KR20050026294A - Method for treating and reusing high-strength organic wastewater - Google Patents

Method for treating and reusing high-strength organic wastewater Download PDF

Info

Publication number
KR20050026294A
KR20050026294A KR1020030063324A KR20030063324A KR20050026294A KR 20050026294 A KR20050026294 A KR 20050026294A KR 1020030063324 A KR1020030063324 A KR 1020030063324A KR 20030063324 A KR20030063324 A KR 20030063324A KR 20050026294 A KR20050026294 A KR 20050026294A
Authority
KR
South Korea
Prior art keywords
wastewater
reverse osmosis
treated water
treatment
treating
Prior art date
Application number
KR1020030063324A
Other languages
Korean (ko)
Other versions
KR100523338B1 (en
Inventor
정윤철
정진영
박재철
설수일
Original Assignee
한국과학기술연구원
주식회사 와트렌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 주식회사 와트렌 filed Critical 한국과학기술연구원
Priority to KR10-2003-0063324A priority Critical patent/KR100523338B1/en
Publication of KR20050026294A publication Critical patent/KR20050026294A/en
Application granted granted Critical
Publication of KR100523338B1 publication Critical patent/KR100523338B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Abstract

To provide a method for treating highly concentrated organic wastewater, which is able to effectively and simply remove suspended solids such as volatile fatty acids from the wastewater within a short period of time. The method comprises the steps of: (a) injecting ferric sulfate into a reactor containing wastewater under the high-speed mixture condition until pH of the wastewater being adjusted to 3.0-5.5; (b) injecting an alkaline agent into the wastewater treated by the step (a) to adjust the pH of the treated water; (c) injecting a polymeric coagulant into the treated water with mixing under the low-speed mixture condition to form floc and then solid-liquid separating the formed floc; and (d) treating the solid-liquid separated treated water through a reverse osmosis process.

Description

고농도 유기폐수의 처리 및 재이용 방법{Method for treating and reusing high-strength organic wastewater}Method for treating and reusing high-strength organic wastewater

본 발명은 고농도 유기폐수의 처리 및 재이용 방법에 관한 것이다. 더욱 상세하게는, 부유성 고형물을 고농도로 함유한 양돈폐수의 처리방법에 관한 것이다. 더욱 상세하게는, 종래의 기술보다 간단하고 획기적으로 빠른 시간 내에 폐수를 처리할 수 있으며, 특히 가장 저렴하고 효과적인 황산제이철을 무기응집제로 하여 반응 pH를 운전인자로 자동화한 화학응집공정과 필터프레스를 이용한 고액분리 및 후단의 역삼투 처리공정으로 구성되어, 양돈폐수의 종류에 관계없이 일정한 유출수질을 확보할 수 있는 처리방법에 관한 것이다.The present invention relates to a method for the treatment and reuse of high concentration organic wastewater. More specifically, the present invention relates to a method for treating swine wastewater containing a high concentration of suspended solids. More specifically, the wastewater can be treated in a simpler and drastically faster time than the prior art, and the chemical coagulation process and the filter press which automate the reaction pH as an operating factor, in particular, using ferrous sulfate as the cheapest and most effective It consists of the solid-liquid separation and the reverse osmosis treatment process used, and relates to a treatment method that can ensure a constant outflow water quality regardless of the type of swine wastewater.

양돈폐수는 크게 슬러리형 돈사에서 발생하는 고농도 폐수와 스크랩퍼형 돈사에서 발생하는 저농도 폐수로 구분되며, 축사의 형태 및 청소방법에 따라 폐수중의 오염물의 농도가 크게 변하는 특성이 있기 때문에, 적절한 전처리없이 생물학적으로 폐수를 처리할 경우 잦은 운전실패 및 처리수질 악화를 초래할 수 있다. 특히 양돈폐수내 존재하는 고농도의 부유성 고형물의 경우 적절한 전처리 없이 생물반응기로 유입되면 생물반응기를 안정적으로 유지하기 어렵다.Swine wastewater is largely divided into high concentration wastewater from slurry type piglet and low concentration wastewater from scraper type piglet, and the concentration of contaminants in the wastewater varies greatly depending on the type of house and cleaning method. Biological treatment of wastewater can lead to frequent operational failures and poor water quality. In particular, high concentrations of suspended solids in swine wastewater are difficult to maintain if the bioreactor is introduced into the bioreactor without proper pretreatment.

축산폐수의 경우, 축산폐수 공공처리장의 방류수 기준과 개별처리시설에 대한 수질기준(2000년 1월 1일 시행)이 하기 표1과 같이 상이하며, 축산폐수 공공처리장의 경우, 현재 가장 많이 설치되어 운전되고 있는 "액상부식법에 있어서 축산폐수 또는 분뇨 고도처리의 질소 및 인 제거방법 (특10-0342667)", "토양미생물을 이용한 축산폐수의 순환처리 방법 및 시스템 (특2001-0036777)", 바실러스 균의 우점화를 통한 "분뇨 및 유기성폐수 처리방법(특0151928)" 등도 공정의 복잡성, 축산폐수 성상의 심각한 변화, 긴 수리학적 체류시간 (15-30일) 및 높은 처리비 등의 단점들이 있고, 잦은 운전실패로 인해 유지관리의 어려움이 심각한 실정이다. 특히, 잦은 전염병으로 인한 농장방역에 따른 약품사용의 증가는 질산화/탈질 미생물로 구성된 생물학적 처리공정에 심각한 저해를 수반하여 갑작스런 처리수질의 악화를 초래하곤 한다.In the case of livestock wastewater, the effluent standard of the livestock wastewater treatment plant and the water quality standard for the individual treatment facility (enforced on January 1, 2000) are different as shown in Table 1 below. Nitrogen and phosphorus removal method of livestock wastewater or manure advanced treatment in liquid erosion method (Special 10-0342667), "Circulation treatment method and system of livestock wastewater using soil microorganisms (Special 2001-0036777)", The treatment of manure and organic wastewater through the predominance of Bacillus bacteria (Tec. 0151928) also has the disadvantages of process complexity, severe changes in livestock wastewater properties, long hydraulic residence time (15-30 days) and high treatment costs. In addition, maintenance difficulties are serious due to frequent driving failures. In particular, the increase in the use of chemicals due to frequent farming due to infectious diseases is accompanied by severe inhibition of the biological treatment process consisting of nitrification / denitrification microorganisms, leading to sudden deterioration of treated water quality.

혐기성처리공정, 한외여과와 역삼투 공정을 조합한 "막분리를 이용한 고농도 폐수처리방법 (대한민국 특허공고 특0142723)"도 발명되었지만, 혐기성 처리공정의 긴 수리학적 체류시간 (10-30일)과 고액분리를 위한 한외여과법 그리고 후속의 역삼투 공정은 공정의 복잡성과 긴 수리학적 체류시간 등으로 인해 2003년 전반기 현재까지 현장적용이 이루어지지 않고 있어 실제적인 적용의 한계를 나타내고 있다.The "High Concentration Wastewater Treatment Method Using Membrane Separation", which combines anaerobic treatment, ultrafiltration and reverse osmosis, was also invented, but the long hydraulic residence time of the anaerobic treatment (10-30 days) and The ultrafiltration method for solid-liquid separation and subsequent reverse osmosis processes have not been applied to the field since the first half of 2003 due to the complexity of the process and the long hydraulic residence time.

따라서, 비교적 농장규모가 작은 허가대상지역의 기타지역과 규제대상지역의 농장규모에서는 이들 기술을 적용하기가 거의 불가능한 실정에 있다. 수많은 기술들이 국내외에서 개발되었지만 지속적으로 방류수 수질기준을 만족시키는 기술이 거의 없는 실정이다.Therefore, it is almost impossible to apply these techniques at farm scales in other regions and regulated regions of relatively small farms. Numerous technologies have been developed at home and abroad, but few technologies consistently meet the effluent water quality standards.

한편, (주)와트렌의 "가수분해 및 금속염의 이온화 경향을 이용한 화학흡착반응에 의한 고농도 오폐수정화방법 (대한민국 특허공보 10-0341467)"는 화학응집에 의한 고액분리 및 암모니아 탈기에 의한 축산폐수 처리기술로서 고농도 오폐수내에 저분자 유기물의 농도간 낮은 경우에는 적용가능하였지만, 화학응집에 의한 고액분리시 휘발성지방산 같은 저분자유기물이 고농도로 존재하는 경우 효과적으로 유기물을 제거하기 어려운 점이 있었다. 그러나 본 발명에 의한 방법 중, 화학응집에 의한 고액분리기술은 축산폐수의 종류 및 농도에 관계없이 완벽하게 폐수내 부유성 고형물을 분리할 수 있었다.On the other hand, Watren Co., Ltd. "High concentration wastewater purification method by chemical adsorption reaction using hydrolysis and ionization tendency of metal salts" (Korean Patent Publication No. 10-0341467) is a livestock wastewater by solid-liquid separation by chemical flocculation and ammonia deaeration As a treatment technique, it was applicable to low concentrations of low molecular weight organic matter in high concentration wastewater, but it was difficult to remove organic matter effectively when low molecular weight organic matter such as volatile fatty acid was present at high concentration during solid-liquid separation by chemical coagulation. However, in the method according to the present invention, the solid-liquid separation technique by chemical flocculation was able to completely separate the suspended solids in the wastewater regardless of the type and concentration of the livestock wastewater.

처리장 형태Treatment Plant Mode 개별처리장Individual treatment plant 공공처리장Public treatment plant 농장 규모Farm scale 허가대상 지역Permitted Area 규제대상 지역Regulated Area 지역area 특정지역Specific area 기타지역Other Area 특정지역Specific area 기타지역Other Area BOD5 (mg/L)BOD 5 (mg / L) 5050 150150 150150 350350 3030 CODMn (mg/L)COD Mn (mg / L) -- -- -- -- 5050 SS (mg/L)SS (mg / L) 5050 150150 150150 350350 3030 대장균군 (개/100mL)Coliform group (dog / 100mL) -- -- -- -- 3,0003,000 TN (mg/L)TN (mg / L) 260260 -- -- -- 6060 TP (mg/L)TP (mg / L) 5050 -- -- -- 88

본 발명은 상기와 같은 문제점들을 해결하고자 하는 것으로서, 종래의 기술보다 간단하고 획기적으로 빠른 시간 내에 고농도의 유기성 폐수를 처리하는 것을 목적으로 한다. 또한, 휘발성 지방산 같은 저분자 유기물이 고농도로 존재하는 경우 효과적으로 유기물을 제거하는 것을 목적으로 한다. 이로써, 양돈폐수의 종류에 관계없이 일정한 유출수질을 확보할 수 있도록 하는 것이 본 발명의 목적이다.The present invention aims to solve the above problems, and aims at treating a high concentration of organic wastewater in a simpler and significantly faster time than the prior art. In addition, when the low molecular weight organic materials such as volatile fatty acids are present in high concentration, it is an object to effectively remove the organic material. Thus, it is an object of the present invention to ensure a constant outflow water quality regardless of the type of swine wastewater.

상기와 같은 목적을 달성하기 위하여, 본 발명에 의한 고농도 유기폐수의 처리 및 재이용 방법은, 축산폐수와 같은 고농도 유기폐수의 처리 및 재이용 방법에 있어서, 폐수를 고속혼합 조건에서 황산제이철염을 폐수의 pH가 3.0 내지 5.5에 도달할 때까지 폐수가 함유된 반응기내에 투입하여 반응시키는 제1단계; 상기 제1단계를 통해 처리된 처리수에 알칼리제를 투입하여 처리수의 pH를 조정하는 제2단계; 상기 제2단계 이후 상기 처리수 내에 고분자 응집제를 투입하여 플록을 형성시키고 형성된 플록을 고액분리하는 제3단계; 및 제3단계에서 고액분리된 처리수를 역삼투 공정으로 처리하는 제4단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the high concentration organic wastewater treatment and reuse method according to the present invention, in the high concentration organic wastewater treatment and reuse method, such as livestock wastewater, ferric sulphate salts of the wastewater under high-speed mixing conditions a first step of reacting by adding the wastewater into the reactor until the pH reaches 3.0 to 5.5; A second step of adjusting the pH of the treated water by adding an alkaline agent to the treated water treated in the first step; A third step of forming a floc by injecting a polymer flocculant into the treated water after the second step and solid-liquid separating the formed floc; And a fourth step of treating the treated liquid separated in the third step by a reverse osmosis process.

상기한 본 발명에 의한 고농도 유기폐수의 처리 및 재이용 방법에 있어서, 상기 제4단계의 역삼투 공정은, 직렬로 연결된 다수개의 역삼투막 사이에 다시 역삼투막이 병렬로 연결된 역삼투 시스템을 이용하는 것을 특징으로 한다.In the method for treating and reusing high concentration organic wastewater according to the present invention, the reverse osmosis process of the fourth step is characterized by using a reverse osmosis system in which the reverse osmosis membrane is connected in parallel between a plurality of reverse osmosis membranes connected in series. .

상기한 본 발명에 의한 고농도 유기폐수의 처리 및 재이용 방법에 있어서, 상기 제1단계에서 상기 황산제이철염을 폐수의 pH가 3.5 내지 5.0에 도달할 때까지 반응시키는 것을 특징으로 한다.In the above-described method for treating and recycling organic wastewater in high concentration, the ferric sulfate salt is reacted in the first step until the pH of the wastewater reaches 3.5 to 5.0.

이하, 본 발명에 대해 더욱 상세히 살펴본다. Hereinafter, the present invention will be described in more detail.

(1) 제1단계 :황산제이철염 처리(1) First step: ferric sulfate treatment

본 발명자들은 양돈폐수의 처리에 있어서, 가장 큰 문제로 인식되는 폐수내 고형물의 분리를 위해 제이철염 (Ferric chloride, FeCl3), 피에이씨 (Poly aluminium chloride), 명반 (Alum, Aluminium sulfate, Al2(SO4)3)와 황산제이철 (Fe2(SO4)3)등의 다양한 무기응집제를 이용하여 응집시험을 수행하였으나, 최적 무기응집제 주입량을 결정하기 위해 복잡한 일련의 과정을 거쳐야 하는 회분식 실험 (Jar test)에 의존한 종래의 기술로는 시시각각으로 변하는 양돈폐수의 최적응집조건을 만족시키기 어려울 뿐만 아니라, 양돈농가에 따른 폐수성상의 변화를 수용하기 어려웠고, 다량으로 첨가되는 약품량에 의해 톤당 처리비가 급격하게 상승하는 어려움이 있었다. 따라서, 본 발명에서는 응집분리능이 우수하면서도 가장 저렴한 무기응집제로서 황산제이철염을 선정하였고, 최적약품량은 폐수와 응집제간의 반응특성을 이용하여 원폐수의 고속혼합조건에서 폐수의 pH가 3.0-5.5가 될 때까지 무기응집제를 투입하여 약 두시간 반응시킨다.The present inventors have found that ferric chloride (Ferric chloride, FeCl 3 ), polyaluminium chloride, alum (Alum, Aluminum sulfate, Al 2 ) for the separation of solids in the wastewater, which is recognized as the biggest problem in the treatment of swine wastewater. Although flocculation tests were carried out using various inorganic coagulants such as (SO 4 ) 3 ) and ferric sulfate (Fe 2 (SO 4 ) 3 ), a batch experiment was performed to determine the optimum amount of inorganic coagulant injection. It is difficult not only to satisfy the optimal conditions for swine wastewater changing from time to time, but also to accommodate the change of wastewater phase according to the pig farm, and the treatment cost per ton due to the amount of chemicals added in large quantities. There was a difficulty to rise sharply. Therefore, in the present invention, ferric sulfate was selected as the cheapest inorganic coagulant with excellent flocculation separation ability, and the optimum chemical amount was 3.0-5.5 when the wastewater pH was rapidly mixed under high-speed mixing conditions using the reaction characteristics between the wastewater and the flocculant. Add an inorganic coagulant until the reaction is about 2 hours.

폐수의 pH가 3.0 미만이 될 때까지 황산제이철염을 투입하게 되면 성능에는 큰 차이가 없지만 과량의 황산제이철염의 투입에 따른 슬러지 발생량의 증가 및 약품비용의 상승으로 인해 경제성이 급격하게 감소하게 되며, 폐수의 pH가 5.5 이상이 되도록 황산제이철염을 투입하게 되면 용액내에서 무기응집제의 역할을 담당하는 철이온의 농도가 폐수중 유, 무기물의 농도에 비해 크게 낮아서 응집효율이 감소할 뿐만 아니라 응결 후 슬러지의 탈수능이 저하되어 처리수내의 부유성 고형물의 농도가 증가하였다. 따라서 바람직한 pH 범위는 3.0 내지 5.5이다. 특히 바람직한 것은 pH가 3.5 내지 5.0이 될 때까지이다. If ferric sulphate is added until the pH of the wastewater is lower than 3.0, there is no big difference in performance, but the economic efficiency is drastically reduced due to the increase of sludge generation and the increase of chemical cost due to the addition of excess ferric sulphate. When ferric sulphate is added so that the pH of the wastewater is higher than 5.5, the concentration of iron ions, which play the role of inorganic coagulant in the solution, is significantly lower than the concentration of oil and minerals in the wastewater. The dewatering capacity of the sludge was then lowered to increase the concentration of suspended solids in the treated water. The preferred pH range is therefore 3.0 to 5.5. Especially preferred is until the pH is between 3.5 and 5.0.

상기 혼합시의 회전수 1,000 내지 3,000rpm인 것이 바람직하다. 회전수가 1,000rpm 미만인 경우에는 고형물과 용액이 슬러리 상태로 혼합된 축산폐수의 혼합 효과가 미약하여 응집반응이 효율적으로 일어나지 않으며, 회전수가 3,000rpm을 초과하는 경우에는 불필요한 에너지의 낭비뿐만 아니라 기계적인 저항이 증가되어 장기적 운전시에 회전축의 날개의 조기 교체를 초래한다. 따라서, 응집반응동안의 바람직한 회전수의 범위는 1,000내지 3000 rpm이 될 때까지 이다.It is preferable that the rotation speed at the time of the said mixing is 1,000-3,000 rpm. If the rotational speed is less than 1,000rpm, the mixing effect of the livestock wastewater in which the solids and the solution are mixed in the slurry state is insignificant, and the flocculation reaction does not occur efficiently.If the rotational speed exceeds 3,000rpm, not only waste of energy but also mechanical resistance This increases, resulting in premature replacement of the blades of the rotating shaft during long term operation. Thus, the preferred range of revolutions during the flocculation reaction is from 1,000 to 3000 rpm.

(2) 제2단계: pH 조정(2) second step: pH adjustment

상기 제1단계에서 황산제이철염을 투입함으로써 pH가 3.0 내지 5.5로 된 원수에 NaOH 등의 알칼리제를 반응기에 투입하여 반응기내의 pH를 7.0 내지 8.0까지 상승시킨다. pH가 7.0 미만이면 응결반응 후 잔류하는 철이온의 농도가 증가하여 처리수내 철농도가 증가하였고, 플럭의 강도도 약해지는 단점이 나타났다. pH가 8.0을 초과하면 NaOH 등의 알카리제의 사용량이 급격하게 늘어나서 경비가 증가하는 것으로 나타났다. 따라서, 응결반응이후의 바람직한 pH 범위는 7에서 8사이이다.By adding ferric sulfate in the first step, an alkaline agent such as NaOH is introduced into the reactor into raw water having a pH of 3.0 to 5.5, thereby increasing the pH in the reactor to 7.0 to 8.0. If the pH was less than 7.0, the iron concentration remaining after the condensation reaction was increased, the iron concentration in the treated water was increased, and the strength of the floc was also weakened. When the pH exceeds 8.0, the amount of alkaline agents such as NaOH is rapidly increased to increase the cost. Thus, the preferred pH range after the condensation reaction is between 7 and 8.

(3) 제3단계: 플록형성 및 고액분리 단계(3) step 3: floc forming and solid-liquid separation

상기 제2단계에서 pH가 조절된 원수를 저속혼합조건에서 음이온성 고분자응집제를 투입하여 응결시킨 후 필터프레스로서 고액분리를 수행한다.In the second step, the raw water of which pH is adjusted is condensed by adding an anionic polymer coagulant under low speed mixing conditions, and then solid-liquid separation is performed as a filter press.

상기 혼합시의 회전수는 100 내지 500rpm인 것이 바람직하다. 100rpm 미만이면 응결효율이 떨어지고, 500rpm을 초과하면 응결된 플록이 깨어져서 탈수효율이 감소한다. 따라서, 바람직한 저속교반속도는 100 내지 300 rpm사이이다.It is preferable that the rotation speed at the time of the said mixing is 100-500 rpm. If it is less than 100rpm, the condensation efficiency falls, and if it exceeds 500rpm, the condensed floc is broken and the dewatering efficiency decreases. Thus, the preferred slow stirring speed is between 100 and 300 rpm.

(4) 제4단계: 역삼투 공정(4) Stage 4: Reverse Osmosis Process

무기응집제에 의한 양돈폐수의 고액분리 이후, 폐수 내에 잔류하는 유기물, 질소·인 등의 각종 오염물질을 짧은 시간 내에 효율적으로 제거하기 위해 역삼투 공정을 사용하였으며, 수리학적 체류시간 12시간내로 처리가능 하였다. After solid-liquid separation of swine wastewater by inorganic coagulant, reverse osmosis process was used to efficiently remove various contaminants such as organic matter, nitrogen, phosphorus, etc. remaining in the wastewater within a short time, and can be treated within 12 hours of hydraulic residence time. It was.

본 발명에 의한 방법에서 역삼투 공정은, 농축수를 재처리하여 처리수량을 최대화하고 농축수량을 최소화하기 위해, 역삼투막이 직렬 및 병렬로 연결된 역삼투 시스템을 이용한다. 배출기준을 만족시키기 위해 농축수량을 최소화하는 것이 필요하다. 도 2에 도시된 바와 같이, 역삼투 시스템은 제1역삼투막(101), 제2역삼투막(102), 제3역삼투막(103)으로 구성되어 있는데, 제1역삼투막(101)과 제3역삼투막(103)이 직렬로 연결되어 있고, 제1역삼투막(101)과 제2역삼투막(102)는 병렬로 연결되어 있다. 이와같은 직병렬 구조를 통해, 유입수를 제1역삼투막(101)으로 처리한 후 처리된 처리수는 제3역삼투막(103)으로 이송되고, 농축수는 제2역삼투막(102)으로 이송된다(106). 제2역삼투막(102)에서 다시 역삼투 공정을 거쳐 분리된 처리수는 제3역삼투막(103)으로 이송되어 재처리되며, 제2역삼투막에서 분리된 농축수는 최종 농축수(105)로서 방출된다. 한편, 제1역삼투막(101)을 통해 처리되어 제3역삼투막(103)으로 이송된 처리수는 제2역삼투막으로부터 처리되어 이송된 처리수와 함께 제3역삼투막을 통해 더욱 처리되어 형성된 처리수는 최종 처리수로 배출되며(104), 제3역삼투막을 통해 농축수로 분리된 농축수는 다시 제1역삼투막(101)으로 반송되어(107), 최초 유입수와 함께 재처리된다. The reverse osmosis process in the method according to the invention utilizes a reverse osmosis system in which the reverse osmosis membrane is connected in series and in parallel in order to reprocess the concentrated water to maximize treated water and minimize the concentrated water. It is necessary to minimize the amount of concentrated water to meet the emission standards. As shown in FIG. 2, the reverse osmosis system includes a first reverse osmosis membrane 101, a second reverse osmosis membrane 102, and a third reverse osmosis membrane 103, and the first reverse osmosis membrane 101 and the third reverse osmosis membrane 103. The serial reverse osmosis membrane 101 and the second reverse osmosis membrane 102 are connected in parallel. Through such a series-parallel structure, the treated water after the inflow of the first reverse osmosis membrane 101 is transferred to the third reverse osmosis membrane 103, and the concentrated water is transferred to the second reverse osmosis membrane 102 (106). . The treated water separated through the reverse osmosis process from the second reverse osmosis membrane 102 is transferred to the third reverse osmosis membrane 103 for reprocessing, and the concentrated water separated from the second reverse osmosis membrane is discharged as the final concentrated water 105. Meanwhile, the treated water treated through the first reverse osmosis membrane 101 and transferred to the third reverse osmosis membrane 103 is further treated through the third reverse osmosis membrane together with the treated water transferred from the second reverse osmosis membrane to the final treatment. The concentrated water discharged into the water 104 and separated into the concentrated water through the third reverse osmosis membrane is returned to the first reverse osmosis membrane 101 and reprocessed together with the first influent.

(5) 후처리: 발생 농축수의 처리(5) Post treatment: treatment of generated concentrated water

화학적 처리시의 약품사용량에 따라 무기물의 농도가 결정되었으며, 이들 무기물질의 농도는 역삼투공정의 회수율에 영향을 미쳤고, 무기물의 농도가 1.5-2.0%일 때 약 75%의 회수율을 얻을 수 있었다. 역삼투 공정에 의해 생성된 농축수는 고농도의 유기물과 질소를 함유하고 있으므로, 액비로서의 이용, 해양투기 또는 위탁처리하는 등의 적절한 처리를 한다. The concentrations of minerals were determined according to the chemical usage during chemical treatment, and the concentrations of these inorganic substances affected the recovery rate of reverse osmosis process, and the recovery rate of about 75% was obtained when the concentration of minerals was 1.5-2.0%. . The concentrated water produced by the reverse osmosis process contains high concentrations of organic matter and nitrogen, so that appropriate treatment such as use as liquid ratio, ocean dumping or consignment treatment is performed.

이하, 본 발명의 실시예를 기재한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 본 발명의 바람직한 예일 뿐 본 발명이 이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the Example of this invention is described. However, the following examples are only preferred examples of the present invention to aid in understanding the present invention, and the present invention is not limited by these examples.

<실시예><Example>

본 발명에 따른 폐수처리방법을 평가하기 위해서, 먼저 고농도의 고형물을 함유한 슬러지형 양돈폐수를 적용하였다.In order to evaluate the wastewater treatment method according to the present invention, sludge type swine wastewater containing a high concentration of solids was first applied.

하기 실시예에 대해서는 다음의 분석 방법을 사용하였다.The following analysis method was used for the following examples.

. pH: pH 미터 (유리전극법, Corning 120, TOA HM71). pH: pH meter (glass electrode method, Corning 120, TOA HM71)

.SS (부유성 고형물): GF/C 필터를 사용하여 103-105 ℃의 건조 오븐에서 2시간동안 건조시킨 부유성 고형물의 총량.SS (floating solids): Total amount of suspended solids dried for 2 hours in a drying oven at 103-105 ° C. using a GF / C filter.

.TDS (총 용존 고형물): GF/C 필터 여과액을 180 ℃에서 수분이 완전히 증발될 때까지 건조시킨 용존 고형물의 총량.TDS (Total Dissolved Solids): Total amount of dissolved solids where the GF / C filter filtrate was dried at 180 ° C. until water completely evaporated.

.FDS (무기 용존 고형물): 용존 고형물의 총량을 550 ±50 ℃의 전기로에서 15-20분동안 태운 후 남아있는 용존 고형물의 양.FDS (Inorganic Dissolved Solids): The amount of dissolved solids remaining after burning the total amount of dissolved solids for 15-20 minutes in an electric furnace at 550 ± 50 ° C.

.BOD5: 5일 경과후의 BOD측정법BOD 5 : Determination of BOD after 5 days

.CODcr: 적정법 K2Cr2O7 폐쇄환류 (Closed reflux)CODcr: Titration K 2 Cr 2 O 7 Closed reflux

.NH4 +-N: 증류 및 적정법 (Nonorganic Kjeldahl Method)NH 4 + -N: Distillation and titration (Nonorganic Kjeldahl Method)

.PO4 3--P (총인성분 함량): 염화제일주석법 (Stannous Chloride Method, λ=690 nm).PO 4 3- -P (Total Phosphorus Content): Stannous Chloride Method (λ = 690 nm)

<실시예 1><Example 1>

화학적 산소 요구량 42,000 mg/L, 생물학적 산소요구량 30,600 mg/L, 부유성 고형물 함량 23,000 mg/L, 총질소 2,200 mg/L, 총인 약 1,000 mg/L인 슬러리형 돈사폐수를 상기에 기술된 방법으로 스테인레스 스틸로 제작된 50L의 화학적 반응조에서 11% 황산제이철을 첨가하여 1,500 rpm의 조건에서 2시간동안 급속혼합시킨 후 35% NaOH를 첨가하여 반응물의 pH를 7.0-7.5까지 조절한 후 300 rpm으로 교반속도를 줄이면서 음이온 고분자 응집제로서 이양화학의 A601P를 투입하였다. 플록이 형성된 반응물은 필터프레스 등의 고액분리기를 이용하여 고액분리를 수행하였다. 그 결과는 하기 표2에 나타내었다.Slurry pig wastewater with a chemical oxygen demand of 42,000 mg / L, a biological oxygen demand of 30,600 mg / L, a suspended solids content of 23,000 mg / L, total nitrogen of 2,200 mg / L and a total phosphorus of about 1,000 mg / L was prepared by the method described above. In a 50 L chemical reactor made of stainless steel, 11% ferric sulfate was added and rapidly mixed at 1,500 rpm for 2 hours, followed by 35% NaOH to adjust the pH of the reaction to 7.0-7.5, followed by stirring at 300 rpm. While reducing the speed, Leeyang Chemical's A601P was added as an anionic polymer flocculant. The floc formed reactants were subjected to solid-liquid separation using a solid-liquid separator such as a filter press. The results are shown in Table 2 below.

항목(mg/L)시료종류      Item (mg / L) Sample Type SSSS BOD5 BOD 5 CODCr COD Cr T-NT-N T-PT-P 원폐수Wastewater 23,00023,000 30,56330,563 44,20044,200 2,2202,220 1,0171,017 반응 pH 2.5Reaction pH 2.5 6363 10,63210,632 18,42118,421 1,6931,693 0.20.2 반응 pH 3.0Reaction pH 3.0 6464 10,54510,545 18,77018,770 1,6701,670 0.20.2 반응 pH 3.5Reaction pH 3.5 33 10,34510,345 15,36315,363 1,5411,541 0.20.2 반응 pH 4.5Reaction pH 4.5 22 10,81510,815 15,56015,560 1,5901,590 0.20.2 반응 pH 5.0Reaction pH 5.0 2020 11,01211,012 17,94517,945 1,6171,617 0.10.1 반응 pH 5.5Reaction pH 5.5 2525 11,47511,475 18,53018,530 1,6801,680 0.10.1 반응 pH 6.0Reaction pH 6.0 1,2001,200 17,20017,200 24,38024,380 1,7201,720 52.652.6

실험결과에 나타난 바와 같이 반응조내 pH가 5.5가 될 때까지 황산제이철염을 투입한 경우에는 99.7%이상의 안정적인 부유성고형물의 제거율을 나타내었지만 반응조내 pH가 6.0가 될 때까지만 주입하였을 때에는 슬러지의 탈수능이 급격하게 나빠졌고, 처리수내 부유성 고형물의 농도도 증가하였다. 화학응집처리시 화학적 산소요구량의 제거율은 축산폐수내 부유물 및 고분자 유기물의 함량에 의존하였고, 잔류하는 유기물은 대부분 휘발성 지방산으로 나타났다. 한편, 반응조내 pH가 2.5가 될 때까지 황산제이철염을 투입한 경우에는 pH가 3.5가 될 때까지 주입한 경우와 성능면에서 큰 차이가 없었고 오히려 처리 효율이 낮아지기도 하였다. As shown in the experimental results, when ferric sulfate was added until the pH in the reactor reached 5.5, the removal rate of the suspended solids was more than 99.7%, but when sludge was injected only until the pH in the reactor reached 6.0, The water content rapidly deteriorated, and the concentration of suspended solids in the treated water also increased. The removal rate of chemical oxygen demand in the chemical coagulation process was dependent on the content of suspended solids and macromolecular organic matter in the livestock wastewater, and the remaining organic matter was mostly volatile fatty acids. On the other hand, when ferric sulfate was added until the pH in the reactor was 2.5, there was no significant difference in performance compared to the case where the ferric sulfate was injected until the pH was 3.5, and the treatment efficiency was lowered.

<실시예 2><Example 2>

화학적 산소 요구량 42,000 mg/L, 생물학적 산소요구량 30,600 mg/L, 부유성 고형물 함량 23,000 mg/L, 총질소 2,200 mg/L, 총인 약 1,000 mg/L인 슬러리형 돈사폐수를 스테인레스 스틸로 제작된 50L의 화학적 반응조에서 반응 pH가 4.5가 될 때까지 11% 황산제이철을 첨가하여 1,500 rpm의 조건에서 2시간동안 급속혼합시킨 후 35% NaOH를 첨가하여 반응물의 pH를 7.0-7.5까지 조절한 후 300 rpm으로 교반속도를 줄이면서 음이온 고분자 응집제로서 이양화학의 A601P를 투입하였다. 플록이 형성된 반응물은 필터프레스 등의 고액분리기를 이용하여 고액분리를 수행하였다. 50L of slurry-type pig wastewater with chemical oxygen demand 42,000 mg / L, biological oxygen demand 30,600 mg / L, suspended solids content 23,000 mg / L, total nitrogen 2,200 mg / L and total phosphorus approximately 1,000 mg / L In the chemical reaction tank, 11% ferric sulfate was added until the reaction pH was 4.5 and rapidly mixed at 1,500 rpm for 2 hours, and then 35% NaOH was added to adjust the pH of the reaction to 7.0-7.5 and 300 rpm. A601P of Leeyang Chemical was added as anionic polymer flocculant while reducing the stirring speed. The floc formed reactants were subjected to solid-liquid separation using a solid-liquid separator such as a filter press.

상기와 같은 조건으로 여러 돈사폐수들에 대해 수차례 시험을 수행한 결과, 하기 표 3과 같이 화학적 응집 후 돈사폐수의 부유성 고형물의 농도는 모든 실험에서 50 mg/L이하로 유지할 수 있었고, 총인의 농도도 0.5 mg/L이하로 처리할 수 있었다. As a result of several tests on pig wastewater under the above conditions, the concentration of suspended solids in pig wastewater after chemical flocculation was maintained below 50 mg / L in all experiments as shown in Table 3 below. The concentration of could also be treated to less than 0.5 mg / L.

화학적 처리후 잔존하는 유기물의 농도는 돈사폐수내 존재하는 저분자 유기물인 휘발성 지방산의 농도에 의존하였으며, 원폐수내에 휘발성 지방산의 농도가 높을 경우에는 COD제거율이 크게 감소한 반면, 원폐수내 휘발성 지방산의 농도가 낮은 폐수의 경우 우수한 COD제거율을 나타내었다. 한편, 암모니아성 질소의 경우에는 고형물에 존재하는 암모니아성 질소는 고액분리에 의해 쉽게 제거되었지만, 용존성 암모니아성 질소는 거의 제거되지 않는 것으로 나타났다. The concentration of organic matter remaining after chemical treatment was dependent on the concentration of volatile fatty acids, which are low molecular organic substances in pig wastewater. When the concentration of volatile fatty acids in raw wastewater is high, the COD removal rate is greatly reduced, whereas the concentration of volatile fatty acids in wastewater Low wastewater showed good COD removal rate. On the other hand, in the case of ammonia nitrogen, ammonia nitrogen present in the solid was easily removed by solid-liquid separation, but dissolved ammonia nitrogen was hardly removed.

따라서, DPC(Disposal by physical and chemical methods)공정(제1단계 ~ 제3단계)의 우수한 고액분리 특성을 고려하여 처리시간을 크게 감소시킬 수 있고, 처리수를 재이용할 수 있는 역삼투공정에 대한 처리가능성을 조사하였다. 도 2에 도시된 역삼투 시스템을 이용하여 실험한 결과, 처리수는 하기 표 3과 같이 CODMn, BOD5, SS, T-N, T-P 등에 대해 모두 축산폐수 공공처리장의 규제기준 이하로 처리가능 하였으며, 색도도 완벽하게 제거되었다. 운전압력 50-60 kg/cm2에서 운전한 R/O(역삼투) 시스템의 회수율은 약 75-80%의 회수율을 나타내었다. 본 연구에서 사용한 pilot-scale R/O 시스템은 농축수의 발생량을 줄이기 위해 도 2와 같이 3개의 막이 직병렬로 배열하였다. 대상농장 양돈폐수의 경우, 화학적 침전이후 원폐수대비 약 20%(FS)의 고형물이 발생하였고, 처리수는 75%(FT)이상 재이용수로 회수할 수 있는 것으로 나타났으므로, 화학적 처리와 역삼투 공정의 결합에 따른 최종처리후의 농축수 발생량은 아래 수학식 1에 의해 원수대비 약 20%로 나타났다.Therefore, in consideration of the excellent solid-liquid separation characteristics of the DPC (Disposal by physical and chemical methods) process (steps 1 to 3), the treatment time can be greatly reduced, and the reverse osmosis process can reuse the treated water. The treatability was investigated. As a result of the experiment using the reverse osmosis system shown in Figure 2, the treated water was able to treat all the COD Mn , BOD 5 , SS, TN, TP and the like below the regulatory standard of the public livestock wastewater treatment plant, as shown in Table 3, Chromaticity was also completely removed. The recovery rate of the R / O (reverse osmosis) system operated at an operating pressure of 50-60 kg / cm 2 was about 75-80%. In the pilot-scale R / O system used in this study, three membranes were arranged in series as shown in FIG. 2 to reduce the amount of concentrated water generated. In the case of the target farm pig wastewater, about 20% (F S ) of solids was generated after chemical precipitation, and the treated water was found to be recoverable as reused water over 75% (F T ). The amount of concentrated water generated after the final treatment due to the combination of the reverse osmosis process was about 20% of the raw water by Equation 1 below.

FC = [1-FS] X [1-FT]F C = [1-F S ] X [1-F T ]

여기서, FC= 역삼투후의 농축수의 분율Where F C = fraction of concentrated water after reverse osmosis

FS= 화학적 고액분리후의 고형물의 분율F S = fraction of solids after chemical solids separation

FT= 역삼투후의 처리수의 분율F T = fraction of treated water after reverse osmosis

항목(mg/L)시료종류      Item (mg / L) Sample Type SSSS BOD5 BOD 5 CODCr COD Cr CODMn COD Mn T-NT-N T-PT-P 원폐수Wastewater 23,00023,000 30,56330,563 44,20044,200 11,05811,058 2,2202,220 1,0171,017 DPC 처리수DPC Treatment 66 15,93015,930 20,48020,480 997997 1,6821,682 0.10.1 R/O 처리수R / O treatment water ND* ND * 2828 3737 1414 66 ND* ND * R/O 농축수R / O concentrated water 4545 48,30048,300 63,77063,770 3,4903,490 5,3425,342 0.40.4

*ND: Not Detected* ND: Not Detected

화학적 처리와 역삼투공정 처리수의 농축수는 고농도의 유기물과 질소를 함유하고 있으므로, 액비로서의 이용, 해양투기 또는 위탁처리하거나 적절한 처리를 필요로 한다. 상기한 DPC처리수에 대한 R/O처리시 발생한 농축수의 분석결과는 하기 표 4와 같다. 이는 비료공정규격의 화초용액비 규격에 비교적 적합한 수준으로 화초용액비로 가공하여 사용할 수 있을 것으로 판단된다.Chemical treatment and reverse osmosis process The concentrated water of the treated water contains high concentrations of organic matter and nitrogen, so it needs to be used as liquid ratio, ocean dumping or consignment treatment or appropriate treatment. The analysis results of the concentrated water generated during the R / O treatment for the DPC treated water are shown in Table 4 below. It can be used to process the flower solution ratio to a level that is relatively suitable to the flower solution ratio standard of the fertilizer process standards.

항목Item 질소전량, %Total nitrogen,% 수용성receptivity 인산, mg/kgPhosphoric Acid, mg / kg 수용성receptivity 가리, %Girly,% 수용성receptivity 고토, %Goto,% 수용성receptivity 칼슘, %calcium, % 수용성receptivity 망간, mg/kgManganese, mg / kg 수용성receptivity 붕소, mg/kgBoron, mg / kg R/O농축수R / O concentration 0.630.63 15.3515.35 0.070.07 0.100.10 0.210.21 119.30119.30 14.7114.71 항목Item 수용성receptivity 철, mg/kgIron, mg / kg 수용성receptivity 아연, mg/kgZinc, mg / kg 황청Cyan 산화물, %Oxide,% 비소, %Arsenic,% 아질산, %Nitrous acid,% 뷰렛태Burette 질소, %nitrogen, % 설파민Sulfamine 산, %Acid,% R/O농축수R / O concentration 1.271.27 13.6113.61 NDND NDND NDND NDND NDND 비료의 종류Type of fertilizer 함유하여야 할 주성분의 최소량 (%)Minimum amount of active ingredient to be contained (%) 함유할 수 있는 유해성분의 최대량 (%)Maximum Amount of Hazardous Ingredients It Can Contain (%) 비고Remarks 화초용(신설'96.1.10)For flowers (new'96.1.10) 1. 질소전량, 수용성인산 또는 수용성가리중 2종이상의 합계량이 0.2%이하이고 각성분별 보증성분 함량은 0.1%이하 이어야 함.(개정: '01.1.4)2. 다음성분별 함량을 2종이상 반드시 보증하여야 함수용성 고토: 0.01수용성 망간: 0.001수용성 붕소: 0.001수용성 철: 0.01수용성 아연: 0.001수용성 구리: 0.001The total amount of two or more of nitrogen, water-soluble phosphate, or water-soluble fluorine should be 0.2% or less, and the content of guaranteed components for each component should be 0.1% or less (Rev. '01 .1.4) 2. Water content of two or more of the following components must be guaranteed: Water Solubility Goto: 0.01 Soluble Manganese: 0.001 Soluble Boron: 0.001 Soluble Iron: 0.01 Soluble Zinc: 0.001 Soluble Copper: 0.001 질소, 인산, 가리 성분합계량 함유율 1%에 대하여황청산화물: 0.005비소: 0.002아질산: 0.02뷰렛태질소: 0.01설파민산: 0.005Nitrogen, phosphoric acid, and girly content Total content of 1% Sulfur oxide: 0.005 Arsenic: 0.002 Nitrous acid: 0.02 Burette nitrogen: 0.01 Sulfamic acid: 0.005 액제비료에 한함Liquid fertilizers only

*ND: Not Detected * ND: Not Detected

본 발명에 따른 고농도 유기폐수의 처리 및 재이용 방법을 이용하면, 종래의 기술보다 간단하고 획기적으로 빠른 시간 내에 고농도의 유기성 폐수를 처리할 수 있다. 또한, 휘발성 지방산 같은 저분자 유기물이 고농도로 존재하는 경우 효과적으로 유기물을 제거할 수 있다. 이로써, 양돈폐수의 종류에 관계없이 일정한 유출수질을 확보할 수 있는 우수한 효과가 있다. 더불어, 다양한 특성의 축산폐수를 총 수리학적 체류시간 1일 이내로 처리할 수 있는 효과가 있다. By using the high concentration organic wastewater treatment and reuse method according to the present invention, it is possible to treat the high concentration organic wastewater in a simpler and significantly faster time than the prior art. In addition, when a low molecular weight organic material such as volatile fatty acid is present in high concentration, it is possible to effectively remove the organic material. As a result, there is an excellent effect of ensuring a constant outflow water quality regardless of the type of swine wastewater. In addition, there is an effect that the livestock wastewater of various characteristics can be treated within one day of the total hydraulic residence time.

도1은 본 발명에 따른 고농도 유기폐수의 처리 및 재이용 방법을 수행하기 위한 시스템의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of a system for performing a method for treating and recycling high concentration organic wastewater according to the present invention.

도2는 발명에 따른 고농도 유기폐수의 처리 및 재이용 방법의 회수율을 높이기 위한 역삼투 시스템의 모듈을 도시한 도면이다. 2 is a view showing a module of the reverse osmosis system for increasing the recovery rate of the treatment and reuse method of the high concentration organic wastewater according to the invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1: 원폐수 10: 화학적 반응기 1: raw wastewater 10: chemical reactor

11: 교반기 12: pH 미터(meter)11: stirrer 12: pH meter

13: 황산제이철 14: 수산화나트륨13: ferric sulfate 14: sodium hydroxide

15: 음이온 고분자응집제 16: 필터프레스15: anionic polymer coagulant 16: filter press

17: 저류조 18: 화학적 처리시의 발생슬러지17: Storage tank 18: Sludge generated during chemical treatment

20: 역삼투 시스템 100: 화학적 고액분리 처리수20: reverse osmosis system 100: chemical solid-liquid separation treatment

101: 제1역삼투막 102: 제2역삼투막101: first reverse osmosis membrane 102: second reverse osmosis membrane

103: 제3역삼투막 104: 최종처리수103: third reverse osmosis membrane 104: final treated water

105: 최종농축수 106: 1차 농축수105: final concentrated water 106: primary concentrated water

107: 2차 농축수 200: 여과액의 경로107: secondary concentrated water 200: path of the filtrate

300: 농축액의 경로300: route of the concentrate

Claims (3)

축산폐수와 같은 고농도 유기폐수의 처리 및 재이용 방법에 있어서,In the method of treatment and reuse of high concentration organic wastewater, such as livestock wastewater, 폐수를 고속혼합 조건에서 황산제이철염을 폐수의 pH가 3.0 내지 5.5에 도달할 때까지 폐수가 함유된 반응기내에 투입하여 반응시키는 제1단계;A first step of reacting the wastewater with ferric sulfate in a reactor containing the wastewater until the pH of the wastewater reaches 3.0 to 5.5 under high speed mixing conditions; 상기 제1단계를 통해 처리된 처리수에 알칼리제를 투입하여 처리수의 pH를 조정하는 제2단계;A second step of adjusting the pH of the treated water by adding an alkaline agent to the treated water treated in the first step; 상기 제2단계 이후 상기 처리수 내에 고분자 응집제를 투입하여 플록을 형성시키고 형성된 플록을 고액분리하는 제3단계; 및 A third step of forming a floc by injecting a polymer flocculant into the treated water after the second step and solid-liquid separating the formed floc; And 제3단계에서 고액분리된 처리수를 역삼투 공정으로 처리하는 제4단계를 포함하는 것을 특징으로 하는 고농도 유기폐수의 처리 및 재이용 방법.And a fourth step of treating the treated water separated in the third step by a reverse osmosis process. 제1항에 있어서, 상기 제4단계의 역삼투 공정은, 직렬로 연결된 다수개의 역삼투막 사이에 다시 역삼투막이 병렬로 연결된 역삼투 시스템을 이용하는 것을 특징으로 하는 고농도 유기폐수의 처리 및 재이용 방법.The method of claim 1, wherein the reverse osmosis process of the fourth step uses a reverse osmosis system in which the reverse osmosis membrane is connected again in parallel between a plurality of reverse osmosis membranes connected in series. 제1항 또는 제2항에 있어서, 상기 제1단계에서 상기 황산제이철염을 폐수의 pH가 3.5 내지 5.0에 도달할 때까지 반응시키는 것을 특징으로 하는 고농도 유기폐수의 처리 및 재이용 방법.The method of claim 1 or 2, wherein the ferric sulfate is reacted in the first step until the pH of the wastewater reaches 3.5 to 5.0.
KR10-2003-0063324A 2003-09-09 2003-09-09 Method for treating and reusing high-strength organic wastewater KR100523338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0063324A KR100523338B1 (en) 2003-09-09 2003-09-09 Method for treating and reusing high-strength organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0063324A KR100523338B1 (en) 2003-09-09 2003-09-09 Method for treating and reusing high-strength organic wastewater

Publications (2)

Publication Number Publication Date
KR20050026294A true KR20050026294A (en) 2005-03-15
KR100523338B1 KR100523338B1 (en) 2005-10-24

Family

ID=37384215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0063324A KR100523338B1 (en) 2003-09-09 2003-09-09 Method for treating and reusing high-strength organic wastewater

Country Status (1)

Country Link
KR (1) KR100523338B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962476B1 (en) * 2007-05-29 2010-06-14 박재철 Apparatus for treating organic wastewater
CN103449651A (en) * 2013-09-02 2013-12-18 苏州富奇诺水治理设备有限公司 Treatment method of printing and dyeing wastewater
KR20150040455A (en) 2013-10-07 2015-04-15 (주)에어레인 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater
WO2019056213A1 (en) * 2017-09-20 2019-03-28 苏州北开生化设备有限公司 Working method for efficient and intelligent water treatment equipment with water quality detection function
GB2598256A (en) * 2019-10-10 2022-02-23 Lincoln Univ Improvements in and relating to effluent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962476B1 (en) * 2007-05-29 2010-06-14 박재철 Apparatus for treating organic wastewater
CN103449651A (en) * 2013-09-02 2013-12-18 苏州富奇诺水治理设备有限公司 Treatment method of printing and dyeing wastewater
KR20150040455A (en) 2013-10-07 2015-04-15 (주)에어레인 Combined membrane separation process for concentration of IPA and treatment of wastewater from IPA-containing wastewater
WO2019056213A1 (en) * 2017-09-20 2019-03-28 苏州北开生化设备有限公司 Working method for efficient and intelligent water treatment equipment with water quality detection function
GB2598256A (en) * 2019-10-10 2022-02-23 Lincoln Univ Improvements in and relating to effluent

Also Published As

Publication number Publication date
KR100523338B1 (en) 2005-10-24

Similar Documents

Publication Publication Date Title
CA2692133C (en) Wastewater treatment system with simultaneous separation of phosphorus and manure solids
KR100957851B1 (en) Method of water treatment
US6106717A (en) Method for treating organic waste water
KR20010067402A (en) Method for conditioning and dewatering thermophilic aerobically digested biosolids
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
JPS6210720B2 (en)
KR100523338B1 (en) Method for treating and reusing high-strength organic wastewater
EP2576452B1 (en) Improvement of activated sludge process in wastewater treatment
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
Mannucci et al. Membrane Bioreactors treating tannery wastewaters: Limits and potentials for an optimized full-scale application
KR20010094836A (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPS6320600B2 (en)
CN112759151A (en) Movable integrated landfill leachate treatment system and purification method thereof
KR100191195B1 (en) Night soil treatment method and unit with high efficiency
KR20050026298A (en) Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater
CN109205916A (en) The processing method of wash water is sprayed in production process of activated carbon
CN106904787A (en) A kind of rubber mix advanced treatment method for sewage water
JPS60206498A (en) Treatment of excretion sewage
JPH0535039B2 (en)
CN212356934U (en) Sewage treatment system of medical waste incineration plant
JPH02139099A (en) Treatment of organic sewage
KR19980075718A (en) Advanced treatment of high concentration wastewater
KR20220107696A (en) Waste water trust management system with biological process using aerobic denitrification microorgaism and media
JPS6028894A (en) Treatment of night soil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101014

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee