KR20040083627A - Plastic Optical Fiber Consisting of Fluorine-substituted Polymer - Google Patents
Plastic Optical Fiber Consisting of Fluorine-substituted Polymer Download PDFInfo
- Publication number
- KR20040083627A KR20040083627A KR1020030018163A KR20030018163A KR20040083627A KR 20040083627 A KR20040083627 A KR 20040083627A KR 1020030018163 A KR1020030018163 A KR 1020030018163A KR 20030018163 A KR20030018163 A KR 20030018163A KR 20040083627 A KR20040083627 A KR 20040083627A
- Authority
- KR
- South Korea
- Prior art keywords
- optical fiber
- plastic optical
- fluorine
- dopant
- substituted polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/002—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
- C08G65/005—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
- C08G65/007—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
본 발명은 불소치환 고분자를 이용한 플라스틱 광섬유에 관한 것으로, 보다 상세하게는 플라스틱 광섬유의 새로운 재료로서 불소치환 고분자를 적용하고, 또한 그레이디드 인덱스(graded index) 광섬유의 경우 이에 적합한 도판트를 선정하여 투과성과 내열성이 향상된 광섬유를 제공하는 것을 목적으로 한다.The present invention relates to a plastic optical fiber using a fluorine-substituted polymer, and more particularly, to a fluorine-substituted polymer as a new material of a plastic optical fiber, and in the case of a graded index optical fiber, a suitable dopant is selected for transmission. An object of the present invention is to provide an optical fiber with improved heat resistance.
지금까지 플라스틱 광섬유에 사용된 고분자 물질은 주로 C-H 결합을 갖는 화합물이었다. 이런 C-H 결합을 기본으로 하는 고분자 물질들은 수소 원자가 진동하기 때문에 근적외선(600-1550nm) 영역에서는 신축진동이 일어나 흡수 손실의 큰 원인이 된다. C-H 결합(bond)을 지닌 폴리메틸메타아크릴레이트의 경우에 C-H결합(bond)에 의한 이론적인 흡수 손실 수치가 650nm 광원에서는 105 dB/km이고 1300nm 광원에서는 10,000dB/km로 평가된다.Until now, the polymer materials used in plastic optical fibers have been mainly compounds having C-H bonds. Since the C-H bond-based polymer materials vibrate hydrogen atoms, stretching vibrations occur in the near-infrared (600-1550 nm) region, causing a large loss of absorption. For polymethylmethacrylates with C-H bonds, the theoretical absorption losses due to C-H bonds are estimated to be 105 dB / km for 650 nm light sources and 10,000 dB / km for 1300 nm light sources.
한편 탄소사슬에서 수소원자를 불소원자로 대체하는 경우, 650nm 광원에서는 흡수손실이 발생하지 않는다. 1300nm 광원에서의 흡수손실은 이론적으로는 C-F결합으로 인해 1dB/km 정도가 되어 흡수 손실이 거의 발생하지 않는 것으로 보아도 무방하다.On the other hand, in the case of replacing hydrogen atoms with fluorine atoms in the carbon chain, absorption loss does not occur in the 650 nm light source. Absorption loss in 1300nm light source is theoretically about 1dB / km due to C-F coupling, so it can be seen that almost no absorption loss occurs.
한편 카르복실기와 카르보닐기 같은 기능성기를 제거하면 내열성, 내흡습성, 내약품성, 난연성을 향상시킬 수 있다. 또한 카르복실기가 존재하면 근적외선 영역에서 흡수가 일어나고, 카르보닐기로 인해 UV 영역에서도 흡수가 일어나므로, 이런 기능성기는 제거하는 것이 유리하다.Meanwhile, by removing functional groups such as carboxyl groups and carbonyl groups, heat resistance, hygroscopicity, chemical resistance, and flame retardancy can be improved. In addition, when the carboxyl group is present, absorption occurs in the near infrared region, and absorption occurs in the UV region due to the carbonyl group. Therefore, it is advantageous to remove such functional groups.
850nm 이상의 장파장영역에서 광손실이 낮은 재료로 대표적인 것들을 소개하면 다음과 같다. 일본 특개평 8-334634호에는 완전 불소치환계 광학용 플라스틱 재료가 소개되고 있다. 상기 물질은 주쇄에 불소를 함유한 알릴사이클릭 구조의 퍼플루오로(2,2-디메틸-1,3-디옥솔)(perfluoro(2,2-dimetyl-1,3-dioxole))과 같은 모노머를 단독중합하거나 테트라플루오로에틸렌(tetrafluoroethylene), 헥사플루오로프로필렌(hexafluoropropylene)과 같은 모노머로 라디칼 공중합하는 방법으로 제조되며, 주쇄에 불소 함유 알릴사이클릭 구조를 지닌 모노머에서 중합하여 C-H 결합이 전혀 없으면서 비정질 구조를 지니고 있다. 구체적으로는 폴리(헵타플루오로-1-부텐-트리플루오로-비닐에테르)(poly(heptafluoro-1-butene-trifluoro-vinylether))가 일본의 Asahi glass Co.에 의해 "CYTOP"이라는 브랜드명으로 명명되어 판매되고있다. CYTOP을 사용하여 GI형 플라스틱 광섬유를 제조하는 경우 굴절율 분포는 도판트(dopant) 기술을 통해 도입되는 것이 일반적이다. 그러나 호스트 고분자의 Tg를 현저히 낮추는 효과가 있는 CTFE(chlorotrifluoroetylene) 등의 도판트를 상대적으로 낮은 Tg를 지닌 호스트 폴리머인 CYTOP에 적용시켜 플라스틱 광섬유를 제조하는 경우, 광섬유용 모재와 광섬유에서 최종 Tg가 90℃ 미만이 되어, 시간과 온도 안정성을 약화시켜 대부분의 광섬유 응용에 심각한 제한을 초래한다.Representative materials of low light loss in the long wavelength region of 850nm or more are as follows. Japanese Patent Application Laid-Open No. 8-334634 introduces a plastic material for fully fluorine-substituted optics. The substance is a monomer such as perfluoro (2,2-dimethyl-1,3-dioxole) having an allylcyclic structure containing fluorine in the main chain. Is prepared by homopolymerization or radical copolymerization with monomers such as tetrafluoroethylene and hexafluoropropylene.They are polymerized from monomers having a fluorine-containing allylcyclic structure in the main chain and do not contain any CH bonds. It has an amorphous structure. Specifically, poly (heptafluoro-1-butene-trifluoro-vinylether) (poly (heptafluoro-1-butene-trifluoro-vinylether)) is brand name "CYTOP" by Asahi glass Co. of Japan. It is named and sold. When manufacturing GI-type plastic optical fibers using CYTOP, refractive index distribution is generally introduced through dopant technology. However, when a plastic optical fiber is manufactured by applying a dopant such as CTFE (chlorotrifluoroetylene), which has an effect of significantly lowering the Tg of the host polymer, to CYTOP, a host polymer having a relatively low Tg, the final Tg of the optical fiber base material and the optical fiber is 90 It is below C, which impairs time and temperature stability, leading to serious limitations in most fiber optic applications.
한편 Asahi glass Co.에서는 그레이디드 인덱스(Graded Index: GI) 플라스틱 광섬유에 적용하기 위한 재료로 아래와 같은 화학구조의 불소계 고분자를 제안하였다.Asahi glass Co., on the other hand, proposed a fluorine-based polymer having the following chemical structure as a material to be applied to a graded index (GI) plastic optical fiber.
상기 화학식에서 l는 0∼5, m은 0∼4, n은 0∼1, l+m+n은 1∼6, o, p, q는 각각 독립적으로 0∼5, o+p+q는 1∼6, R, R1, R2는 각각 독립적으로 F 또는 CF3, X1, X2는 각각 독립적으로 F 또는 Cl이다.In the formula, l is 0-5, m is 0-4, n is 0-1, l + m + n is 1-6, o, p, q are each independently 0-5, o + p + q is 1-6, R, R 1 , R 2 are each independently F or CF 3 , X 1 , X 2 are each independently F or Cl.
이외에도 불소계 고분자로는 Dupont사가 개발한 Teflon AF라 명명되는, 2,2-비스트리플루오로메틸-4,5-디플루오로-1,3-디옥솔( 2,2-bistrifluorometyl-4,5-difluoro-1,3-dioxole: PDD)와 테트라플루오로에틸렌의 공중합체를 예로 들 수 있으며, 구체적으로는 하기 화학식 5과 같은 구조를 가진다.In addition to the fluorine-based polymer, 2,2-bistrifluoromethyl-4,5-difluoro-1,3-diosol (2,2-bistrifluorometyl-4,5-, named Teflon AF developed by Dupont) A copolymer of difluoro-1,3-dioxole (PDD) and tetrafluoroethylene may be exemplified. Specifically, the copolymer has a structure such as the following Chemical Formula 5.
그러나 상기 물질 역시 2001 년도 International Plastic Optical Fiber Conference에서 발표된 결과에 의하면 약간의 결정요소가 있어 광손실이 높은 것으로 보고되고 있다.However, according to the results presented at the 2001 International Plastic Optical Fiber Conference, the material is reported to have a high crystal loss due to some determinants.
본 발명자들은 Ausimont사에 의해 미국특허 제5,498,682호에서 제시된 플루오르 치환 고분자를 플라스틱 광섬유의 소재로 적용하여 근적외선 영역에서 광산란이 없고 내열성이 향상됨을 발견하여 본 발명을 완성하게 되었다.The inventors of the present invention have completed the present invention by discovering that the fluorine-substituted polymer shown in US Pat. No. 5,498,682 by Ausimont is used as a material of plastic optical fiber and has no light scattering and improved heat resistance in the near infrared region.
즉, 본 발명은 하기 화학식 6으로 표시되는 불소치환 고분자로 이루어지는 플라스틱 광섬유에 관한 것이다.That is, the present invention relates to a plastic optical fiber made of a fluorine-substituted polymer represented by the following formula (6).
[화학식 6][Formula 6]
상기 식에서 RF는 탄소 1∼5의 선형 또는 가지형 퍼플루오로알킬 라디칼(perfluoroalkylic radical)이고, X1, X2는 각각 독립적으로 F 또는 CF3이며, n은 0.4 내지 1의 실수이다.Wherein R F is a linear or branched perfluoroalkylic radical of 1 to 5 carbons, X 1 , X 2 are each independently F or CF 3 , and n is a real number of 0.4 to 1;
도 1은 본 발명의 실시예 1에 의해 제조된 광섬유의 굴절율 분포도를 나타낸도면이다.1 is a view showing a refractive index distribution of the optical fiber manufactured by Example 1 of the present invention.
이하에서 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서 플라스틱 광섬유의 소재로 적용되는 플루오르 치환된 고분자는 하기 화학식 6으로 표시된다.In the present invention, the fluorine-substituted polymer applied as the material of the plastic optical fiber is represented by the following formula (6).
상기 식에서 RF는 탄소 1∼5의 선형 또는 가지형 퍼플루오로알킬 라디칼(perfluoroalkylic radical)이고, X1, X2는 각각 독립적으로 F 또는 CF3이며, n은 0.4 내지 1의 실수이다.Wherein R F is a linear or branched perfluoroalkylic radical of 1 to 5 carbons, X 1 , X 2 are each independently F or CF 3 , and n is a real number of 0.4 to 1;
상기 고분자에서 RF로는 바람직하게는 -CF3를 사용한다.In the polymer, R F is preferably -CF 3 .
상기 중합체에서 디옥솔계 모노머와 테트라플루오로에틴렌 모노머의 몰비는 10:0∼4:6의 범위가 되는데, 디옥솔계 모노머의 함량이 40% 미만이 되면 비정질성과 열적 특성이 떨어지기 때문이다.In the polymer, the molar ratio of the dioxol monomer and the tetrafluoroethylene monomer is in the range of 10: 0 to 4: 6 because the amorphous and thermal properties of the dioxol monomer are less than 40%.
상기와 같은 공중합체를 사용하여 플라스틱 광섬유용 모재를 제조함에 있어 GI형 또는 스텝 인덱스형 광섬유에 상관없이 적용할 수 있다.In preparing the base material for plastic optical fiber using the copolymer as described above, it can be applied regardless of the GI type or step index type optical fiber.
한편 GI형 플라스틱 광섬유를 제조하는 경우에는 굴절율 분포를 형성하기 위해 사용되는 도판트는 사용되는 호스트 고분자의 특성에 여러 가지 조건을 만족시켜야 한다. 일반적인 도판트의 선택 조건으로는 도판트가 공중합체와 높은 친화력을 가져야 하며, 비휘발성이어야 하고, 모재 제조중 확산과 모재인출이 공중합체의 Tg 이상에서 수행되므로 높은 끓는점을 가져야 하며, 공중합체의 굴절율보다 더 높아야 하는 등의 조건이 있다.On the other hand, when manufacturing a GI-type plastic optical fiber, the dopant used to form the refractive index distribution has to satisfy various conditions in the characteristics of the host polymer used. Typical dopant selection conditions are that the dopant should have a high affinity with the copolymer, be non-volatile, have a high boiling point because diffusion and withdrawal of the base material is performed above the Tg of the copolymer during the preparation of the base material. There are conditions such as higher than the refractive index.
본 발명에서와 같이 상기 화학식 6의 고분자를 호스트 고분자로 사용하는 경우에는 구체적으로 퍼풀루오로-플루오렌(perfluoro-fluorene), 퍼플루오로벤질테트라린(perfluorobenzyltetralin), 폴리(트리플루오로-클로로에틸렌) 오일(poly(trifluoro-chloroethylene)oil), 퍼플루오로-폴리에테르 오일( perfluoro-polyether oil (Krytox)), 1,1,3,5,6-펜타클로로-노나플루오로벤젠(1,1,3,5,6-pentachloro-nonafluorobenzene) 등을 도판트로서 사용할 수 있으며, 바람직하게는 퍼플루오로-폴리에테르 오일 또는 퍼플루오로벤질테트라린을 사용하며, 보다 바람직하게는 퍼플루오로벤질테트라린을 사용한다.When using the polymer of Formula 6 as the host polymer as in the present invention, specifically, perfluoro-fluorene, perfluorobenzyltetralin, poly (trifluoro-chloroethylene ) (Poly (trifluoro-chloroethylene) oil), perfluoro-polyether oil (Krytox), 1,1,3,5,6-pentachloro-nonafluorobenzene (1,1 , 3,5,6-pentachloro-nonafluorobenzene) and the like may be used as the dopant, preferably perfluoro-polyether oil or perfluorobenzyltetrarin, and more preferably perfluorobenzyltetra Use lean.
도판트로서 퍼플루오로벤질테트라린을 사용하는 경우 상기 화학식 6의 불소치환 고분자에 대해 퍼플루오로벤질테트라린이 참용매(true solvent)이므로 도판트의 확산이 쉽게 이루어지고, 또한 비중 측면에 있어서도 퍼플루오로벤질테트라린이 2.049 g/cm3이고 상기 불소치환 고분자가 1.780 g/cm3이므로 원심력에 의해 용융 상태에서 도판트의 확산으로 굴절율 분포를 용이하게 형성할 수 있는 장점이 있다.In case of using perfluorobenzyltetrarin as a dopant, since perfluorobenzyltetrarin is a true solvent for the fluorine-substituted polymer of Chemical Formula 6, dopant is easily diffused and purple in terms of specific gravity. Luorobenzyl tetralin is 2.049 g / cm 3 and the fluorine-substituted polymer is 1.780 g / cm 3 has the advantage that the refractive index distribution can be easily formed by diffusion of the dopant in the molten state by centrifugal force.
도판트를 고분자에 확산시켜 굴절율 분포를 형성하는 방법으로는 이미 공지된 다양한 방법들을 제한없이 적용할 수 있으며, 대표적으로 일본 특개평 8-3344634호에 기재된 방법을 참조할 수 있다.As a method for diffusing the dopant into the polymer to form a refractive index distribution, various known methods can be applied without limitation, and the method described in JP-A-8-3344634 can be referred to.
이하에서 실시예를 들어 본 발명을 보다 상세히 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are for the purpose of explanation and are not intended to limit the present invention.
실시예에서 사용된 불소치환 고분자는 Ausimont사에서 상용화되어 판매되는 2,2,4-트리플루오로-5-트리플루오로메톡시-1,3-디옥솔(TTD)과 테트라플루오로에틸렌(TFE)의 공중합체로서, 하기 표 1과 같은 물성을 지니는 것을 사용하였다.Fluorine-substituted polymers used in the examples were 2,2,4-trifluoro-5-trifluoromethoxy-1,3-diosol (TTD) and tetrafluoroethylene (TFE), which are commercially available from Ausimont. As a copolymer of, a compound having physical properties as shown in Table 1 below was used.
[물성측정방법][Measurement of physical properties]
* TTD 몰비 : NMR에 의해 측정* TTD molar ratio: measured by NMR
* 고유점도 : ASTM D 2857(FLUORINENT FC 75용매)* Intrinsic Viscosity: ASTM D 2857 (FLUORINENT FC 75 Solvent)
* Tg : DSC 법(Perkin-Elmer DSC-7 differential scanning calorimeter)* Tg: DSC method (Perkin-Elmer DSC-7 differential scanning calorimeter)
* 용융점도 : ASTM D 3835* Melt Viscosity: ASTM D 3835
실시예 1Example 1
상기 표 1의 공중합체 A 50g을 4cm 직경의 글래스 튜브에 넣고 270 ℃에서 6시간 동안 6,000rpm 속도로 회전시켜서, 중공이 존재하는 튜브 형태로 제조하였다. 이어서 도판트로서 퍼플루오로벤질테트라린을 중공에 투입한 후, 200∼220℃온도에서 8시간 동안 4,000rpm 속도로 회전시켜 비중차에 따른 확산을 진행시켰다. 제조된 모재를 상온으로 냉각하여 직경 4cm의 GI형 플라스틱 광섬유 모재를 얻었다.50 g of Copolymer A of Table 1 was placed in a 4 cm diameter glass tube and rotated at 270 rpm for 6 hours at 270 ° C. to prepare a hollow tube. Subsequently, perfluorobenzyltetrarin was added to the hollow as a dopant, and then rotated at a speed of 4,000 rpm for 8 hours at a temperature of 200 to 220 ° C. to allow diffusion according to specific gravity. The prepared base material was cooled to room temperature to obtain a GI type plastic optical fiber base material having a diameter of 4 cm.
실시예 2Example 2
상기 표 1의 공중합체 B 50g을 4cm 직경의 글래스 튜브에 넣고 270 ℃에서 6시간 동안 6,000rpm 속도로 회전시켜서, 중공이 존재하는 튜브 형태로 제조하였다. 이어서 도판트로서 퍼플루오로벤질테트라린을 중공에 투입한 후, 200∼220℃온도에서 6시간 동안 4,000rpm 속도로 회전시켜 비중차에 따른 확산을 진행시켰다. 제조된 모재를 상온으로 냉각하여 직경 4cm의 GI형 플라스틱 광섬유 모재를 얻었다.50 g of the copolymer B of Table 1 was placed in a 4 cm diameter glass tube and rotated at 270 ° C. at 6,000 rpm for 6 hours to prepare a hollow tube. Subsequently, perfluorobenzyltetrarin was added to the hollow as a dopant, and then rotated at a speed of 4,000 rpm for 6 hours at a temperature of 200 to 220 ° C. to allow diffusion according to specific gravity. The prepared base material was cooled to room temperature to obtain a GI type plastic optical fiber base material having a diameter of 4 cm.
실시예 3Example 3
상기 표 1의 공중합체 C 50g을 4cm 직경의 글래스 튜브에 넣고 270 ℃에서 6시간 동안 6,000rpm 속도로 회전시켜서, 중공이 존재하는 튜브 형태로 제조하였다. 이어서 도판트로서 퍼플루오로벤질테트라린을 중공에 투입한 후, 200∼220℃온도에서 3시간 동안 4,000rpm 속도로 회전시켜 비중차에 따른 확산을 진행시켰다. 제조된 모재를 상온으로 냉각하여 직경 4cm의 GI형 플라스틱 광섬유 모재를 얻었다.50 g of the copolymer C of Table 1 was placed in a 4 cm diameter glass tube and rotated at 270 rpm for 6 hours at 270 ° C. to prepare a hollow tube. Subsequently, perfluorobenzyltetrarin was introduced into the hollow as a dopant, and then rotated at a speed of 4,000 rpm for 3 hours at a temperature of 200 to 220 ° C. for diffusion according to specific gravity. The prepared base material was cooled to room temperature to obtain a GI type plastic optical fiber base material having a diameter of 4 cm.
상기 실시예 1∼3에서 제조된 광섬유의 Tg를 측정하여 하기 표 2 에 나타내었다. 또한 실시예 1에서 제조된 모재의 굴절율 분포를 confocal Raman spectroscopy에 의해 측정하여 이를 도 1에 나타내었다. 이때 20mW 헬륨-네온 레이져(632.8nm)를사용하였으며, 라만 산란법이 핀홀(pinhole)이 50um로 셋팅되는 동안 Olympus BH microscope를 통해 포집된 결과를 나타낸다.The Tg of the optical fibers manufactured in Examples 1 to 3 was measured and shown in Table 2 below. In addition, the refractive index distribution of the base material prepared in Example 1 was measured by confocal Raman spectroscopy and shown in FIG. 1. At this time, a 20mW helium-neon laser (632.8nm) was used, and the Raman scattering method was captured by an Olympus BH microscope while the pinhole was set to 50um.
[물성측정방법][Measurement of physical properties]
* Tg : Perkin-Elmer DSC-7를 사용하여 20℃/min의 표준 가열속도로 측정* Tg: measured at 20 ℃ / min standard heating rate using Perkin-Elmer DSC-7
* 광손실 : 모재를 광섬유로 인출후 850nm 광원으로 cut-back방법으로 측정* Light loss: After drawing the base material into the optical fiber and measuring it by the cut-back method with 850nm light source
본원발명에서는 불소치환 고분자를 광학 소재로서 적용하여 투과성 및 내열성이 향상된 플라스틱 광섬유를 제공할 수 있다.In the present invention, by applying a fluorine-substituted polymer as an optical material can provide a plastic optical fiber with improved transmission and heat resistance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030018163A KR20040083627A (en) | 2003-03-24 | 2003-03-24 | Plastic Optical Fiber Consisting of Fluorine-substituted Polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030018163A KR20040083627A (en) | 2003-03-24 | 2003-03-24 | Plastic Optical Fiber Consisting of Fluorine-substituted Polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040083627A true KR20040083627A (en) | 2004-10-06 |
Family
ID=37367315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030018163A KR20040083627A (en) | 2003-03-24 | 2003-03-24 | Plastic Optical Fiber Consisting of Fluorine-substituted Polymer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040083627A (en) |
-
2003
- 2003-03-24 KR KR1020030018163A patent/KR20040083627A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0710855B1 (en) | Refractive index distribution type optical resin and production method thereof | |
US5760139A (en) | Graded-refractive-index optical plastic material and method for its production | |
KR100542784B1 (en) | Refraction index distribution type optical resin materials | |
US5916971A (en) | Graded-refractive-index optical plastic material and method for its production | |
EP1538467A1 (en) | Plastic optical fiber | |
KR20010112609A (en) | Plastic optical fiber | |
US7459512B2 (en) | Process for preparing perfluoroalkyl vinyl ether copolymer and copolymer | |
US6936668B2 (en) | Amorphous perfluorinated copolymers | |
JP3719733B2 (en) | Gradient index type optical resin material and manufacturing method thereof | |
JP2002071972A (en) | Plastic optical fiber | |
KR920001118B1 (en) | Optical fiber having plastic cladding and process for preparation thereof | |
KR20040083627A (en) | Plastic Optical Fiber Consisting of Fluorine-substituted Polymer | |
JP4132282B2 (en) | Gradient index type optical resin material | |
JPH10239538A (en) | Plastic optical fiber machining method | |
JP3419960B2 (en) | Refractive index distribution type optical resin material | |
WO2023152926A1 (en) | Plastic optical fiber and method for producing same | |
JP3489764B2 (en) | Refractive index distribution type optical resin material | |
JP2022117348A (en) | Plastic optical fiber and method of manufacturing the same | |
JP2006106779A (en) | Optical plastic material, graded-refractive-index optical fiber and method for manufacturing graded-refractive-index optical plastic material | |
JPH08334602A (en) | Distributed refractive index type optical resin material | |
JPH0451207A (en) | Heat resistant plastic optical fiber | |
JP2001123034A (en) | Fluoroplastic composition | |
JP2002311254A (en) | Method for manufacturing optical resin material having graded refractive index | |
JP2005023324A (en) | Refractive index-distributing optical resin material and preparation process therefor | |
JP2001091758A (en) | Refractive index distribution type optical transmission body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |