower B. Can be significantly reduced.

이처럼, 본 발명에서는 제1탄소분자체탑(100)과 제2탄소분자체탑(200)에 대한 가압공정 또는 감압공정을 교대로 실시하면서 압력균등화공정을 통해 고순도의 산소를 정제한 후, 생산해낼 수 있도록 구성되는데에 그 기술적 특징을 갖게 된다.As described above, in the present invention, after purifying high-purity oxygen through a pressure equalization process while alternately performing a pressurization process or a depressurization process for the first carbon molecular sieve 100 and the second carbon molecular sieve 200, it can be produced. It is configured to have the technical characteristics.

한편, 본 발명에 따른 산소생산작업의 1사이클을 다음의 표1과 같이 간단히 나타낼 수 있다.On the other hand, one cycle of the oxygen production operation according to the present invention can be represented simply as Table 1 below.

표1.Table 1.

제1산소흡착/생산단계  Oxygen adsorption / production stage 압력균등화단계 Pressure equalization stage 제2산소흡착/생산단계Oxygen adsorption / production stage 압력균등화단계Pressure equalization stage 제1탄소분자체탑First Carbon Molecular Tower 가압공정Pressurization Process 산소흡착공정/불순물배출공정Oxygen adsorption process / impurity discharge process 감압의 압력균등화공정Pressure Equalization Process of Pressure Reduction 감압에 의한 산소생산공정Oxygen Production Process by Decompression 가압의 압력균등화공정Pressure equalization process of pressurization 제2탄소분자체탑2nd carbon molecular sieve tower 감압에 의한 산소생산공정Oxygen Production Process by Decompression 가압의 압력균등화공정Pressure equalization process of pressurization 가압공정Pressurization Process 산소흡착공정/불순물배출공정Oxygen adsorption process / impurity discharge process 감압의 압력균등화공정Pressure Equalization Process of Pressure Reduction

이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 이는 본 발명의 범주에서 벗어나지 않는 한도내에서 여러가지 변형이 가능함은 물론이다.As described above, specific embodiments have been described in the detailed description of the present invention, but various modifications may be made without departing from the scope of the present invention.

그러므로, 본 발명의 실질적인 범위는 상술된 실시예에 의해 한정되어져서는 안되며, 후술하는 청구범위 뿐만 아니라 청구범위와 균등한 구성에 의해 정해져야 함은 당연하다.Therefore, the substantial scope of the present invention should not be limited by the above-described embodiment, but should be defined by the same structure as the claims as well as the claims described below.

이상과 같이 구성되는 본 발명은 그 구조가 간단하면서 저비용으로도 산소의 회수율이 매우 높고, 99.9%의 고순도 산소를 효과적으로 생산해 낼 수 있는 효과를 제공하게 된다.The present invention constituted as described above provides the effect that the structure is simple and the recovery rate of oxygen is very high even at low cost, and it is possible to effectively produce high purity oxygen of 99.9%.

도1은 본 발명의 일 실시예를 예시하는 구성도이다.1 is a block diagram illustrating an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1,2,3,4,5,6,7,8,9,11,12: 솔레노이드밸브 30: 유량제어밸브 40: 압력제어밸브 100: 제1탄소분자체탑 200: 제2탄소분자체탑 B: 송풍기 1,2,3,4,5,6,7,8,9,11,12: Solenoid Valve 30: Flow Control Valve 40: Pressure Control Valve 100: First Carbon Molecular Tower 200: Second Carbon Molecular Tower B: air blower

Claims (2)

공기중 산소만을 흡착하는 흡착제가 내장되는 다수의 탄소분자체탑을 이용한 산소생산방법에 있어서,In the oxygen production method using a plurality of carbon molecular sieve column containing an adsorbent adsorbing only oxygen in the air, 송풍기(B)의 송풍이 1,2,3,9번밸브와 유량/압력제어밸브(30,40)에 의해 제어되어 제1탄소분자체탑(100)에서 가압/배출 및 산소흡착공정이 이루어지면 제2탄소분자체탑(200)은 6,12번밸브를 통해 대기압으로 감압되면서 산소를 생산하게 되는 제1산소흡착/생산단계와; 7,8번밸브를 통한 상기 제1탄소분자체탑(100)과 제2탄소분자체탑(200)의 압력균등화과정에서 제1탄소분자체탑(100)은 불순물을 배출하고, 제2탄소분자체탑(200)은 초기가압이 이루어지는 압력균등화단계와; 상기 제1탄소분자체탑(100)에서 4,12번밸브를 통해 대기압으로 감압되면서 산소를 생산하면, 송풍기(B)의 송풍이 1,2,5,10번밸브와 유량/압력제어밸브(30,40)에 의헤 제어되어 제2탄소분자체탑(200)에서 가압/배출 및 산소흡착공정이 이루어지는 제2산소흡착/생산단계;로 구성되는 것을 특징으로 하는 산소생산방법.When the blower of the blower (B) is controlled by the valves 1,2,3,9 and the flow rate / pressure control valves 30,40 to pressurize / discharge and oxygen adsorption process in the first carbon molecular sieve 100 The second carbon molecular sieve 200 includes a first oxygen adsorption / producing step of producing oxygen while reducing the pressure to atmospheric pressure through valves 6 and 12; In the pressure equalization process of the first carbon molecular sieve 100 and the second carbon molecular sieve 200 through valves 7, 8, the first carbon molecular sieve 100 discharges impurities, and the second carbon molecular sieve tower ( 200) is the pressure equalization step of the initial pressure is made; When the oxygen is produced while the pressure is reduced to atmospheric pressure through the valves 4, 12 in the first carbon molecular sieve 100, the blower B blows the valves 1,2, 5, 10 and the flow / pressure control valve 30 And a second oxygen adsorption / producing step of controlling the pressure by the second carbon molecular sieve 200 and the oxygen adsorption step is performed by the second carbon molecular sieve 200. 공기중 산소만을 흡착하는 흡착제가 내장되는 다수의 탄소분자체탑을 이용한 산소생산장치에 있어서,In the oxygen production apparatus using a plurality of carbon molecular sieve column containing an adsorbent that adsorbs only oxygen in the air, 제1,2탄소분자체탑(100,200)에서 가압에 의한 산소흡착공정과, 감압에 의한 산소생산공정이 교대로 실시되도록 구성하되, 압력균등화공정을 통해 제1,2탄소분자체탑(100,200)에서 감압에 의한 산소정제와 초기가압이 각각 이루어지도록 구성되는 것을 특징으로 하는 산소생산장치.The oxygen adsorption process by pressurization and the oxygen production process by pressure reduction are alternately performed in the first and second carbon molecular weight towers 100 and 200, but the pressure is reduced in the first and second carbon molecular weight towers 100 and 200 through a pressure equalization process. Oxygen production apparatus, characterized in that configured to be made by the oxygen purification and the initial pressure.
KR1020030067797A 2003-09-30 2003-09-30 Method for producing oxygen and apparatus thereof KR100547981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030067797A KR100547981B1 (en) 2003-09-30 2003-09-30 Method for producing oxygen and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030067797A KR100547981B1 (en) 2003-09-30 2003-09-30 Method for producing oxygen and apparatus thereof

Publications (2)

Publication Number Publication Date
KR20050031597A true KR20050031597A (en) 2005-04-06
KR100547981B1 KR100547981B1 (en) 2006-02-02

Family

ID=37236438

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030067797A KR100547981B1 (en) 2003-09-30 2003-09-30 Method for producing oxygen and apparatus thereof

Country Status (1)

Country Link
KR (1) KR100547981B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141487A1 (en) * 2012-03-21 2013-09-26 한국에너지기술연구원 Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
CN110980651A (en) * 2019-12-27 2020-04-10 广西珂深威医疗科技有限公司 Oxygen generation system based on bidirectional complementary oxygen pressure equalization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403693B1 (en) * 2007-10-23 2014-06-09 대성산업가스 주식회사 Equipment for producing oxygen and method for controlling the same
CN106892405A (en) * 2017-05-03 2017-06-27 辽宁沃德玛克工业设备制造有限公司 A kind of oxygen making machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100377838B1 (en) * 2000-09-01 2003-03-29 이창하 Absorbtion apparatus of pressure circulation
KR100851241B1 (en) * 2001-08-29 2008-08-08 다이요 닛산 가부시키가이샤 Absorbent for Separating Nitrogen from Mixed Gas of Oxygen And Nitrogen
JP3524527B2 (en) * 2001-09-05 2004-05-10 日本酸素株式会社 Adsorbent and method and apparatus for producing nitrogen using the same
KR20040012176A (en) * 2002-08-01 2004-02-11 에이엔비 주식회사 control apparatus of oxygen generator and control method of thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141487A1 (en) * 2012-03-21 2013-09-26 한국에너지기술연구원 Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
US9149758B2 (en) 2012-03-21 2015-10-06 Korea Institute Of Energy Research Continuous oxygen production method and continuous oxygen adsorption and desorption device using oxygen adsorbing agent
CN110980651A (en) * 2019-12-27 2020-04-10 广西珂深威医疗科技有限公司 Oxygen generation system based on bidirectional complementary oxygen pressure equalization

Also Published As

Publication number Publication date
KR100547981B1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
CN102078740B (en) Method for separating and purifying hydrogen from water gas by pressure swing adsorption
EP1867379B1 (en) Pressure swing adsorption process with improved recovery of high-purity product
US8128734B2 (en) Two stage pressure swing adsorption process for producing enriched-oxygen
EP1371407B1 (en) Vacuum swing adsorption process with controlled waste gas withdrawal
US5084075A (en) Vacuum swing adsorption process for production of 95+% n2 from ambient air
US4781735A (en) Enrichment in oxygen gas
US4715867A (en) Auxiliary bed pressure swing adsorption molecular sieve
US7645325B2 (en) Oxygen production process using three-stage pressure swing adsorption plants
US6527830B1 (en) Pressure swing adsorption process for co-producing nitrogen and oxygen
KR100605549B1 (en) Apparatus for producting oxygen and control method the same
KR100547981B1 (en) Method for producing oxygen and apparatus thereof
KR101209554B1 (en) Apparatus for producing oxygen and method for controlling purity for oxygen
KR20090041215A (en) Equipment for producing oxygen and method for controlling the same
EP0598321A1 (en) Adsorption Process with mixed repressurization and purge/equalization
KR20190054742A (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
EP0475591B1 (en) Systems for the production of high purity gas
US4834956A (en) Process for the production of high purity argon
TWI626214B (en) Purification method and purification system for carbonic acid gas
EP0314040B1 (en) Method for removing carbon dioxide gas and moisture in a city gas production
CN102080000A (en) Method for separating and purifying CO from water gas by pressure swing adsorption
JPH01262919A (en) Method for separating and recovering nitrogen and oxygen in air
CN112742172B (en) Energy gas purification method
CA1182765A (en) Repressurization for pressure swing adsorption system
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JP2002079031A (en) Pressure swing adsorbing apparatus for manufacturing highly concentrated oxygen

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee