KR20040110863A - Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same - Google Patents

Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same Download PDF

Info

Publication number
KR20040110863A
KR20040110863A KR1020030040343A KR20030040343A KR20040110863A KR 20040110863 A KR20040110863 A KR 20040110863A KR 1020030040343 A KR1020030040343 A KR 1020030040343A KR 20030040343 A KR20030040343 A KR 20030040343A KR 20040110863 A KR20040110863 A KR 20040110863A
Authority
KR
South Korea
Prior art keywords
acid
positive electrode
lithium
sulfur
secondary battery
Prior art date
Application number
KR1020030040343A
Other languages
Korean (ko)
Other versions
KR100578789B1 (en
Inventor
한지성
최윤석
김석
최수석
전상은
김잔디
심규윤
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020030040343A priority Critical patent/KR100578789B1/en
Publication of KR20040110863A publication Critical patent/KR20040110863A/en
Application granted granted Critical
Publication of KR100578789B1 publication Critical patent/KR100578789B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/205Securing of slopes or inclines with modular blocks, e.g. pre-fabricated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/808Ground anchors anchored by using exclusively a bonding material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0007Production methods using a mold
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0006Plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided a positive electrode and a lithium secondary battery comprising the same, which has excellent cycle-life characteristics and capacity property. CONSTITUTION: The positive electrode for a lithium secondary battery includes a conductive material containing a carbonic material treated with an acid; and a positive electrode active material. Preferably, the carbonic material is treated with a solution of the acid selected from the group consisting of nitric acid, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid and boric acid, which has a concentration of 10 to 80 wt%. The positive electrode active material is a sulfur-series compound selected from the group consisting of an elemental sulfur(S8), Li2Sn(n1), an organic sulfur compound and a carbon-sulfur polymer((C2Sx)n, wherein x is 2.5 to 50, n 2), or a mixture thereof.

Description

리튬 이차 전지용 양극 및 그를 포함하는 리튬 이차 전지{POSITIVE ELECTRODE FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY COMPRISING SAME}A positive electrode for a lithium secondary battery and a lithium secondary battery including the same {POSITIVE ELECTRODE FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY COMPRISING SAME}

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 양극 및 그를 포함하는 리튬 이차 전지에 관한 것으로서, 보다 상세하게는 전지 특성이 향상된 리튬 이차 전지용 양극 및 그를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a positive electrode for a lithium secondary battery having improved battery characteristics and a lithium secondary battery including the same.

[종래 기술][Prior art]

최근 전자 제품, 전자 기기, 통신 기기의 소형화, 경량화 및 고성능화가 급속히 진전됨에 따라 이들 제품의 전원으로 사용될 이차 전지의 성능 개선이 크게 요구되고 있다. 이러한 요구를 만족시키는 이차 전지로 황계 물질을 양극 활물질로 사용하는 리튬 설퍼 전지에 대한 개발이 활발하게 진행되고 있다.Recently, as the miniaturization, weight reduction, and high performance of electronic products, electronic devices, and communication devices have rapidly progressed, there is a great demand for improving the performance of secondary batteries to be used as power sources for these products. As a secondary battery that satisfies these requirements, development of a lithium sulfur battery using a sulfur-based material as a positive electrode active material is actively progressing.

리튬 설퍼 전지는 황-황 결합(Sulfur-Sulfur bond)을 갖는 황 계열 화합물을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속, 또는 리튬 이온 등과 같은 금속 이온의 삽입/탈삽입이 일어나는 탄소계 물질을 음극 활물질로 사용하는 이차 전지이다. 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.The lithium sulfur battery uses a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and an alkali metal such as lithium, or a carbon-based material in which insertion / deintercalation of metal ions such as lithium ions occurs. It is a secondary battery used as a negative electrode active material. In the reduction reaction (discharged), the SS bond is broken and the oxidation number of S decreases. In the oxidation reaction (charged), the oxidation-reduction reaction of the SS bond is formed by increasing the oxidation number of S and the electrical energy is stored and stored. Create

리튬 설퍼 전지는 이론 에너지 밀도가 2800Wh/kg(1675mAh/g)으로 다른 전지 에 비하여 매우 높고, 또한 양극 활물질로 사용되는 황계 물질은 자원이 풍부하여 값이 싸며, 환경친화적인 물질로서 주목을 받고 있다.Lithium sulfur battery has a theoretical energy density of 2800 Wh / kg (1675 mAh / g), which is much higher than other batteries, and the sulfur-based material used as a positive electrode active material has abundant resources, is inexpensive, and attracts attention as an environmentally friendly material. .

리튬 설퍼 전지의 양극 활물질로 사용되는 황은 부도체이므로 전기 화학 반응으로 생성된 전자의 이동을 위해서는 도전재를 필요로 한다. 즉 전기 화학 반응을 활발하게 발생시키기 위해서는 도전재의 역할이 중요하다.Sulfur, which is used as a positive electrode active material of a lithium sulfur battery, is an insulator and thus requires a conductive material for the movement of electrons generated by an electrochemical reaction. In other words, the role of the conductive material is important to actively generate the electrochemical reaction.

이러한 도전재로는 카본 블랙류의 카본이나 금속 분말 등이 사용될 수 있으며, 일반적으로 카본, 특히 표면적이 20 내지 2000m2/g 범위에 속하는 카본 블랙이 가장 널리 사용되고 있다. 상기 도전재는 충방전 동안 액상으로 존재하는 폴리설파이드의 반응 사이트 역할을 수행하므로 비표면적이 크고 전해액(또는 폴리설파이드 용액)을 다량 함침할 수 있어야 한다.As the conductive material, carbon or carbon powder of carbon blacks may be used. In general, carbon, particularly carbon black having a surface area of 20 to 2000 m 2 / g, is most widely used. Since the conductive material serves as a reaction site for the polysulfides present in the liquid phase during charging and discharging, the conductive material should have a large specific surface area and be capable of impregnating a large amount of the electrolyte (or polysulfide solution).

그러나 상기 카본 블랙 도전재는 표면적이 넓기 때문에 전해액에 노출되는 면적이 양극 활물질에 비하여 상대적으로 커서 충전되어 있는 상태에서는 카본 블랙과 전해액과의 반응에 의해 전해액이 변성되고, 이로 인하여 전지의 충방전 성능이 저하되는 문제가 있다.However, since the carbon black conductive material has a large surface area, the area exposed to the electrolyte is relatively larger than that of the positive electrode active material, so that the electrolyte is denatured by the reaction between the carbon black and the electrolyte, thereby increasing the charge and discharge performance of the battery. There is a problem of deterioration.

이러한 문제를 해결하기 위한 방법으로 국내 특허 공개 99-81129호에 카본 블랙을 유기 용매로 세척하거나, 오존 처리, 수소 가스로 환원시키는 방법으로 카본 블랙의 물성을 변화시켜 전해액 분해 반응을 억제하고, 활물질과의 혼합 및 접촉을 용이하게 하여 전지의 성능을 향상시키는 방법이 기술되어 있다. 그러나 이러한 방법들은 카본 블랙과 전해액의 반응을 억제하는 효과가 충분하지 않아 그에 관한 연구가 계속 요구되고 있다.In order to solve this problem, Korean Patent Publication No. 99-81129 discloses that carbon black is washed with an organic solvent, ozone treatment, or hydrogen gas to change the physical properties of carbon black to suppress electrolyte decomposition reactions, and A method of facilitating mixing and contact with a cell to improve battery performance is described. However, these methods do not have sufficient effect of inhibiting the reaction of carbon black and electrolyte solution, and the research on them continues.

또한, J. of Korean Ind. & Eng. Chemistry Vol. 7 No. 4, 1996, 768-776에는 카본 블랙을 질산 처리하여 표면 물성을 변화시켜 수용액에서의 분산성을 향상시키는 내용이 기술되어 있다. 이 방법은 카본 블랙을 물이나 유기 용매 또는 고무 성분 등에 분산시킬 경우 잉크나 타이어 등으로 색상을 나타내는, 즉 일반적으로 착색 안료 등 공업용으로 사용되고 있는 카본 블랙의 분산에 관한 내용으로서 전지 제조시 활물질 및 바인더와 함께 사용할 경우의 도전재로서의 카본 블랙의 분산성 향상에 관하여는 전혀 기술되지 않았다.In addition, J. of Korean Ind. & Eng. Chemistry Vol. 7 No. 4, 1996, 768-776 describe the treatment of carbon black with nitric acid to change surface properties to improve dispersibility in aqueous solutions. This method relates to the dispersion of carbon black, which is generally used for industrial purposes such as color pigments, when the carbon black is dispersed in water, an organic solvent or a rubber component, that is, an ink or a tire. The improvement of the dispersibility of carbon black as a conductive material when used with is not described at all.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 도전재의 물성을 개질하여 향상된 전지 성능을 나타내는 전지를 제공할 수 있는 리튬 이차 전지용 양극을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a positive electrode for a lithium secondary battery that can provide a battery exhibiting improved battery performance by modifying the physical properties of the conductive material.

본 발명의 또 다른 목적은 상기 양극을 포함하는 리튬 이차 전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including the positive electrode.

도 1은 비교예 1에서 사용한 종래 도전재의 FT-IR 그래프.1 is an FT-IR graph of a conventional conductive material used in Comparative Example 1. FIG.

도 2은 본 발명의 실시예 1에서 사용한 산 처리한 도전재의 FT-IR 그래프.2 is an FT-IR graph of an acid-treated conductive material used in Example 1 of the present invention.

도 3은 본 발명의 실시예 2 및 비교예 2의 전지의 사이클 수명 특성을 나타낸 그래프.3 is a graph showing the cycle life characteristics of the battery of Example 2 and Comparative Example 2 of the present invention.

도 4는 본 발명의 실시예 2 및 비교예 2의 전지의 방전 용량 특성을 나타낸 그래프.4 is a graph showing the discharge capacity characteristics of the battery of Example 2 and Comparative Example 2 of the present invention.

상기 목적을 달성하기 위하여, 본 발명은 산으로 처리된 탄소계 물질을 포함하는 도전재; 및 양극 활물질을 포함하는 리튬 이차 전지용 양극을 제공한다.In order to achieve the above object, the present invention comprises a conductive material comprising a carbon-based material treated with an acid; And it provides a positive electrode for a lithium secondary battery comprising a positive electrode active material.

본 발명은 또한 상기 양극; 음극 활물질을 포함하는 음극; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.The present invention also the anode; A negative electrode including a negative electrode active material; And it provides a lithium secondary battery comprising an electrolyte solution.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 리튬 이차 전지의 양극에 사용되는 양극 활물질에 전기 전도성을 부여하기 위하여 사용되는 종래 도전재의 표면을 개질하여 전지 성능을 향상시키기 위한 것이다.The present invention is to improve the battery performance by modifying the surface of the conventional conductive material used to impart electrical conductivity to the positive electrode active material used for the positive electrode of the lithium secondary battery.

본 발명에서 사용가능한 종래 도전재로는 카본 블랙, 탄소 또는 케첸 블랙과 같이 양극 활물질에 전기 전도성을 부여할 수 있으면 어떠한 것도 사용할 수 있으나, 주로 사용되는 것이 카본 블랙이므로 본 명세서에서는 카본 블랙에 대하여 주로 설명하기로 한다.As the conventional conductive material usable in the present invention, any one can be used as long as it can impart electrical conductivity to the positive electrode active material such as carbon black, carbon, or Ketjen black, but mainly used is carbon black. Let's explain.

카본 블랙은 95% 이상의 무정형 탄소질로 된 초미세의 미립자로서, 작은 구형입자(미립자의 형상이 구형임)가 모여 최소 응집체를 이루고 이 응집체가 또다시뭉쳐서 불규칙한 쇄상 가지 모양의 복잡한 형태를 띠고있다. 또한 카본 블랙 표면층(최외각 표면층)에 있는 탄소 원자 라디칼은 산화되기 쉬어 각종의 기능기를 형성한다. 이와 같이 형성되는 카본 블랙의 대표적인 기능기는 -OH, -O, -COOH, -OCO 등이다.Carbon black is an ultrafine particle composed of more than 95% of amorphous carbonaceous material, and small spherical particles (fine particles are spherical) are collected to form a minimum aggregate, and the aggregates are aggregated again to form an irregular chain branch complex. In addition, carbon atom radicals in the carbon black surface layer (outermost surface layer) are easily oxidized to form various functional groups. Representative functional groups of the carbon black thus formed are -OH, -O, -COOH, -OCO and the like.

이러한 카본 블랙은 일반적으로 보강성, 착색성, 내후성, 내화학성 및 전기적 전도성 등의 다양한 특성을 가지고 있는 물질로서, 전지용 도전재로 사용할 때 물이나 유기 용매 등과 같은 매질 내에서의 분산이 제품의 품질에 큰 영향을 준다. 또한, 카본 블랙은 표면적이 큰 미분체로서, 다른 물질과의 친화력보다 자체 응집력이 크기 때문에 다른 매질 속에 쉽게 분산되지 않는다.These carbon blacks generally have various properties such as reinforcement, coloring, weather resistance, chemical resistance, and electrical conductivity, and when used as a conductive material for batteries, dispersion in a medium such as water or an organic solvent may affect the quality of the product. It has a big impact. In addition, carbon black is a fine powder having a large surface area, and is not easily dispersed in other media because of its greater cohesion than affinity with other materials.

본 발명에서는 상기 도전재를 산으로 처리하여 표면개질하였다. 산으로 처리하는 공정을 좀더 자세히 설명하면, 도전재를 산 용액에 첨가하여 일정 시간 혼합한 후, 산 용액을 제거하는 공정으로 처리한 표면 개질 도전재이다. 상기 산 용액은 질산, 염산, 인산, 황산, 아세트산 및 붕산으로 이루어진 군에서 선택되는 하나 이상의 산 용액으로서, 10 내지 80 중량%의 농도를 갖는 산 수용액을 사용하는 것이 바람직하다. 상기 산 용액의 농도가 10 중량% 미만인 경우에는 산처리 효과가 미미하여 개선된 성능을 나타내기 힘들고, 80 중량%를 초과하는 경우에는 미세 기공(micropore)의 세공벽이 산에 의해 침식당해 세공의 함몰현상이 일어난다. 이렇게 되면 카본블랙의 기공 사이즈(pore size)가 달라지게 되어 원래의 카본블랙이 갖는 비표면적이 줄어들고 반응사이트의 감소가 발생하는 문제점이 있다.In the present invention, the conductive material was treated with an acid to perform surface modification. More specifically, the process of treating with acid is a surface-modified conductive material treated by adding a conductive material to the acid solution, mixing for a predetermined time, and then removing the acid solution. The acid solution is at least one acid solution selected from the group consisting of nitric acid, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid and boric acid, it is preferable to use an acid aqueous solution having a concentration of 10 to 80% by weight. When the concentration of the acid solution is less than 10% by weight, the acid treatment effect is insignificant, and it is difficult to show improved performance. When the concentration of the acid solution exceeds 80% by weight, the pore walls of the micropore are eroded by the acid and the pores are depressed. The phenomenon occurs. In this case, the pore size of the carbon black is changed, so that the specific surface area of the original carbon black is reduced, and there is a problem in that the reaction site is reduced.

상기 혼합 시간은 5분 내지 12시간 동안 실시하는 것이 바람직하며, 3 내지5시간 동안 실시하는 것이 더욱 바람직하다. 상기 혼합 시간이 5분 미만일 경우는 산처리 효과를 얻기가 힘들고, 혼합 공정을 12시간을 초과하여 실시하여도 더 이상의 산처리 효과가 증가하는 것이 아니므로 12시간 이상 혼합할 필요는 없다.The mixing time is preferably carried out for 5 minutes to 12 hours, more preferably for 3 to 5 hours. If the mixing time is less than 5 minutes, it is difficult to obtain an acid treatment effect, and even if the mixing process is carried out for more than 12 hours, the acid treatment effect does not increase any longer, so it is not necessary to mix for more than 12 hours.

이와 같이 산 처리 공정에 따라, 본 발명의 도전재는 양극 제조시 사용되는 매질과의 친화력이 증가되어 균질한 형상의 극판을 제조할 수 있다. 또한 도전재의 주변에 잔존하는 불순물 성분이 제거되고, 산에 의해 미세 기공(micropore)이 침식되어 기공 사이즈가 커짐에 따라 리튬 설퍼 전지에서 액상으로 존재하는 활물질이 기공 사이에 많은 양이 함침될 수 있어 충방전 동안 전기 화학 반응이 원활하게 일어나는 반응 사이트가 많아지므로 전지의 성능을 향상시킬 수 있다.As described above, according to the acid treatment process, the conductive material of the present invention can increase affinity with a medium used in the production of the positive electrode, thereby producing a homogeneous electrode plate. In addition, the impurities contained in the periphery of the conductive material are removed, and micropores are eroded by acid, and as the pore size increases, a large amount of active material present in the liquid phase in the lithium sulfur battery may be impregnated between the pores. Since the number of reaction sites where the electrochemical reaction occurs smoothly during charging and discharging increases, the performance of the battery can be improved.

본 발명의 도전재를 사용한 리튬 설퍼 전지용 양극에서 양극 활물질로는 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 사용할 수 있다. 상기 황 계열 화합물은 Li2Sn(n≥1), 유기 황 화합물, 및 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택되는 것을 사용할 수 있다.In the positive electrode active material for a lithium sulfur battery using the conductive material of the present invention, elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof may be used. The sulfur-based compound is selected from the group consisting of Li 2 S n (n ≧ 1), an organic sulfur compound, and carbon-sulfur polymer ((C 2 S x ) n : x = 2.5 to 50, n ≥ 2) Can be used.

또한 상기 양극 활물질을 집전체에 잘 부착시킬 수 있는 바인더를 더욱 포함할 수 있다. 상기 바인더의 대표적인 예로는 폴리(비닐 아세테이트), 폴리비닐 알콜, 폴리에틸렌 옥사이드, 폴리비닐 피롤리돈, 알킬레이티드 폴리에틸렌 옥사이드, 가교결합된 폴리에틸렌 옥사이드, 폴리비닐 에테르, 폴리(메틸 메타크릴레이트), 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴 플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸 아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 이들의 유도체, 블랜드, 코폴리머 등을 들 수 있다.In addition, the positive electrode active material may further include a binder that can be attached to the current collector. Representative examples of the binder include poly (vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, crosslinked polyethylene oxide, polyvinyl ether, poly (methyl methacrylate), poly Vinylidene fluoride, copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly (ethyl acrylate), polytetrafluoroethylene, polyvinylchloride, polyacrylonitrile, polyvinylpyridine , Polystyrene, derivatives thereof, blends, copolymers and the like.

본 발명의 양극에서 도전재, 양극 활물질 및 바인더의 함량은 본 발명의 효과에 영향을 미치는 요소가 아니므로 적절하게 혼합하면 되며, 그 혼합 비율은 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있는 내용이다.The content of the conductive material, the positive electrode active material and the binder in the positive electrode of the present invention is not a factor influencing the effects of the present invention, and may be appropriately mixed. The mixing ratio may be widely understood by those skilled in the art. to be.

상기 양극을 포함하는 본 발명의 리튬 설퍼 전지는 음극과 전해액을 포함한다. 상기 음극에서 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 것을 사용할 수 있다.The lithium sulfur battery of the present invention including the positive electrode includes a negative electrode and an electrolyte solution. The negative electrode active material in the negative electrode is a group consisting of a material capable of reversibly intercalating or deintercalating lithium ions, a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, a lithium metal and a lithium alloy. Can be selected from.

상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 또한, 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화 주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나 이에 한정되는 것은 아니다. 리튬 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.As a material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used, and representative examples thereof include crystalline carbon. , Amorphous carbon or these can be used together. In addition, a representative example of a material capable of reacting with lithium ions to reversibly form a lithium-containing compound may include, but is not limited to, tin oxide (SnO 2 ), titanium nitrate, silicon (Si), and the like. As the lithium alloy, an alloy of a metal selected from the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, and Sn may be used.

리튬 금속을 음극 활물질로 사용하는 경우에는, 리튬 금속 표면에 무기질 보호막(protective layer), 유기질 보호막 또는 이들이 적층된 물질도 음극으로 사용될 수 있다. 상기 무기질 보호막으로는 Mg, Al, B, Sn, Pb, Cd, Si, In, Ga, 리튬 실리케이트, 리튬 보레이트, 리튬 포스페이트, 리튬 포스포로나이트라이드, 리튬 실리코설파이드, 리튬 보로설파이드, 리튬 알루미노설파이드 및 리튬 포스포설파이드로 이루어진 군에서 선택되는 물질로 이루어진다. 상기 유기질 보호막으로는 폴리(p-페닐렌), 폴리아세틸렌, 폴리(p-페닐렌 비닐렌), 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리(2,5-에틸렌 비닐렌), 아세틸렌, 폴리(페리나프탈렌), 폴리아센, 및 폴리(나프탈렌-2,6-디일)로 이루어진 군에서 선택되는 도전성을 가지는 모노머, 올리고머 또는 고분자로 이루어진다.When lithium metal is used as the negative electrode active material, an inorganic protective layer, an organic protective film, or a material in which these are laminated on the lithium metal surface may also be used as the negative electrode. As the inorganic protective film, Mg, Al, B, Sn, Pb, Cd, Si, In, Ga, lithium silicate, lithium borate, lithium phosphate, lithium phosphoronide, lithium silicosulfide, lithium borosulfide, lithium aluminosulfide And it is made of a material selected from the group consisting of lithium phosphosulfide. The organic protective film is poly (p-phenylene), polyacetylene, poly (p-phenylene vinylene), polyaniline, polypyrrole, polythiophene, poly (2,5-ethylene vinylene), acetylene, poly (ferry) Naphthalene), polyacene, and poly (naphthalene-2,6-diyl), and a monomer, oligomer or polymer having conductivity selected from the group consisting of.

또한, 리튬-황 전지를 충방전하는 과정에서, 양극 활물질로 사용되는 황이 비활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 비활성 황(inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더이상 참여할 수 없는 상태의 황을 말하며, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(protective layer)으로서 역할을 하는 장점도 있다. 따라서, 리튬 금속과 이 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.In addition, in the process of charging and discharging the lithium-sulfur battery, sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode. As described above, inactive sulfur refers to sulfur in which sulfur is no longer able to participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions, and inert sulfur formed on the surface of the lithium cathode is a protective layer of the lithium cathode. There is also an advantage to act as. Therefore, lithium metal and inert sulfur formed on the lithium metal, for example lithium sulfide, may be used as the negative electrode.

상기 전해액으로는 전해염과 유기 용매를 포함하는 것을 사용할 수 있다.As said electrolyte solution, what contains an electrolyte salt and an organic solvent can be used.

상기 유기 용매로는 단일 용매를 사용할 수도 있고 2이상의 혼합 유기용매를 사용할 수도 있다. 2이상의 혼합 유기 용매를 사용하는 경우 약한 극성 용매 그룹, 강한 극성 용매 그룹, 및 리튬 메탈 보호용매 그룹 중 두 개 이상의 그룹에서 하나 이상의 용매를 선택하여 사용하는 것이 바람직하다.As the organic solvent, a single solvent may be used, or two or more mixed organic solvents may be used. When using two or more mixed organic solvents, it is preferable to select one or more solvents from two or more groups among the weak polar solvent group, the strong polar solvent group, and the lithium metal protective solvent group.

약한 극성 용매는 아릴 화합물, 바이사이클릭 에테르, 비환형 카보네이트 중에서 황 원소를 용해시킬 수 있는 유전 상수가 15보다 작은 용매로 정의되고, 강한 극성 용매는 비사이클릭 카보네이트, 설폭사이드 화합물, 락톤 화합물, 케톤 화합물, 에스테르 화합물, 설페이트 화합물, 설파이트 화합물 중에서 리튬 폴리설파이드를 용해시킬 수 있는 유전 상수가 15보다 큰 용매로 정의되며, 리튬 보호 용매는 포화된 에테르 화합물, 불포화된 에테르 화합물, N, O, S 또는 이들의 조합이 포함된 헤테로 고리 화합물과 같은 리튬금속에 안정한 SEI(Solid Electrolyte Interface) 필름을 형성하는 충방전 사이클 효율(cycle efficiency)이 50% 이상인 용매로 정의된다.Weak polar solvents are defined as those having a dielectric constant of less than 15 that can dissolve elemental sulfur among aryl compounds, bicyclic ethers, and acyclic carbonates; strong polar solvents include acyclic carbonates, sulfoxide compounds, lactone compounds, Among ketone compounds, ester compounds, sulfate compounds, and sulfite compounds, a dielectric constant capable of dissolving lithium polysulfide is defined as greater than 15, and lithium protective solvents are saturated ether compounds, unsaturated ether compounds, N, O, It is defined as a solvent having a charge and discharge cycle efficiency (cycle efficiency) of 50% or more to form a SEI (Solid Electrolyte Interface) film stable on a lithium metal, such as a heterocyclic compound containing S or a combination thereof.

약한 극성 용매의 구체적인 예로는 자일렌(xylene), 디메톡시에탄, 2-메틸테트라하이드로퓨란, 디에틸 카보네이트, 디메틸 카보네이트, 톨루엔, 디메틸 에테르, 디에틸 에테르, 디글라임, 테트라글라임 등이 있다.Specific examples of weak polar solvents include xylene, dimethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, toluene, dimethyl ether, diethyl ether, diglyme, tetraglyme and the like.

강한 극성 용매의 구체적인 예로는 헥사메틸 포스포릭 트리아마이드(hexamethyl phosphoric triamide), 감마-부티로락톤, 아세토니트릴, 에틸렌 카보네이트, 프로필렌 카보네이트, N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸 포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아세테이트, 디메틸 설파이트, 또는 에틸렌 글리콜 설파이트 등을 들 수 있다.Specific examples of strong polar solvents include hexamethyl phosphoric triamide, gamma-butyrolactone, acetonitrile, ethylene carbonate, propylene carbonate, N-methylpyrrolidone, 3-methyl-2-oxazolidone , Dimethyl formamide, sulfolane, dimethyl acetamide, dimethyl sulfoxide, dimethyl sulfate, ethylene glycol diacetate, dimethyl sulfite, or ethylene glycol sulfite.

리튬 보호용매의 구체적인 예로는 테트라하이드로 퓨란, 에틸렌 옥사이드, 디옥솔란, 3,5-디메틸 이속사졸, 2,5-디메틸 퓨란, 퓨란, 2-메틸 퓨란, 1,4-옥산, 4-메틸디옥솔란 등이 있다.Specific examples of the lithium protective solvent include tetrahydrofuran, ethylene oxide, dioxolane, 3,5-dimethyl isoxazole, 2,5-dimethyl furan, furan, 2-methyl furan, 1,4-oxane, 4-methyldioxolane Etc.

상기 전해염인 리튬염으로는 리튬 트리플루오로메탄설폰이미드(lithium trifluoromethansulfonimide), 리튬 트리플레이트(lithium triflate), 리튬 퍼클로레이트(lithium perclorate), LiPF6, LiBF4또는 테트라알킬암모늄, 예를 들어 테트라부틸암모늄 테트라플루오로보레이트, 또는 상온에서 액상인 염, 예를 들어 1-에틸-3-메틸이미다졸리움 비스-(퍼플루오로에틸 설포닐) 이미드와 같은 이미다졸리움 염 등을 하나 이상 사용할 수 있다.The electrolytic salt lithium salt is lithium trifluoromethansulfonimide (lithium trifluoromethansulfonimide), lithium triflate (lithium triflate), lithium perchlorate (lithium perclorate), LiPF 6 , LiBF 4 or tetraalkylammonium, for example tetra One or more butylammonium tetrafluoroborate, or liquid salts at room temperature, such as imidazolium salts such as 1-ethyl-3-methylimidazolium bis- (perfluoroethyl sulfonyl) imide and the like Can be.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1): 질산에 의한 표면 처리Example 1 Surface Treatment with Nitric Acid

60% HNO3용액 100g에 물 200g을 추가하여 희석한 후, 이 희석액을 케첸 블랙 20g이 담긴 비이커에 첨가하고 혼합하였다. 이때 혼합 시간은 3시간으로 하였다. 혼합이 끝난 후, 여과 장치를 이용하여 케첸 블랙을 감압하에서 분리하고, 분리된 케첸 블랙의 표면에 남아있는 질산을 제거하기 위하여 증류수를 서서히 가하면서 여액이 중성이 될 때까지 세척하였다. 이렇게 얻어진 시료는 80℃ 진공 오븐에서 24시간 건조하여 표면 개질된 도전재를 제조하였다.After dilution by adding 200 g of water to 100 g of 60% HNO 3 solution, this dilution was added to a beaker containing 20 g of ketjen black and mixed. At this time, the mixing time was 3 hours. After mixing, the Ketjen Black was separated under reduced pressure using a filtration apparatus, and the filtrate was washed with distilled water gradually to remove nitric acid remaining on the surface of the separated Ketjen Black, until the filtrate was neutral. Thus obtained sample was dried for 24 hours in an 80 ℃ vacuum oven to prepare a surface-modified conductive material.

(비교예 1)(Comparative Example 1)

질산으로 처리하지 않은, 즉 표면 개질되지 않은 케첸 블랙을 도전재로 사용하였다.Ketjen Black, which was not treated with nitric acid, that is, without surface modification, was used as the conductive material.

도 1은 비교예 1의 질산 처리하지 않은 케첸 블랙의 FT-IR 분석 결과이고, 도 2는 실시예 1의 질산 처리 후 FT-IR 분석 결과이다. 도 2의 그래프를 보면, 질산 처리 후 -OH, -CH, -COOH, -CH3기가 검출됨을 알 수 있다. 또한, 도 1과 도 2의 그래프를 비교해보면, 질산 처리한 실시예 1의 도전재는 질산 처리하지 않은 비교예 1의 도전재에 비하여 IR 스펙트럼으로 3400cm-1부근의 -OH기가 질산 처리 후 강도가 줄었으며, 1627cm-1부근에 나타난 COOH 피크가 더블렛(doublet)으로 갈라지면서 피크가 이동(shift)되었음을 알 수 있다. 또한 하이드로카본 피크가 1384cm-1부근에서 강하게 나타나고 있음을 알 수 있다. 이 결과로 볼 때 카본 블랙의 표면 처리시 질산과의 반응으로 인하여 분해 및 다른 기능기로의 전환이 일어났을 것이며 피크의 강도가 감소한 것으로 보아 기능기의 양이 전체적으로 감소하였음을 알 수 있다.FIG. 1 shows FT-IR analysis of ketjen black without nitric acid treatment of Comparative Example 1, and FIG. 2 shows FT-IR analysis after nitric acid treatment of Example 1. FIG. Looking at the graph of Figure 2, it can be seen that after the nitric acid treatment -OH, -CH, -COOH, -CH 3 groups are detected. In addition, when comparing the graph of FIG. 1 and FIG. 2, compared with the electrically conductive material of the comparative example 1 which the nitric acid process did not carry out, the -OH group of 3400cm <-1> vicinity has an intensity after nitric acid treatment compared with the electrically conductive material of the comparative example 1 which was not nitric acid treated It can be seen that the peak shifted as the COOH peak appearing near 1627 cm −1 diverged into a doublet. In addition, it can be seen that the hydrocarbon peak appears strongly around 1384 cm -1 . As a result, the surface treatment of carbon black may cause decomposition and conversion to other functional groups due to reaction with nitric acid, and it can be seen that the amount of functional groups is reduced as a result of decreasing the intensity of the peak.

(실시예 2)(Example 2)

원소 황(S8) 양극 활물질과 상기 실시예 1에서 제조한 표면 개질된 케첸 블랙, 폴리에틸렌 옥사이드 바인더를 중량비로 74 : 18 : 8의 비율로 이소프로필 용매 중에서 혼합하여 양극 활물질 슬러리를 제조하였다. 이 슬러리를 이용하여 통상의 방법으로 리튬 설퍼 전지용 양극을 제조하였다.A positive electrode active material slurry was prepared by mixing an elemental sulfur (S 8 ) positive electrode active material and the surface modified Ketjen black and polyethylene oxide binder prepared in Example 1 in an isopropyl solvent at a ratio of 74: 18: 8 by weight. Using this slurry, the positive electrode for lithium sulfur batteries was manufactured by a conventional method.

(비교예 2)(Comparative Example 2)

비교예 1의 표면 개질되지 않은 케첸 블랙을 도전재로 사용한 것을 제외하고는 상기 실시예 2와 동일하게 실시하였다.The same procedure as in Example 2 was conducted except that Ketjen Black, which was not surface-modified in Comparative Example 1, was used as the conductive material.

상기 실시예 2 및 비교예 2의 양극을 이용하여 통상의 방법으로 리튬 설퍼 전지를 제조하고, 이 전지를 이용하여 0.2C 충전 및 0.5C 방전으로 충방전하여 얻은 사이클 수명 특성을 도 3에 나타내었다. 도 3에 나타낸 것과 같이, 표면처리하지 않은 도전재를 사용한 비교예 2의 양극을 사용한 전지는 충방전 45회에서 방전 용량이 급격히 감소하고 있는 반면에, 표면처리한 카본을 사용한 경우는 수명 65회까지 방전 용량이 유지되고 있음을 알 수 있다.The cycle life characteristics obtained by manufacturing a lithium sulfur battery by a conventional method using the positive electrode of Example 2 and Comparative Example 2, and charging and discharging with 0.2C charge and 0.5C discharge using this battery are shown in FIG. 3. . As shown in FIG. 3, the battery using the positive electrode of Comparative Example 2 using the non-surface treated conductive material rapidly decreased its discharge capacity at 45 cycles of charging and discharging, while using carbon having a surface treatment of 65 cycles. It can be seen that the discharge capacity is maintained until.

아울러, 상기 실시예 2 및 비교예 2의 전지를 0.2C 충전 및 1.0C 방전으로 충방전하여 얻어진 방전 용량을 도 4에 나타내었다. 도 4에서 알 수 있듯이, 표면처리하지 않은 도전재를 사용한 비교예 2의 전지의 방전 용량은 15.3mAh이었으나, 표면처리한 실시예 2의 전지의 방전 용량은 20.6mAh로 비교예 2에 비하여 30% 이상 증가하였다.4 shows discharge capacities obtained by charging and discharging the batteries of Example 2 and Comparative Example 2 with 0.2C charge and 1.0C discharge. As can be seen in FIG. 4, the discharge capacity of the battery of Comparative Example 2 using the surface-treated conductive material was 15.3 mAh, but the discharge capacity of the surface-treated battery of Example 2 was 20.6 mAh, 30% compared to Comparative Example 2. Increased over.

상술한 바와 같이, 산 처리한 도전재를 사용한 본 발명의 양극은 사이클 수명 특성 및 용량 특성이 우수한 전지를 제공할 수 있다.As described above, the positive electrode of the present invention using an acid-treated conductive material can provide a battery excellent in cycle life characteristics and capacity characteristics.

Claims (11)

산으로 처리된 탄소계 물질을 포함하는 도전재; 및A conductive material comprising a carbon-based material treated with an acid; And 양극 활물질Positive electrode active material 을 포함하는 리튬 이차 전지용 양극.A positive electrode for a lithium secondary battery comprising a. 제 1 항에 있어서, 상기 산은 질산, 염산, 인산, 황산, 아세트산 및 붕산으로 이루어진 군에서 선택되는 것인 리튬 이차 전지용 양극.The positive electrode for a lithium secondary battery of claim 1, wherein the acid is selected from the group consisting of nitric acid, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, and boric acid. 제 1 항에 있어서, 상기 산으로 처리하는 공정은 산 용액을 사용하여 실시하는 것인 리튬 이차 전지용 양극.The positive electrode for a lithium secondary battery according to claim 1, wherein the acid treatment is performed using an acid solution. 제 3 항에 있어서, 상기 산 용액의 농도는 10 내지 80 중량%인 리튬 이차 전지용 양극.The positive electrode for a rechargeable lithium battery of claim 3, wherein the acid solution has a concentration of 10 to 80 wt%. 제 1 항에 있어서, 상기 양극 활물질은 무기 황(elemental sulfur, S8), Li2Sn(n≥1), 유기 황 화합물, 및 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택되는 황 계열 화합물 또는 이들의 혼합물인 리튬 이차 전지용 양극.The method of claim 1, wherein the positive electrode active material is inorganic sulfur (elemental sulfur, S 8 ), Li 2 S n (n≥1), organic sulfur compound, and carbon-sulfur polymer ((C 2 S x ) n : x = A positive electrode for a lithium secondary battery, which is a sulfur-based compound selected from the group consisting of 2.5 to 50 and n ≧ 2) or a mixture thereof. 산으로 처리된 탄소계 물질을 포함하는 도전재 및 양극 활물질을 포함하는 양극;A positive electrode including a conductive material including a carbon-based material treated with an acid and a positive electrode active material; 음극 활물질을 포함하는 음극; 및A negative electrode including a negative electrode active material; And 전해액Electrolyte 을 포함하는 리튬 이차 전지.Lithium secondary battery comprising a. 제 6 항에 있어서, 상기 산은 질산, 염산, 인산, 황산, 아세트산 및 붕산으로 이루어진 군에서 선택되는 것인 리튬 이차 전지.The lithium secondary battery of claim 6, wherein the acid is selected from the group consisting of nitric acid, hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, and boric acid. 제 6 항에 있어서, 상기 산으로 처리하는 공정은 산 용액을 사용하여 실시하는 것인 리튬 이차 전지.The lithium secondary battery according to claim 6, wherein the acid treatment is performed using an acid solution. 제 8 항에 있어서, 상기 산 용액의 농도는 10 내지 80 중량%인 리튬 이차 전지.The lithium secondary battery of claim 8, wherein the acid solution has a concentration of about 10 wt% to about 80 wt%. 제 6 항에 있어서, 상기 양극 활물질은 무기 황(elemental sulfur, S8), Li2Sn(n≥1), 유기 황 화합물, 및 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2)로 이루어진 군에서 선택되는 황 계열 화합물 또는 이들의 혼합물인 리튬 이차 전지.The method of claim 6, wherein the positive electrode active material is inorganic sulfur (elemental sulfur, S 8 ), Li 2 S n (n≥1), organic sulfur compound, and carbon-sulfur polymer ((C 2 S x ) n : x = A lithium secondary battery which is a sulfur-based compound selected from the group consisting of 2.5 to 50, n ≧ 2) or a mixture thereof. 제 6 항에 있어서, 상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 것인 리튬 이차 전지.The method of claim 6, wherein the negative electrode active material is selected from the group consisting of a material capable of reversibly intercalating lithium ions, a material capable of reacting with lithium ions to form a lithium-containing compound reversibly, lithium metal and a lithium alloy The lithium secondary battery which becomes.
KR1020030040343A 2003-06-20 2003-06-20 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same KR100578789B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030040343A KR100578789B1 (en) 2003-06-20 2003-06-20 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030040343A KR100578789B1 (en) 2003-06-20 2003-06-20 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same

Publications (2)

Publication Number Publication Date
KR20040110863A true KR20040110863A (en) 2004-12-31
KR100578789B1 KR100578789B1 (en) 2006-05-11

Family

ID=37383198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030040343A KR100578789B1 (en) 2003-06-20 2003-06-20 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same

Country Status (1)

Country Link
KR (1) KR100578789B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239966B1 (en) * 2010-11-04 2013-03-06 삼성전자주식회사 Positive electrode for lithium air battery, method of preparing the same, and lithium air battery employing the same
EP3457474A4 (en) * 2016-08-11 2019-07-31 LG Chem, Ltd. Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239966B1 (en) * 2010-11-04 2013-03-06 삼성전자주식회사 Positive electrode for lithium air battery, method of preparing the same, and lithium air battery employing the same
EP3457474A4 (en) * 2016-08-11 2019-07-31 LG Chem, Ltd. Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
US11239465B2 (en) 2016-08-11 2022-02-01 Lg Energy Solution, Ltd. Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same

Also Published As

Publication number Publication date
KR100578789B1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
CN109314228B (en) Sulfur-carbon composite and lithium-sulfur battery comprising same
KR100485093B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
US6919143B2 (en) Positive active material composition for lithium-sulfur battery and lithium-sulfur battery fabricated using same
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101444189B1 (en) Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same
KR20180017975A (en) Sulfur-carbon composite and lithium-sulfur battery including the same
KR100758383B1 (en) Sulfur electrode coated with carbon for using in the li/s secondary battery
KR101501267B1 (en) Positive electrode material for lithium-sulfur battery, method of manufacturing the same and lithium-sulfur battery
US6337159B1 (en) Lithium anode with solid electrolyte interface
JPH04162357A (en) Nonaqueous secondary battery
KR100508920B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
JP3236400B2 (en) Non-aqueous secondary battery
KR20150045304A (en) Sulfur-carbon composite and method for manufacturing the same
KR100788257B1 (en) Lithium secondary battery comprising electrode composition for high voltage
KR102244905B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR100529108B1 (en) Current collector for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
KR100578789B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
KR101044577B1 (en) Lithium Secondary Battery
KR101853149B1 (en) Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material
KR100542230B1 (en) Negative electrode for rechargeable lithium battery, method of producing same, and rechargeable lithium battery comprising same
KR20190089831A (en) Sulfur-carbon composite and lithium-sulfur battery including the same
KR100836515B1 (en) Lithium secondary battery comprising an electrolyte for high voltage
KR100551002B1 (en) Conductive material used in positive electrode for lithium sulfur battery, positive electrode for lithium sulfur battery and lithium sulfur battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee