KR20050014369A - A control performance deduction model examination device of the vessel - Google Patents

A control performance deduction model examination device of the vessel

Info

Publication number
KR20050014369A
KR20050014369A KR1020030052971A KR20030052971A KR20050014369A KR 20050014369 A KR20050014369 A KR 20050014369A KR 1020030052971 A KR1020030052971 A KR 1020030052971A KR 20030052971 A KR20030052971 A KR 20030052971A KR 20050014369 A KR20050014369 A KR 20050014369A
Authority
KR
South Korea
Prior art keywords
ship
lateral
oscillation
model test
model
Prior art date
Application number
KR1020030052971A
Other languages
Korean (ko)
Other versions
KR100520820B1 (en
Inventor
김선영
김연규
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR10-2003-0052971A priority Critical patent/KR100520820B1/en
Publication of KR20050014369A publication Critical patent/KR20050014369A/en
Application granted granted Critical
Publication of KR100520820B1 publication Critical patent/KR100520820B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE: A captive model test device for maneuvering characteristic estimation of a ship is provided to exactly estimate a maneuvering characteristic by rolling motion produced during maneuvering motion. CONSTITUTION: A captive model test device for maneuvering characteristic estimation of a ship comprises a 4-force component measurement system, a rolling motion-fixing device(80), a slider(10), bearings(30,40), central weights(60), and a lower strong back(70). The 4-force component measurement system comprises 1-axial force component systems(X1,X2,Y1,Y2,Z1,Z2) to measure the force of four directions of a stem direction, a horizontal direction, a stem motion direction, and a rolling motion direction. The rolling motion-fixing device fixes a bearing freeing the movement of the rolling motion direction of a model ship. The slider slides to move to the rolling motion-fixing device. The bearings free upper and lower roll, longitudinal roll, and horizontal roll. The central weight balances to prevent weight by the test device connected to each force component system from acting. The lower strong back is installed to the mode ship. The captive model test device is mounted to the model ship of a small size manufactured like a real ship.

Description

횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치{A control performance deduction model examination device of the vessel}A control performance deduction model examination device of the vessel

본 발명은 선박의 횡동요 현상을 포함한 조종성능 추정용 구속모형시험장치에 관한 것으로, 특히 조종성능 추정용 구속모형시험장치를 실제 선박과 모양은 같고 크기가 작은 모형선에 장착하여 횡동요 현상이 포함된 조종 유체력 계수들을 구함으로써 횡동요 운동을 포함한 선박의 조종성능 추정이 가능하고, 횡동요 운동이 중요한 컨테이너 운반선의 조종성능 추정 및 선박의 전복 현상 해석에 효과적으로 활용할 수 있도록 한 것이다.The present invention relates to a restraint model test device for estimating steering performance including a ship's lateral fluctuation phenomenon. It is possible to estimate the steering performance of the ship including the rolling motion by calculating the included steering fluid force coefficients, and to effectively use it for estimating the steering performance of container carriers where the rolling motion is important and the ship's rollover analysis.

최근 선박의 대형화 및 추진효율의 향상을 위한 특수한 선형의 개발로 조종성능이 불량한 선박이 출현하고 있고, 이로 인한 해운사고의 위험성이 날로 증가하고 있다.Recently, ships with poor steering performance have emerged due to the development of a special linear for the enlargement of ships and the improvement of propulsion efficiency, and the risk of shipping accidents is increasing day by day.

종래에는 특허 제0343022호는 실제 해양 상태의 축소된 파랑을 재현하여 축소 모형선박을 시험할 때, 모형선박의 4자유도 운동 및 저항치를 계측하는 선박의 해상 시운전 계측시스템과, 공개특허 1996-0014967에서 개시된 바와 같이 G.P.S 수신기를 이용한 선박의 시운전 계측을 위해 시운전선박의 항주방향을 해류의 방향과 파도 등 주변여건에 맞추어 선택하도록 하여 보다 정확한 계측이 가능하고 그 결과를 분석할 수 있는 G.P.S 수신기를 이용한 선박의 시운전 계측장치 등이 제안되기도 하였다.Conventionally, Patent No. 0343022 describes a sea trial operation measurement system of a ship that measures the 4 degree of freedom motion and resistance of a model ship when testing a reduced model ship by reproducing a reduced wave of an actual marine state, and Patent Publication No. 1996-0014967. In order to measure the test run of a ship using a GPS receiver, the navigation direction of the test ship is selected according to the current conditions and the surrounding conditions such as waves, so that more accurate measurement is possible and the results can be analyzed using the GPS receiver. A trial run measurement apparatus of a ship has also been proposed.

그리고 선박의 경우 해상 시운전과 같은 성능관련 시운전은 스피드 테스트, 터닝 테스트, 지그재그 테스트, 스토핑 테스트, 스파이럴 테스트 등이 수행되고, 그 결과는 시운전 리포트로 작성된다.In the case of ships, performance-related trials such as sea trials are performed by speed test, turning test, zigzag test, stop test and spiral test, and the results are written in the test report.

상기 시운전 리포트는 각종 운항 장비의 신호, 즉 헤딩각, 엔진 RPM, BHP(Brake HorsePower), 풍속, 풍향, 파향, 파고, 조류의 계측 및 해석이 선행되어야 한다.The commissioning report should be preceded by signals from various navigation equipment, ie heading angle, engine RPM, brake horse power (BHP), wind speed, wind direction, wave direction, wave height, tidal current measurement and analysis.

그러나, 시운전 수행시 각종 신호의 식별은 시운전 요원의 관찰에 의해 계측되어 정도의 정확성을 기하는데 다소 어려움이 있었다. 또한 얻어진 결과를 사용하여 데이터를 해석하고 리포트를 작성하는데 있어서 전문가의 노력과 시간이 필요하며 그 결과에 대한 이견이 다소 있을 수 있는 문제점이 있었다.However, the identification of the various signals during the trial run was measured by the observation of the trial run personnel, thus making it difficult to ensure the accuracy of the degree. In addition, there is a problem in that an expert's effort and time are required to interpret data and prepare a report using the obtained results, and there may be some disagreement about the results.

특허제350812호 및 실용신안 제242902호에서는 선박의 횡동요 감쇠장치는 횡동요각 및 타각 등을 횡동요 감쇠장치의 작동에 필요한 주요 입력자료로 이용하고 횡동용 각속도(ROLL ANGULAR VELOCITY)에 대한 정보는 입력변수로 사용하지 않아 횡동요 주기 변화에 대한 응답(RESPONSE)이 정확하지 않게 된다.In Patent No. 350812 and Utility Model No. 242902, the lateral oscillation damping device of the ship uses the lateral oscillation angle and the rudder angle as the main input data for the operation of the lateral oscillation damping device, and the information about the Roll Angular Velocity. Is not used as an input variable, so the response (RESPONSE) to the change in the rolling cycle is not accurate.

그리고 선박의 횡동요 주기 변화가 심할 경우 제때에 적합한 횡동요 적응제어가 곤란하여 탑승자 및 선박의 안전에 위험을 발생시킬 수 있다.In addition, if the change of the ship's rolling cycle is severe, it is difficult to adjust the rolling controller appropriately in time, which may cause a danger to the occupants and the safety of the ship.

선박의 조종성능 추정에 필요한 조종유체력계수를 측정하기 위한 구속모형시험장치는 이미 개발되어 널리 사용되고 있으나 이들은 선수방향, 횡방향, 선수동요 방향 등 3방향의 힘만 측정할 수 있고 횡동요 운동을 가할 수 없는 시스템이다. 따라서 이들 시스템으로는 횡동요를 포함한 선박의 조종운동 추정에 필요한 조종유체력계수를 측정할 수 없다는 한계를 갖고 있다.The restraint model test apparatus for measuring the control fluid force coefficient required for estimating the maneuvering performance of a ship has already been developed and widely used, but they can only measure the force in three directions such as bow direction, transverse direction and bow movement direction. It can't be a system. Therefore, these systems have limitations in that they cannot measure the control fluid force coefficients necessary for estimating the maneuvering motion of ships including transverse fluctuations.

이에 본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 발명된 것으로, 선박이 조종 운동중에 발생하는 횡동요 운동에 의한 조종성능을 보다 정확하게 추정할 수 있는 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치를 제공함에 그 목적이 있는 것이다.Accordingly, the present invention has been invented to solve the problems in view of the above-described problems of the prior art, and a ship including a lateral sway capable of more accurately estimating the steering performance due to the lateral sway motion generated during the steering motion of the ship. It is an object of the present invention to provide a restraint model test apparatus for estimating the control performance of a vehicle.

상기한 목적 달성을 위해 본 발명은 선수방향, 횡방향, 선수동요 방향 및 횡동요 방향 등 4방향의 힘을 측정할 수 있도록 6개의 1축 분력계(X₁, X₂, Y₁, Y₂, Z₁, Z₂)로 구성된 4분력 계측 시스템과, 모형선의 횡동요 방향의 운동을 자유롭게하는 베어링를 고정시켜주는 횡동요 고정장치(80)와, 횡동요 고정장치(80)의 위치로 이동이 가능하도록 슬라이딩되는 슬라이더(10)와, 상기 슬라이더(10)와 연결되는 횡동요 구동 모터(20)와, 상·하동요, 종동요 및 횡동요에 대하여 자유롭게 해주는 베어링(30,40,50)과, 각각의 분력계와 연결되는 실험 장치에 의한 무게가 작용하지 않도록 밸런스를 잡아주는 중심추(60)와, 모형선에 설치되는 하부 스트롱 백(70)으로 구속모형시험장치를 구성하고, 상기 구속모형시험장치는 실제 선박과 똑같이 제작된 작은 크기의 모형선에 취부되는 것을 특징으로 하고 있다.In order to achieve the above object, the present invention provides six single-axis component meters (X₁, X₂, Y₁, Y₂, Z₁, Z₂) to measure force in four directions, such as bow direction, lateral direction, bow movement direction, and lateral swing direction. A four-component measuring system consisting of a), a lateral sway fixing device (80) for fixing a bearing to free the movement in the lateral sway direction of the model ship, and a slider which is slid to move to the position of the sway (80) 10), a lateral oscillation drive motor 20 connected to the slider 10, bearings 30, 40, 50 for freeing up and down oscillation, driven oscillation, and lateral oscillation, and respective component meters, Constrained model test device is composed of a central weight 60 to balance the weight by the experimental device to be connected and the lower strong bag 70 is installed on the model ship, the restraint model test device is a real ship Small model ship made exactly like It is characterized by being attached to.

또한, 본 발명의 조종성능 추정용 구속모형시험장치는 횡동요 모멘트를 모멘트 분력계를 이용하지 아니하고, 횡동요 중심에서 일정한 거리만큼 떨어진 2개의 상·하 방향 1축 분력계(Z₁, Z₂)를 이용하여 계측하는 방식 즉, 횡동요 모멘트는 1축 분력계(Z₁, Z₂)로부터 계측된 힘에 횡동요 중심으로부터 떨어진 거리를 곱한 값으로 구성되는 것을 특징으로 하고 있다.In addition, the restraint model test apparatus for estimating the steering performance of the present invention does not use the lateral oscillation moment by using a moment calorimeter, and uses two up-and-down one-axis zonometers (Z₁, Z₂) separated by a constant distance from the center of the lateral oscillation. In other words, the method of measuring by means of the horizontal oscillation moment is characterized in that the force measured from the uniaxial calorimeters Z₁, Z₂ is multiplied by the distance away from the center of the oscillation.

또한, 횡동요 모멘트 계측용 1축 분력계(Z₁, Z₂)에는 횡동요를 자유롭게 해주는 베어링(50)이 설치되어 횡동요 모멘트 계측용 1축 분력계(Z₁, Z₂)에 상·하 방향의 힘만 계측되고, 횡동요 모멘트는 작용하지 않도록 구성된다.In addition, the bearing 50 for lateral fluctuation is installed in the axial component momentometer (Z₁, Z₂) for measuring the lateral fluctuation moment. It is measured and the transverse shaking moment is configured not to act.

이하, 본 발명에 따른 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치를 첨부된 예시 도면을 참고하여 그 구성 및 작용 효과를 보다 상세하게 설명하면 다음과 같다.Hereinafter, with reference to the accompanying example drawings for the constraint model test device for estimating the steering performance of the ship including the transverse shaking according to the present invention will be described in more detail the configuration and operation effects as follows.

도1은 본 발명이 적용된 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치를 설명하기 위해 나타낸 블록도,1 is a block diagram illustrating a constraint model test apparatus for estimating the steering performance of a ship including a transverse shaking to which the present invention is applied;

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

X₁, X₂, Y₁, Y₂, Z₁, Z₂: 1방향 분력계X₁, X₂, Y₁, Y₂, Z₁, Z₂: one-way component

10 : 슬라이더 20 : 구동 모터10: slider 20: drive motor

30,40,50 : 베어링 60 : 중심추30,40,50: Bearing 60: Center weight

70 : 하부 스트롱 백 80 : 횡동요 고정장치70: lower strong bag 80: roll shake device

본 발명의 횡동요를 포함한 조종성능 추정용 구속모형시험장치는 실제 선박과 모양은 같고 크기가 작은 모형선을 제작하여 일련의 실험을 수행하여 모형선에 작용하는 선수방향, 횡방향, 선수동요 방향 및 횡동요 방향 등 4방향의 힘을 측정하고 이로부터 조종 유체력 계수들을 구하여 조종운동을 시뮬레이션하는데 사용된다.Constrained model test device for estimating the steering performance including the lateral fluctuation of the present invention is to make a model line having the same shape as the actual ship and to perform a series of experiments to perform a series of experiments, the bow direction, the lateral direction, and the bow movement direction And force in four directions, such as transverse shaking direction, to obtain steering fluid force coefficients from it and used to simulate steering motion.

모형선은 하부 스트롱 백(70)을 모형선 안에 설치하여 실험장치와 연결하고, 상기 모형선을 수조에서 일정한 속도로 예인하면서 모형선에 작용하는 힘과 모멘트를 6개의 1축 분력계(X₁, X₂, Y₁, Y₂, Z₁, Z₂)를 이용하여 모형선에 작용하는 선수방향, 횡방향, 선수동요 방향 및 횡동요 방향 등 4방향의 힘을 측정할 수 있게 한다.The model ship installs the lower strong bag (70) in the model ship and connects it to the experimental device. The model ship is towed at a constant speed in the water tank, and the forces and moments acting on the model ship are six single-axis calorimeters (X₁, X₂, Y₁, Y₂, Z₁, Z₂) can be used to measure the force in four directions such as bow direction, transverse direction, bow direction and lateral direction that act on model line.

모형선에 작용하는 상·하동요와 종동요 현상을 자유롭게 해주기 위하여 베어링(30)을 설치하고, Y 분력계에 작용하는 선수요 모멘트를 없애기 위하여 베어링(40 )을 설치한다.The bearing 30 is installed to free up and down rocking and the follow-up movement acting on the model ship, and the bearing 40 is installed to remove the yaw moment acting on the Y component system.

X₁, Y₁ 분력계가 있는 곳에는 횡동요 모멘트가 작용하지 않도록 횡동요를 자유롭게 해주는 베어링(40)을 설치하였으며, X₂, Y₂, Z₁, Z₂ 분력계가 있는 곳에는 횡동요를 자유롭게 해주는 베어링(50)과 모형선에 작용하는 횡동요 모멘트가 Z₁, Z₂분력계에 작용하도록 횡동요를 고정시켜주는 고정장치(80)가 설치된다.Where there are X₁, Y₁ calorimeters, bearings (40) are installed to free the transverse movements so that the transverse moments do not work. Bearings (50) are provided to free the sideways movements where there are X₂, Y₂, Z Z, Z₂ A fixing device 80 is provided to fix the lateral fluctuation so that the lateral fluctuation moment acting on the model line acts on the Z₁ and Z₂calimeters.

그리고 모형선에 작용하는 횡동요 모멘트는 일정한 거리만큼 떨어져 있는 Z₁, Z₂분력계에 계측된 힘에 횡동요 모멘트 중심으로부터 1축 분력계까지 떨어진 거리를 곱해서 구해진다. 단 Z₁, Z₂ 분력계에 횡동요 모멘트가 작용하지 않도록 횡동요를 자유롭게 해주는 베어링(50 )이 설치된다.The transverse moment acting on the model line is obtained by multiplying the force measured by the Z₁ and Z₂ calorimeters by a certain distance and the distance from the center of the transverse moment to the uniaxial calorimeter. However, the bearing 50 is installed to free the lateral fluctuation so that the lateral fluctuation moment does not act on the Z₁ and Z₂ calorimeters.

또한, 전체 시스템에 대하여 횡동요를 자유롭게 해주고, X₂, Y₂ 분력계 뒷 부분에 있는 구동모터(20)를 이용하여 시험 장치 전체에 횡동요 운동을 줄 수 있도록 하였다.In addition, the lateral oscillation was freed for the entire system, and the lateral oscillation movement was applied to the entire test apparatus by using the driving motor 20 at the rear of the X₂ and Y₂ calorimeters.

그리고 1축 분력계 및 실험 장치에 의한 무게가 작용하지 않도록 밸런스를 잡아주는 중심추(60)를 설치하여 실제 선박과 똑같이 제작된 작은 크기의 모형선에 취부한 다음 하부 스트롱 백(70)을 실험장치에 연결한다.In addition, the center weight 60 is installed to balance the weight by the 1-axis calorimeter and the test apparatus so that it is mounted on a model ship of a small size manufactured like a real ship, and then the lower strong bag 70 is tested. Connect to the device.

이와 같이 구성된 본 발명은 선박의 조종성능을 추정하기 위하여 실제 선박과 똑같이 제작된 작은 크기의 모형선에 조종성능 추정용 구속모형시험장치를 고정되게 설치한 상태에서 상기 모형선을 수조에서 일정한 속도로 예인하면서 일련의 실험을 수행하여 조종운동을 시뮬레이션할 수 있게 된다.The present invention configured as described above has a fixed speed model of the pilot ship in the small size model ship manufactured in the same size as the actual ship in order to estimate the steering performance of the ship in a fixed speed in the tank in the state Towing, a series of experiments can be performed to simulate the steering motion.

모형선을 수조에서 일정한 속도로 예인함에 따라 모형선에 작용하는 힘과 모멘트를 6개의 1축 분력계(X₁, X₂, Y₁, Y₂, Z₁, Z₂)를 이용하여 모형선에 작용하는 힘과 모멘트를 계측한다.As the model ship is towed at a constant speed in the tank, the forces and moments acting on the model ship using six single-axis calorimeters (X₁, X₂, Y₁, Y₂, Z₁, Z₂) Measure it.

계측된 힘과 모멘트를 이용하여 조종 유체력 계수를 구하고, 이 계수들을 이용하여 조종 운동 방정식을 풀어서 선박의 조종운동을 컴퓨터로 시뮬레이션한다.Using the measured forces and moments, the steering fluid force coefficients are obtained, and the coefficients are used to solve the steering motion equations and simulate the steering motion of the ship by computer.

상기한 시뮬레이션 결과에는 선박의 횡동요 운동을 고려하고 있어 기존의 조종성능 추정 방법보다는 좀더 현실 상황에 가까운 추정을 수행할 수 있게 된다.In the simulation result, the ship's sideways motion is taken into consideration, and thus the estimation can be performed more realistically than the conventional steering performance estimation method.

이상에서 설명한 바와 같이 본 발명에 의하면, 선박의 조종성능을 추정하기 위하여 실제 선박과 모양은 같고 크기가 작게 제작된 모형선에 조종성능 추정용 구속모형시험장치를 장착한 상태에서 일련의 실험을 수행하여 조종 유체력 계수와 조종운동을 시뮬레이션하면서 횡동요 운동을 포함한 선박의 조종성능 추정할 수 있게 하므로써 특히 횡동요 운동이 중요한 컨테이너 운반선의 조종성능 추정 및 선박의 전복 현상 해석에 아주 유용하게 사용할 수 있게 되는 등의 작용 효과를 얻게 된다.As described above, according to the present invention, in order to estimate the steering performance of the ship, a series of experiments are carried out with a constraint model test device for estimating the steering performance mounted on a model ship manufactured with the same shape and smaller size as the actual ship. By simulating the maneuvering fluid force coefficient and maneuvering motion, it is possible to estimate the maneuvering performance of the ship including the tumbling motion. You will get the effect, such as being.

Claims (3)

시물레이션을 이용한 선박 조종성능을 시험하는 것에 있어서,In testing ship maneuverability using simulation, 선수방향, 횡방향, 선수동요 방향 및 횡동요 방향 등 4방향의 힘을 측정할 수 있도록 6개의 1축 분력계(X₁, X₂, Y₁, Y₂, Z₁, Z₂)로 구성된 4분력 계측 시스템과, 모형선의 횡동요 방향의 운동을 자유롭게하는 베어링를 고정시켜주는 횡동요 고정장치(80)와, 횡동요 고정장치(80)로 위치 이동이 가능하도록 슬라이딩되는 슬라이더(10)와, 상기 슬라이더(10)와 연결되는 횡동요 구동 모터(20)와, 상·하동요, 종동요 및 횡동요에 대하여 자유롭게 해주는 각각의 베어링(30,40)과, 각각의 분력계와 연결되는 실험 장치에 의한 무게가 작용하지 않도록 밸런스를 잡아주는 중심추(60)와, 모형선에 설치되는 하부 스트롱 백(70)으로 구속모형시험장치를 구성하고, 상기 구속모형시험장치는 실제 선박과 똑같이 제작된 작은 크기의 모형선에 취부되는 것을 특징으로 하는 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치Four-component measuring system composed of six single-axis components (X₁, X₂, Y₁, Y₂, Z₁, Z₂) to measure the force in four directions such as bow direction, lateral direction, bow movement direction and lateral swing direction. A lateral sway holding device 80 which fixes a bearing to free the movement in the lateral sway direction of the model line, a slider 10 which is slid so as to be movable by the sway fixing device 80, and the slider 10 and Weight by the lateral oscillation drive motor 20 to be connected, the respective bearings 30 and 40 to free up and down oscillation, the longitudinal oscillation, and the lateral oscillation, and the experimental device connected to each calorimeter The restraint model test apparatus is composed of a center weight 60 that balances the weight, and a lower strong bag 70 installed on the model ship, and the restraint model test apparatus is formed on a model ship of a small size manufactured like a real ship. Characterized in that Restraint model test device for estimating ship's steering performance including transverse shaking 제1항에 있어서, 상기 횡동요 모멘트 계측용 1축 분력계(Z1, Z2)에는 횡동요를 자유롭게 해주는 베어링(50)이 설치되어 횡동요 모멘트 계측용 1축 분력계(Z₁, Z₂)에 상·하 방향의 힘만 계측되고, 횡동요 모멘트는 작용하지 않도록 구성되는 것을 특징으로 하는 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치.The uniaxial calorimeter (Z 1 , Z 2 ) for measuring the lateral oscillation moment is installed in the uniaxial calorimeters Z 1 and Z 2 . A restraint model test apparatus for estimating the maneuvering performance of a ship including a lateral oscillation, characterized in that only the force in the up and down directions is measured and the lateral oscillation moment is not applied. 제1항에 있어서, 상기 조종성능 추정용 구속모형시험장치를 이용한 횡동요 모멘트는 횡동요 중심에서 일정한 거리만큼 떨어진 2개의 상·하 방향 1축 분력계(Z1, Z2)로부터 계측된 힘에 횡동요 중심으로부터 떨어진 거리를 곱한 값으로 구성되는 것을 특징으로 하는 횡동요를 포함한 선박의 조종성능 추정용 구속모형시험장치.The transverse oscillation moment using the restraint model test device for estimating the steering performance is a force measured from two up-and-down unidirectional calorimeters (Z 1 , Z 2 ) separated by a predetermined distance from the center of the transverse oscillation. Restraint model test apparatus for estimating the steering performance of a ship comprising a lateral shake, characterized in that consisting of multiplied by the distance away from the center of the roll.
KR10-2003-0052971A 2003-07-31 2003-07-31 A control performance deduction model examination device of the vessel KR100520820B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0052971A KR100520820B1 (en) 2003-07-31 2003-07-31 A control performance deduction model examination device of the vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0052971A KR100520820B1 (en) 2003-07-31 2003-07-31 A control performance deduction model examination device of the vessel

Publications (2)

Publication Number Publication Date
KR20050014369A true KR20050014369A (en) 2005-02-07
KR100520820B1 KR100520820B1 (en) 2005-10-12

Family

ID=37225515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0052971A KR100520820B1 (en) 2003-07-31 2003-07-31 A control performance deduction model examination device of the vessel

Country Status (1)

Country Link
KR (1) KR100520820B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131773A (en) 2015-05-08 2016-11-16 삼성중공업 주식회사 Model ship performance test equipment
CN112179616A (en) * 2020-09-28 2021-01-05 浙大宁波理工学院 Ship model movement restraint device for hydrodynamic test
CN112278175A (en) * 2020-10-29 2021-01-29 哈尔滨工程大学 Underwater movement system with overturn prevention device
CN113602443A (en) * 2021-07-13 2021-11-05 华中科技大学 Two-point support-based three-degree-of-freedom motion testing mechanism in ship waves

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974849B1 (en) 2008-07-23 2010-08-11 한국해양연구원 Towing and mooring system for model experiment of floating structures
KR101205296B1 (en) * 2012-06-19 2012-11-27 이상림 A performance testing machine and test method of anti-rolling tank for ship
KR101989316B1 (en) * 2018-12-27 2019-06-14 (주)원방포스택 Apparatus for Performance Test of Underwater Vehicle
KR101986981B1 (en) * 2018-12-27 2019-09-30 (주)원방포스택 Underwater Vehicle for Performance Test

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131773A (en) 2015-05-08 2016-11-16 삼성중공업 주식회사 Model ship performance test equipment
CN112179616A (en) * 2020-09-28 2021-01-05 浙大宁波理工学院 Ship model movement restraint device for hydrodynamic test
CN112179616B (en) * 2020-09-28 2022-08-16 浙大宁波理工学院 Ship model movement restraint device for hydrodynamic test
CN112278175A (en) * 2020-10-29 2021-01-29 哈尔滨工程大学 Underwater movement system with overturn prevention device
CN113602443A (en) * 2021-07-13 2021-11-05 华中科技大学 Two-point support-based three-degree-of-freedom motion testing mechanism in ship waves

Also Published As

Publication number Publication date
KR100520820B1 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
Thomas et al. Slam events of high-speed catamarans in irregular waves
Kraus Wave glider dynamic modeling, parameter identification and simulation
CN101793521A (en) Method for measuring swaying and surging information of ship based on optical fiber gyroscope inertial measurement system
KR100520820B1 (en) A control performance deduction model examination device of the vessel
CN112357004A (en) Pilot test boat sea test system and method for testing overall performance of ship by pilot test boat sea test system
Ridao et al. Model identification of a low-speed UUV
Jiao et al. Predictions of wave induced ship motions and loads by large-scale model measurement at sea and numerical analysis
US8381584B1 (en) Model hull testing method, platform, and system
Ayaz et al. Manoeuvring behaviour of ships in extreme astern seas
US8375782B1 (en) Model hull testing method, platform, and system
Leonessa et al. Design of a small, multi-purpose, autonomous surface vessel
Simoes et al. Neural-network-based prediction of mooring forces in floating production storage and offloading systems
KR20130019331A (en) Apparatus and method for testing with a model in open sea by using catamaran type asymmetric hull
Browning A mathematical model to simulate small boat behaviour
Qiu et al. 3D motion model for the freefall lifeboat during its launching from a moving ship
CN108572055B (en) AUV underwater recovery fluid dynamic test experimental device applied to pool laboratory
Willy Attitude control of an underwater vehicle subjected to waves
Hajizadeh et al. Determination of ship maneuvering hydrodynamic coe cients using system identi cation technique based on free-running model test
Steinke Design and simulation of a Kalman filter for ROV navigation
Fossati et al. Sails aerodynamic behavior in dynamic conditions
Divsalar et al. Experimental analysis on hydrodynamic coefficients of an underwater glider with spherical nose for dynamic modeling and motion simulation
Kerdraon et al. High Froude Number Experimental Investigation of the 2 DOF Behavior of a Multihull Float in Head Waves
Pigazzini et al. Full-scale propulsion measurements on a planing pleasure yacht in waves
Rodiana et al. Software and hardware in the loop simulation of navigation system design based on state observer using Kalman filter for autonomous underwater glider
Mahacek Dynamic analysis of a SWATH vessel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120925

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 14