KR20040110453A - Composition for fireproof material, manufacturing method thereof and its usage - Google Patents

Composition for fireproof material, manufacturing method thereof and its usage Download PDF

Info

Publication number
KR20040110453A
KR20040110453A KR1020030039785A KR20030039785A KR20040110453A KR 20040110453 A KR20040110453 A KR 20040110453A KR 1020030039785 A KR1020030039785 A KR 1020030039785A KR 20030039785 A KR20030039785 A KR 20030039785A KR 20040110453 A KR20040110453 A KR 20040110453A
Authority
KR
South Korea
Prior art keywords
fire
composition
weight
fine particles
fire protection
Prior art date
Application number
KR1020030039785A
Other languages
Korean (ko)
Inventor
안병길
이승호
임형미
신경식
박호직
Original Assignee
요업기술원
주식회사 네써쎄리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원, 주식회사 네써쎄리 filed Critical 요업기술원
Priority to KR1020030039785A priority Critical patent/KR20040110453A/en
Publication of KR20040110453A publication Critical patent/KR20040110453A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials

Abstract

PURPOSE: A composition of a fireproof material is provided to improve water resistance, heat insulation and fire proofing property, and to lighten the weight, thereby being suitably used as an interior material for a fireproof door. CONSTITUTION: The composition of a fireproof material comprises 40-95wt% of light inorganic fine particles; 2.5-50wt% of an inorganic binder in liquid phase; and 5-50wt% of alumina cement, wherein the light fine particles is selected from at least one of pearlite, vermiculite, diatomaceous earth and activated carbon, which have a particle size of 0.1-10mm. The composition of a fireproof material is produced by mixing the above-mentioned components with above-mentioned ratio, and carrying out compress molding the mixture with 0.1-1kgf/cm2 of pressure at 200-250deg.C.

Description

방화소재용 조성, 그 제조방법 및 용도{Composition for fireproof material, manufacturing method thereof and its usage}Composition for fireproof material, manufacturing method approximately and its usage}

본 발명은 방화소재용 조성, 그 제조방법 및 이의 용도에 관한 것으로서, 더욱 상세하게는 바인더로서 초고온 내화소재인 알루미나 시멘트를 사용하여 방재환경에 대한 적응력을 향상시켜 특히 방화문에 내장되는 방화소재로 바람직한 조성에 관한 것이다.The present invention relates to a composition for a fire protection material, a method for manufacturing the same, and a use thereof. More particularly, the use of alumina cement, an ultra-high temperature fireproof material, as a binder improves the adaptability to a disaster prevention environment, and is particularly preferable as a fire protection material embedded in a fire door. It is about composition.

방화문에는 방화소재가 내장되어 있는데, 종래 방화문용 방화소재로서는 유리면과 종이 하니컴 등이 주로 사용되고 있다.Fire doors are built in the fire doors. Glass fire doors and paper honeycombs are mainly used as fire doors for fire doors.

그런데, 유리면을 방화소재로 사용할 경우, 방화문의 작업 공정이 매우 복잡하며 근로자의 작업환경 역시 매우 열악한 문제점이 있었다. 또한, 유리면은 700∼800℃의 낮은 온도에서 용해되므로 1,000℃ 이상의 고온에서는 방재효과가 약화되는 단점과 함께 폐기 처리시에도 폐기가 난해한 문제점이 있었다.However, when the glass surface is used as the fire protection material, the work process of the fire door is very complicated and the working environment of the workers also had a very poor problem. In addition, since the glass surface is dissolved at a low temperature of 700 to 800 ° C, a disaster prevention effect is weakened at a high temperature of 1,000 ° C or more, and there is a problem that disposal is difficult even during disposal.

종이 하니컴을 방화문용 방화소재로 사용할 경우, 소재 자체의 가격이나 방화문 작업 용이성은 매우 우수하지만 재질이 종이이므로 방화효과 그 자체에서 매우 심각한 문제점이 있었다.When using a paper honeycomb as a fireproof material for a fire door, the price of the material itself or ease of work on the fire door is excellent, but since the material is paper, there was a very serious problem in the fire effect itself.

한편, 펄라이트, 질석, 규조토, 활성탄 등과 같은 경량 무기물 미립자들을 주 원료로 하고 규산나트륨(물유리)을 바인더로 사용하여 방화소재를 제조하기도 하였는데, 이는 내화성은 우수하나 내수성이 열악하여 특히 습도가 높은 계절에는 방화문에 내장된 방화소재가 점차적으로 무너져 내리고, 특히 화재발생시의 방재작업에서 뿜어지는 강력한 수압을 견디지 못해 결국 방화성능을 발휘하지 못하게 되는 문제점이 있었다.On the other hand, fire retardant materials were manufactured by using light inorganic fine particles such as pearlite, vermiculite, diatomaceous earth and activated carbon as the main raw materials, and sodium silicate (water glass) as a binder, which is excellent in fire resistance but poor in water resistance, especially in high humidity. There was a problem in that the fire prevention material built in the fire door gradually collapsed, and in particular, it could not endure the strong water pressure released in the disaster prevention work in the event of a fire, and thus did not exhibit the fire performance.

이에, 본 발명자들은 1,000℃ 이상의 초고온 내열성과 방화성능을 가지면서 내수성 또한 우수하여 방화문 등의 방화소재로 적용할 때 장기간 방화성능을 발휘할 수 있는 방화소재를 개발하기 위해 연구노력하던 중, 경량 무기물 미립자의 바인더로서 규산나트륨 외에 알루미나 시멘트를 적용한 결과, 1,000℃ 이상의 초고온에서 우수한 단열능력과 방화성능을 가지면서 내수성이 향상됨을 알게 되어 본 발명을 완성하게 되었다.Therefore, the inventors of the present invention was trying to develop a fireproof material that can exhibit long-term fire resistance when applied to a fireproof material such as a fire door, having ultra high temperature heat resistance and fire protection performance of 1,000 ° C. or higher, and lightweight inorganic fine particles. As a result of the application of alumina cement in addition to sodium silicate as a binder, it was found that the water resistance is improved while having excellent heat insulation and fire resistance at ultrahigh temperatures of 1,000 ° C. or higher, thereby completing the present invention.

따라서, 본 발명의 목적은 경량이면서 우수한 단열능력과 방화성능을 가지며 특히 내수성을 향상시킬 수 있는 방화소재용 조성을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a composition for a fire protection material which is light in weight and has excellent heat insulating ability and fire resistance, and in particular, can improve water resistance.

또한, 본 발명의 목적은 이 같은 조성으로부터 방화소재를 제조하는 방법을 제공하는 데도 있다.It is also an object of the present invention to provide a method for producing a fire protection material from such a composition.

그리고, 본 발명의 또 다른 목적은 이 같은 조성으로부터 얻어진 방화소재가 내장된 방화문을 제공하는 데도 있다.Another object of the present invention is to provide a fire door in which a fire protection material obtained from such a composition is incorporated.

상기와 같은 목적을 달성하기 위한 본 발명의 방화소재용 조성은 경량 무기물 미립자 40∼95중량%, 액상의 무기 바인더 2.5∼50중량% 및 알루미나 시멘트 5∼50중량%를 포함하는 것임을 그 특징으로 한다.The composition for the fire protection material of the present invention for achieving the above object is characterized in that it comprises 40 to 95% by weight of lightweight inorganic fine particles, 2.5 to 50% by weight of a liquid inorganic binder and 5 to 50% by weight of alumina cement. .

도 1은 실시예 1∼3에 따라 얻어진 방화소재로 채워진 방화문 구조물의 단열성능을 측정한 그래프이고,1 is a graph measuring the thermal insulation performance of the fire door structure filled with the fire protection material obtained according to Examples 1 to 3,

도 2는 실시예 4∼5 및 비교예 1에 따라 얻어진 방화소재로 채워진 방화문 구조물의 단열성능을 측정한 그래프이다.Figure 2 is a graph measuring the thermal insulation performance of the fire door structure filled with the fire protection material obtained according to Examples 4 to 5 and Comparative Example 1.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명의 방화소재용 조성에서 사용되는 경량 무기물 미립자는 펄라이트, 질석, 규조토 또는 활성탄 등을 들 수 있는 바, 이것의 입자크기는 통상 0.1∼10mm인 것이 바람직하다.Examples of the lightweight inorganic fine particles used in the composition for fire protection materials of the present invention include pearlite, vermiculite, diatomaceous earth, activated carbon, and the like, and the particle size thereof is preferably 0.1 to 10 mm.

이같은 경량 무기물 미립자는 기공구조를 가지므로 단열성능, 방화성능 또는 방음성능도 발휘할 수 있다.Since such lightweight inorganic fine particles have a pore structure, they can also exhibit heat insulation performance, fire protection performance or sound insulation performance.

전체 방화소재용 조성 중 경량 무기물 미립자의 함량은 40∼95중량%인 것이 바람직한 바, 만일 그 함량이 40중량% 미만이면 방화소재의 밀도가 급격히 증가하여 방화문용 방화소재로 적용할 수 없는 문제를 야기시키며, 95중량% 초과면 액상의 무기 바인더와 알루미나 시멘트의 첨가량이 너무 적어 성형의 어려움과 강도의 급격한 저하가 발생되는 문제점이 있을 수 있다.It is preferable that the content of the lightweight inorganic fine particles in the composition for the whole fire protection material is 40 to 95% by weight. If the content is less than 40% by weight, the density of the fire protection material is rapidly increased and it cannot be applied as a fire door for fire doors. If the content exceeds 95% by weight, the addition amount of the inorganic binder and the alumina cement in the liquid phase may be too small, causing difficulty in molding and a sharp drop in strength.

이와 같은 경량 무기물 미립자를 결합시키는 바인더로서, 본 발명에서는 액상의 무기 바인더와 알루미나 시멘트를 병용한다.As a binder which binds such lightweight inorganic fine particles, in the present invention, a liquid inorganic binder and alumina cement are used in combination.

액상의 무기 바인더는 규산나트륨(물유리), 실리카졸, 알루미나졸 등을 들 수 있다. 이 같은 액상의 무기 바인더는 600℃ 이하의 온도에서 매우 안정적인 결합력을 나타낸다.Examples of the liquid inorganic binder include sodium silicate (water glass), silica sol, alumina sol and the like. Such a liquid inorganic binder exhibits a very stable bonding force at a temperature of 600 ° C or lower.

액상의 무기 바인더 함량은 전체 방화소재 조성 중 2.5∼50중량%인 것이 바람직한 바, 만일 그 함량이 2.5중량% 미만이면 알루미나 시멘트의 결합력이 약화되고, 50중량% 초과면 방화소재의 밀도 증가에 따른 경량화에 문제가 있을 수 있다.The content of the inorganic binder in the liquid is preferably 2.5 to 50% by weight of the total fireproof material composition. If the content is less than 2.5% by weight, the binding strength of the alumina cement is weakened. There may be a problem with weight reduction.

그런데, 이 같은 액상의 무기 바인더는 수분에 닿으면 와해되는 성질을 가지므로, 이것만을 바인더로 사용하여 경량 무기물 미립자를 결합시키게 되면 내수성이 떨어지는 문제가 있다. 방화소재를 방화문에 적용함에 있어서, 방화소재의 내수성은 매우 중요한 요구 특성이라 할 수 있는데, 이는 화재발생시 강력한 수압의 소방수가 방화문에 직접 분사되는 점을 감안한 것이다.However, such a liquid inorganic binder has a property of breaking when it comes in contact with moisture, and thus when using only this as a binder to bind lightweight inorganic fine particles, there is a problem that the water resistance is poor. In the application of fire protection materials to fire doors, the water resistance of fire protection materials is a very important requirement, considering the fact that strong water pressure is directly injected into the fire doors in case of fire.

따라서, 본 발명에서는 알루미나 시멘트를 바인더로서 병용한 것인데, 알루미나 시멘트의 함량은 전체 방화소재 조성 중 2.5∼50중량%인 것이 바람직하다.Therefore, in the present invention, alumina cement is used as a binder, but the content of alumina cement is preferably 2.5 to 50% by weight in the total fire prevention material composition.

알루미나 시멘트를 바인더로서 병용하게 되면, 600℃ 이하의 온도에서는 액상의 무기 바인더가, 600℃ 이상의 고온에서는 알루미나 시멘트가 매우 안정적인결합력을 나타냄으로써 1,000℃ 이상의 초고온에서도 안정적인 방화효과와 결합력을 나타낼 수 있게 된다.When alumina cement is used as a binder, a liquid inorganic binder at a temperature of 600 ° C. or lower and alumina cement at a high temperature of 600 ° C. or higher exhibit a very stable bonding force, thereby exhibiting a stable fire protection effect and a bonding force even at an extremely high temperature of 1,000 ° C. or higher. .

또한, 액상 무기 바인더의 열악한 내수성을 알루미나 시멘트가 지지하여 주므로 수분에 의한 방화성능의 저하도 방지할 수 있게 된다.In addition, since the alumina cement supports poor water resistance of the liquid inorganic binder, it is possible to prevent the deterioration of the fire prevention performance due to moisture.

이 같은 역할을 하는 알루미나 시멘트의 함량이 전체 방화소재 조성 중 2.5중량% 미만이면 방화소재의 내수성에 문제가 발생되고, 50중량% 초과면 방화소재의 밀도 증가에 따른 경량화에 문제가 있을 수 있다.If the content of the alumina cement that plays such a role is less than 2.5% by weight of the total fireproof material composition, there is a problem in the water resistance of the fireproof material, if more than 50% by weight may be a problem in weight reduction due to the increase in the density of the fireproof material.

초경량 무기물 미립자를 주원료로 하는 본 발명의 방화소재는 방화성능과 함깨 단열성, 방음성 및 경량성 면에서도 매우 우수한 특징을 갖는다.The fire protection material of the present invention, which is composed of ultra-light inorganic fine particles, has very excellent characteristics in terms of fire performance, insulation, sound insulation, and light weight.

상기와 같은 조성으로 방화소재를 제조하는 방법은, 경량 무기물 미립자, 액상의 무기 바인더 및 분말상의 알루미나 시멘트를 볼밀 등을 사용하여 균일하게 혼합시킨 다음, 200∼250℃로 0.1∼1 kgf/㎠ 의 압력을 가해 성형하면 완전히 건조된 방화소재를 얻을 수 있다.The method for producing a fireproof material with the above composition comprises uniform mixing of lightweight inorganic fine particles, liquid inorganic binder, and powdery alumina cement using a ball mill or the like, and then 0.1 to 1 kgf / cm 2 at 200 to 250 ° C. Molding under pressure gives a completely dried fireproof material.

이와 같이 얻어진 방화소재는 혼합되는 경량 무기물 미립자의 크기에 따라 밀도를 0.1∼0.5g/㎤까지 자유롭게 조절할 수 있어, 방화문의 내장재 이외에도 다양한 용도의 건축자재, 즉 불연특성의 아파트 층간 흡음재, 건축용 샌드위치(Sandwich) 판넬의 스치로폼 대체 소재 등으로 사용될 수 있다.The fire prevention material thus obtained can freely adjust the density from 0.1 to 0.5 g / cm 3 according to the size of the light inorganic fine particles to be mixed, and in addition to the interior material of the fire door, building materials for various purposes, that is, non-combustible interlayer sound absorbing material, building sandwich ( Sandwich) can be used as a substitute for styrofoam in panels.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

실시예 1Example 1

평균 입자크기 3∼4mm인 펄라이트 미립자 80g((주)건곤지오텍 제품), 액상의 규산나트륨 60g(규산3종, (주)신흥규산) 및 분말 형태의 알루미나 시멘트 20g( UAC50, (주)유니온)을 1시간의 볼밀 과정을 거쳐 균일하게 혼합하였다. 균일하게 혼합된 혼합물을 일정한 모양의 금형에 넣고 압력 0.3kgf/㎠이 되도록 가압한 250℃의 고온 고압 성형기에서 10분간 유지시켜 완전히 건조된 방화소재를 제조하였다.80 g of pearlite fine particles with an average particle size of 3 to 4 mm (produced by Gungon Geotech Co., Ltd.), 60 g of liquid sodium silicate (3 types of silicic acid, Sinheung silicic acid Co., Ltd.) and 20 g of alumina cement in powder form (UAC50, Union) The mixture was uniformly mixed through a 1 hour ball mill. The homogeneously mixed mixture was placed in a mold of a uniform shape and maintained for 10 minutes in a high temperature high pressure molding machine at 250 ° C. pressurized to a pressure of 0.3 kgf / cm 2 to prepare a completely dried fireproof material.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 방화소재를 제조하되, 다만 펄라이트 미립자 대신에 질석을 경량 무기물 미립자로 사용하였다.Fireproof material was prepared in the same manner as in Example 1 except that vermiculite was used as lightweight inorganic fine particles instead of pearlite fine particles.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 방화소재를 제조하되, 다만 펄라이트 미립자 대신에 규조토를 경량 무기물 미립자로 사용하였다.A fire protection material was prepared in the same manner as in Example 1, except that diatomaceous earth was used as lightweight inorganic fine particles instead of pearlite fine particles.

실시예 4Example 4

상기 실시예 1과 동일한 방법으로 방화소재를 제조하되, 다만 펄라이트 미립자 대신에 활성탄을 경량 무기물 미립자로 사용하였다.A fire protection material was prepared in the same manner as in Example 1 except that activated carbon was used as lightweight inorganic fine particles instead of pearlite fine particles.

실시예 5Example 5

상기 실시예 1과 동일한 방법으로 방화소재를 제조하되, 다만 펄라이트 미립자 40g과 질석 40g을 함께 사용하였다.A fire protection material was prepared in the same manner as in Example 1, except that 40 g of pearlite fine particles and 40 g of vermiculite were used together.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 방화소재를 제조하되, 다만 알루미나 시멘트를 첨가하지 않았다.Fireproof material was prepared in the same manner as in Example 1, except that alumina cement was not added.

실험예Experimental Example

(1)겉보기 밀도의 측정(1) Measurement of apparent density

상기 실시예 1∼5 및 비교예 1에 따라 얻어진 방화소재에 대하여 겉보기 밀도를 측정하여 그 결과를 다음 표 1에 나타내었다.The apparent density of the fire protection materials obtained according to Examples 1 to 5 and Comparative Example 1 was measured, and the results are shown in Table 1 below.

겉보기 밀도의 측정은 방화소재 크기를 4.0cm×5.0cm×10cm로 일정하게 절단하여 겉보기 부피와 무게를 측정하여 겉보기 밀도를 계산하였다.In the measurement of the apparent density, the fire material was cut at a constant size of 4.0 cm × 5.0 cm × 10 cm, and the apparent density was calculated by measuring the apparent volume and weight.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 비교예 1Comparative Example 1 겉보기 밀도(g/㎤)Apparent density (g / cm3) 0.290.29 0.300.30 0.310.31 0.290.29 0.300.30 0.280.28

상기 표 1의 결과로부터, 얻어진 방화소재들의 겉보기 밀도는 대략 0.3g/㎤ 정도를 나타냄을 알 수 있다. 이로써 방화소재가 초경량임을 알 수 있다.From the results in Table 1, it can be seen that the apparent density of the obtained fire protection materials represents about 0.3 g / cm 3. This shows that the fire protection material is ultra light.

(2)압축강도의 측정(2) measurement of compressive strength

상기 실시에 1∼5 및 비교예 1에 따라 얻어진 방화소재의 압축강도를 측정하여 그 결과를 다음 표 2에 나타내었다.The compressive strengths of the fire protection materials obtained according to Examples 1 to 5 and Comparative Example 1 were measured, and the results are shown in Table 2 below.

압축강도 측정을 위해 방화소재의 크기를 3.5cm×4.0cm×10cm로 일정하게 절단하여 5.00mm/min의 속도로 압축하여 압축강도를 측정하였다.In order to measure the compressive strength, the size of the fire protection material was cut at a constant size of 3.5cm × 4.0cm × 10cm and compressed at a speed of 5.00mm / min to measure the compressive strength.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 압축강도(kgf)Compressive strength (kgf) 2424 2222 2323 1919 2121 1818 모듈러스(kgf/㎟)Modulus (kgf / mm2) 0.340.34 0.270.27 0.330.33 0.290.29 0.300.30 0.310.31

상기 표 2의 결과로부터, 파괴가 발생되는 최대 압축강도가 실시예와 비교예 모두 20kgf 내외로 우수하게 나타났으며, 모듈러스 역시 0.30kgf/㎟ 내외의 우수한 수치를 나타냄을 볼 수 있다.From the results of Table 2, the maximum compressive strength to break occurs in both the example and the comparative example was excellent in about 20kgf, it can be seen that the modulus also shows an excellent value of about 0.30kgf / mm2.

(3)내수성 시험(3) water resistance test

상기 실시예 1∼5 및 비교예 1에 따라 얻어진 방화소재의 내수성 시험을 수행한 후, 그 결과를 다음 표 3에 나타내었다.After performing the water resistance test of the fire protection material obtained according to Examples 1 to 5 and Comparative Example 1, the results are shown in Table 3 below.

내수성 시험은 3.5cm×4.0cm×10cm로 일정하게 절단한 방화소재를 물속에 1시간 동안 함침시킨 후, 100℃의 오븐에서 1시간 동안 건조시켜 5.00mm/min의 속도로 압축하여 압축강도를 측정하는 방법으로 수행하였다.Water resistance test is to measure the compressive strength by impregnating the fire-resistant material cut into 3.5cm × 4.0cm × 10cm in water for 1 hour, then dried in an oven at 100 ℃ for 1 hour and compressed at a rate of 5.00mm / min It was carried out in a way.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 압축강도(kgf)Compressive strength (kgf) 2323 2020 2222 1818 1818 00 모듈러스(kgf/㎟)Modulus (kgf / mm2) 0.330.33 0.270.27 0.310.31 0.290.29 0.280.28 00

알루미나 시멘트가 바인더로 첨가되지 않은 비교예 1의 방화소재는 물속에 함침되자마자 규산나트륨에 의한 결합력이 와해되면서 판넬 자체가 없어지는 현상이 발생되어 내수성 압축강도와 내수성 모듈러스 모두 측정이 불가능해졌다. 그러나, 본 발명에 따른 방화소재의 경우는 물 속에서도 무기 바인더의 결합력이 유지됨으로써 건조 후, 측정한 내수성 압축강도와 내수성 모듈러스값이 내수성 시험 이전과 유사한 결과를 나타냄을 알 수 있다.The fire prevention material of Comparative Example 1, in which alumina cement was not added as a binder, immediately disappeared as soon as it was impregnated in water, and the panel itself disappeared due to the dissociation of sodium silicate, making it impossible to measure both the compressive strength and the water resistance modulus. However, in the case of the fire protection material according to the present invention, it can be seen that the water-resistant compressive strength and the water resistance modulus value measured after drying show similar results as before the water resistance test by maintaining the bonding strength of the inorganic binder in water.

이러한 실험결과는, 알루미나 시멘트를 바인더로서 첨가한 방화소재의 내수성이 매우 우수함을 나타내는 것으로, 습도가 매우 높은 여름철의 날씨와 화재 발생시 분사되는 강력한 수압의 방화수에도 무기 바인더의 결합력이 약화되지 않는 매우 우수한 방화소재임을 나타낸다고 할 수 있다.These results indicate that the fire resistant material added with alumina cement as a binder has excellent water resistance, and the bonding strength of the inorganic binder is not weakened even in the strong humidity fired water sprayed during the weather and fire in summer when the humidity is very high. It can be said that it is a fire prevention material.

(4)단열성 측정(4) Insulation measurement

상기 실시예 1 내지 5 및 비교예 1로부터 얻어진 방화소재의 단열성을 측정하여 그 결과를 도 1 및 도 2에 나타내었다.The thermal insulation properties of the fire protection materials obtained in Examples 1 to 5 and Comparative Example 1 were measured, and the results are shown in FIGS. 1 and 2.

단열성을 측정하기 위해 상온에서 1,000℃까지 1시간 동안 상승되도록 조절한 노(furnace)를 사용하였다. 상기 실시예 1∼5 및 비교예 1에 따라 얻어진 방화소재로 채워진 방화문 형태의 철 구조물로 노의 입구를 밀봉한 후, 노의 온도 증가에 따른 철 구조물 방화문 바깥면 중앙의 온도변화를 측정하였다.In order to measure the thermal insulation, a furnace adjusted to rise for 1 hour from room temperature to 1,000 ° C was used. After the inlet of the furnace was sealed with a fire door-type steel structure filled with fire protection materials obtained according to Examples 1 to 5 and Comparative Example 1, the temperature change of the center of the outer surface of the steel structure fire door was measured as the temperature of the furnace increased.

도 1 및 도 2의 결과로부터, 방화소재가 채워지지 않은 방화문 구조물(without 방화소재)의 표면온도는 노의 온도 증가와 함께 급격히 증가하여 노 내부온도 1000℃에서는 600℃ 이상의 초고온을 나타내고 있음을 알 수 있다. 반면에, 실시예 및 비교예에 따른 방화소재로 채워진 방화문 구조물의 경우, 1,000℃의 노 내부온도에서도 200℃ 내외의 낮은 온도를 나타내고 있다. 결국, 본 발명에 따른 방화소재의 경우 종래 규산나트륨만을 바인더로 사용한 방화소재와 비교하여동등유사한 단열효과를 가짐을 알 수 있다.1 and 2, it can be seen that the surface temperature of the fire door structure (without fire protection material) which is not filled with the fire protection material increases rapidly with the increase of the temperature of the furnace, and shows the ultra high temperature of 600 ° C. or higher at 1000 ° C. in the furnace. Can be. On the other hand, in the case of the fire door structure filled with the fire protection material according to the Examples and Comparative Examples, even the temperature inside the furnace of 1,000 ℃ shows a low temperature of about 200 ℃. As a result, it can be seen that the fire protection material according to the present invention has a similar heat insulating effect as compared with the fire protection material using only sodium silicate as a binder.

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 경량 무기물 미립자의 바인더로서 규산나트륨과 같은 액상 무기 바인더와 더불어 알루미나 시멘트를 병용하여 방화소재를 제조하는 경우 내수성이 향상되어 수분에 노출시에도 바인더의 결합력이 와해되지 않아 방화소재로서의 역할을 지속할 수 있으며 단열성능, 방화성능도 우수하고 경량이므로 방화문용 내장재로서 유용하다.As described in detail above, in the case of manufacturing a fireproof material by using alumina cement together with a liquid inorganic binder such as sodium silicate as a binder of the lightweight inorganic fine particles according to the present invention, the water resistance is improved and the binding strength of the binder is increased even when exposed to moisture. As it is not broken, it can continue its role as a fire protection material, and it is useful as an interior material for fire doors because it has excellent heat insulation performance, fire protection performance and light weight.

Claims (5)

경량 무기물 미립자 40∼95중량%, 액상의 무기 바인더 2.5∼50중량% 및 알루미나 시멘트 5∼50중량%를 포함하는 방화소재용 조성.A composition for fire protection materials comprising 40 to 95% by weight of lightweight inorganic fine particles, 2.5 to 50% by weight of liquid inorganic binder, and 5 to 50% by weight of alumina cement. 제 1 항에 있어서, 경량 무기물 미립자는 입자크기 0.1∼10mm인 펄라이트, 질석, 규조토 및 활성탄 중에서 선택된 1종 이상의 것임을 특징으로 하는 방화소재용 조성.The composition for fire prevention materials according to claim 1, wherein the lightweight inorganic fine particles are at least one selected from pearlite, vermiculite, diatomaceous earth and activated carbon having a particle size of 0.1 to 10 mm. 제 1 항에 있어서, 액상 무기 바인더는 규산나트륨, 실리카졸 및 알루미나졸 중에서 선택된 1종 이상의 것임을 특징으로 하는 방화소재용 조성.The composition for fire protection materials according to claim 1, wherein the liquid inorganic binder is at least one selected from sodium silicate, silica sol and alumina sol. 경량 무기물 미립자 40∼95중량%, 액상의 무기 바인더 2.5∼50중량% 및 알루미나 시멘트 5∼50중량%를 균일하게 혼합시키는 단계; 및Uniformly mixing 40 to 95% by weight of the lightweight inorganic fine particles, 2.5 to 50% by weight of the liquid inorganic binder and 5 to 50% by weight of the alumina cement; And 상기 혼합물을 200∼250℃로 0.1∼1 kgf/㎠ 의 압력으로 가압 성형하는 단계를 포함하는 방화소재의 제조방법.Method for producing a fire-retardant material comprising the step of pressing the mixture at a pressure of 0.1 ~ 1 kgf / ㎠ at 200 ~ 250 ℃. 제 1 항의 방화소재가 내장된 방화문.Fireproof door containing the fire prevention material of claim 1.
KR1020030039785A 2003-06-19 2003-06-19 Composition for fireproof material, manufacturing method thereof and its usage KR20040110453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030039785A KR20040110453A (en) 2003-06-19 2003-06-19 Composition for fireproof material, manufacturing method thereof and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030039785A KR20040110453A (en) 2003-06-19 2003-06-19 Composition for fireproof material, manufacturing method thereof and its usage

Publications (1)

Publication Number Publication Date
KR20040110453A true KR20040110453A (en) 2004-12-31

Family

ID=37382847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030039785A KR20040110453A (en) 2003-06-19 2003-06-19 Composition for fireproof material, manufacturing method thereof and its usage

Country Status (1)

Country Link
KR (1) KR20040110453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854409B1 (en) * 2007-11-06 2008-08-26 (주)정진브이앤피 Artificial stone comprising vermiculite
KR101367981B1 (en) * 2011-12-29 2014-03-03 서보산업 주식회사 Eco building interior boards and method for manufacturing thereof
KR101412523B1 (en) * 2012-07-03 2014-06-26 천자우 Insulating refractory materials for fire door and its manufacturing method
CN104276793A (en) * 2014-09-16 2015-01-14 中国矿业大学(北京) Ceramsite-fly ash fireproof thermal insulation material and preparation method of ceramsite-fly ash fireproof thermal insulation material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854409B1 (en) * 2007-11-06 2008-08-26 (주)정진브이앤피 Artificial stone comprising vermiculite
KR101367981B1 (en) * 2011-12-29 2014-03-03 서보산업 주식회사 Eco building interior boards and method for manufacturing thereof
KR101412523B1 (en) * 2012-07-03 2014-06-26 천자우 Insulating refractory materials for fire door and its manufacturing method
CN104276793A (en) * 2014-09-16 2015-01-14 中国矿业大学(北京) Ceramsite-fly ash fireproof thermal insulation material and preparation method of ceramsite-fly ash fireproof thermal insulation material

Similar Documents

Publication Publication Date Title
EP2504290B1 (en) Methods for manufacturing aerogel composites
US8221542B2 (en) Non-cement fire door core
US6340389B1 (en) Fire door core
KR19990085310A (en) Fireproof and Sound Absorbing Coating Composition
US20150175887A1 (en) Fire core compositions and methods
KR100305908B1 (en) Fireproofing and sound-absorbing composition
KR101737811B1 (en) Expanded mortar and method for fabricating thereof and repair material method
CA2645402A1 (en) Cement-based fire door core
CA2364317C (en) Fire door core
KR100807244B1 (en) Inorganic binder composition having high fire resistance and fire resistant board using it
US20040211338A1 (en) Fire door core
KR100798124B1 (en) Noncombustible panel for construction
KR20140080791A (en) Eco building interior boards and method for manufacturing thereof
KR100530015B1 (en) Panel composition for building materials, manufacturing method thereof and its usage
CN114656811A (en) Fireproof heat-preservation heat-insulation inorganic coating material and preparation method thereof
RU2385851C1 (en) Crude mixture for making fireproof coating
KR20040110453A (en) Composition for fireproof material, manufacturing method thereof and its usage
KR20040100202A (en) Concrete Composition for Lightweight and Sound Absorber and Method of Making The Same
KR20180030372A (en) Insulating panel using fly ash and expanded rocks, and producing method thereof
KR100554718B1 (en) Incombustible and Heat-Resistant Panel for Structures using Clay Minerals and Method for Manufacturing thereof
EP2789594A1 (en) Composite material and method of manufacturing thereof
KR20060053658A (en) Incombustible fire prevention structure
KR100199103B1 (en) Insulating concrete of composition
KR100344675B1 (en) The sprayed fire-resistive materials
KR100479970B1 (en) Inorganic Insulation Including Inorganic Foam Material and Method of Manufacturing Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application