KR20040055437A - Method for deoxidizing molten steel in degassing process - Google Patents
Method for deoxidizing molten steel in degassing process Download PDFInfo
- Publication number
- KR20040055437A KR20040055437A KR1020020082114A KR20020082114A KR20040055437A KR 20040055437 A KR20040055437 A KR 20040055437A KR 1020020082114 A KR1020020082114 A KR 1020020082114A KR 20020082114 A KR20020082114 A KR 20020082114A KR 20040055437 A KR20040055437 A KR 20040055437A
- Authority
- KR
- South Korea
- Prior art keywords
- molten steel
- degassing process
- deoxidation
- aluminum
- deoxidizing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/0025—Charging or loading melting furnaces with material in the solid state
- F27D3/0026—Introducing additives into the melt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0003—Monitoring the temperature or a characteristic of the charge and using it as a controlling value
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
본 발명은 제철소의 제강공정에서 용강의 청정성을 확보하기 위하여 용강을 탈가스 처리하는 방법에 관한 것으로서, 보다 상세하게는 용강의 탈가스 처리 공정에서 탈탄처리한 후의 용강중에 함유되어 있는 산소를 제거하는 탈가스 처리공정에서의 용강 탈산방법에 관한 것이다.The present invention relates to a method for degassing molten steel in order to secure cleanliness of molten steel in a steelmaking process of an ironworks, and more particularly, to remove oxygen contained in molten steel after decarburization in a molten steel degassing process. It relates to a molten steel deoxidation method in a degassing process.
일반적으로, 수강 래들의 용강을 정련하는 제강공정에서 용강 품질의 청정성을 확보하기 위한 목적으로 탈가스 처리를 하게 된다.In general, in the steelmaking process of refining molten steel of the steel ladle, the degassing treatment is performed for the purpose of ensuring the cleanliness of the molten steel quality.
이 탈가스 처리 공정에서는 용강중에 함유된 산소를 제거하기 위한 일련의 탈산작업도 수행하게 된다.In this degassing process, a series of deoxidation operations are also performed to remove oxygen contained in molten steel.
종래에는 탈가스 공정에서 극저 탄소강 제조 시 강중 산소 또는 강제취입 산소를 이용하여 용강 탈탄이 완료된 후 알루미늄 미니 펠렛트를 투입하여 잔류한 용존 산소를 제거하였다.Conventionally, after the molten steel decarburization is completed by using the oxygen in the steel or the forced blowing oxygen in the degassing process, the aluminum mini pellets are added to remove the dissolved oxygen remaining.
종래의 탈가스 처리 공정에서의 알루미늄에 의한 순수 용강 탈산 공정은 탈탄 작업이 완료된 후, 1차 측온 및 측산을 하여 측정된 산소값을 기준으로 탈산을 위한 알루미늄 투입량을 구하고 이렇게 구한 투입량으로 알루미늄을 용강에 투입하여 용강 중 산소를 전량 알루미늄에 의해 탈산시키는 공정이다.The pure molten steel deoxidation process by aluminum in the conventional degassing process, after the decarburization operation is completed, to calculate the aluminum input amount for deoxidation on the basis of the oxygen value measured by the first temperature measurement and measurement, molten steel aluminum as the input amount It is a process to deoxidize oxygen in molten steel with aluminum in all quantity.
그러나, 상기한 종래방법의 경우에는 용강을 탈산시키기 위하여 고가의 알루미늄을 전량 사용하여여 함으로써, 탈산비용의 증가를 가져오게 되는 문제점이 있다.However, in the conventional method described above, there is a problem in that deoxidation cost is increased by using all the expensive aluminum to deoxidize molten steel.
즉, 상기와 같이, 알루미늄만을 사용하여 용강 중에 함유된 산소를 제거하는 경우 알루미늄은 단순히 용강 탈산, 성분 보정, 온도 상승의 목적으로 투입되는데, 용강 중 산소가 많을 시, 산소를 제거하기 위해 산소 농도와 비례해 알루미늄을 무한정 늘려서 투입을 해야 하는 문제점이 있다.That is, as described above, in the case of removing oxygen contained in molten steel using only aluminum, aluminum is simply added for the purpose of deoxidation of molten steel, component correction, and temperature increase. When oxygen in molten steel is high, oxygen concentration is removed to remove oxygen. In proportion to this, there is a problem in that aluminum should be increased indefinitely.
더욱이, 탈산제로서 알루미늄을 사용하는 경우에는 알루미늄에 의한 탈산과정에서 알루미늄에 의해 선상 스켑 결함등을 유발시키는 알루미늄 산화물(알루미나등)성 개재물을 형성하게 되는데, 이러한 개재물의 형성량은 탈산제로서 알루미늄을 많이 사용하면 사용할 수록 증가된다.In addition, in the case of using aluminum as the deoxidizer, aluminum oxide (alumina, etc.) inclusions causing linear deflection defects are formed by the aluminum during the deoxidation by aluminum, and the amount of inclusions includes a large amount of aluminum as the deoxidizer. It increases as you use it.
따라서, 탈산제로서 알루미늄만을 사용하는 경우에는 용강의 청정도를 떨어뜨리는 문제점이 있다.Therefore, when only aluminum is used as the deoxidizer, there is a problem of lowering the cleanliness of molten steel.
본 발명자는 상기한 종래기술의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 탈가스 처리 공정에서의 용강의 탈산시 탈산제로서 페로 실리콘과 알루미늄을 사용함으로써 탈가스 처리 공정에서 보다 경제적으로 용강을 탈산할 수 있을 뿐만 아니라 용강중의 알루미늄 산화물 개재물의 형성을 최소화시킬 수 있는 용강의 탈산방법을 제공하고자 하는데, 그 목적이 있는 것이다.MEANS TO SOLVE THE PROBLEM The present inventor has made research and experiment in order to solve the above-mentioned all the problems of the prior art, and based on the result, this invention proposes this invention, The present invention is a ferro silicon as a deoxidizer at the time of deoxidation of molten steel in a degassing process. The purpose of the present invention is to provide a deoxidation method of molten steel that can deoxidize molten steel more economically in the degassing process and minimize the formation of aluminum oxide inclusions in molten steel.
이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.
본 발명은 극저탄소강 제조를 위한 제강 탈가스 처리공정에서 탈탄 작업이 완료된 후, 탈산제를 용강에 투입하여 용강을 탈산시키는 방법에 있어서, 탈산제로서 페로 실리콘(Fe-Si)과 알루미늄을 사용하여 용강을 탈산하는 탈가스 처리공정에서의 탈산방법에 관한 것이다.The present invention is a method for deoxidizing molten steel by adding a deoxidizer to molten steel after the decarburization operation in the steelmaking degassing process for manufacturing ultra-low carbon steel, molten steel using ferro silicon (Fe-Si) and aluminum as the deoxidizer It relates to a deoxidation method in the degassing step of deoxidizing.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 극저탄소강, 바람직하게는 탄소 함량이 70ppm 이하인 극저탄소강을 제조하기 위한 제강 탈가스 처리공정에서의 탈산공정에 적용되는 것이다.The present invention is applied to the deoxidation process in the steelmaking degassing process for producing ultra low carbon steel, preferably ultra low carbon steel having a carbon content of 70 ppm or less.
또한, 실리콘(Si)의 함량규제 한계가 0.02% 이하인 극저탄소강을 제조에도 적용된다.In addition, it is also applied to the production of ultra-low carbon steel with a silicon (Si) content limit of 0.02% or less.
상기와 같이 실리콘(Si)의 함량규제 한계가 0.02% 이하인 극저탄소강을 제조하는 경우에는 자칫 탈산용으로 투입되는 페로 실리콘중의 실리콘이 용강 중 실리콘 성분의 픽 업으로 인해, 규제 한계를 넘지 않도록 처리하여야 한다.As described above, in the case of manufacturing ultra-low carbon steel having a silicon (Si) content limit of 0.02% or less, silicon in ferro-silicone, which is put in for deoxidation, does not exceed the limit due to the pick-up of the silicon component in molten steel. Should be dealt with.
본 발명은 제강 탈가스 공정에서 페로 실리콘을 1차로 투입하여 용강을 부분적으로 탈산한 후, 알루미늄을 투입하여 나머지 부분을 탈산하는 방법이다.In the present invention, ferro silicon is first introduced in the steelmaking degassing process to partially deoxidize molten steel, and then aluminum is added to deoxidize the remaining portion.
본 발명에 따라 페로 실리콘 및 알루미늄을 투입하면, 용강의 탈산은 하기 반응식 (1) 및 반응식(2)에 의하여 행해진다.When ferro silicon and aluminum are added in accordance with the present invention, deoxidation of molten steel is performed by the following reaction formula (1) and reaction formula (2).
상기 실리콘는 그 탈산력이 알루미늄에 비해 현저히 작기 때문에 실리콘 단독으로 탈산을 수행하기 위해서는 예를 들면 상기 식에서 각 산화물의 활동도를 1로 가정하면, 0.5%의 실리콘을 첨가한 경우에 약 0.006%의 산소와 평형을 이루게 된다.Since the deoxidation power of the silicon is significantly smaller than that of aluminum, in order to perform deoxidation by silicon alone, for example, when the activity of each oxide is assumed to be 1, about 0.006% of oxygen is added when 0.5% of silicon is added. Is in equilibrium with.
탈산제로 투입되는 상기 실리콘의 일부는 용강에 용해되어 용강중에 잔류하게 되고, 나머지는 용강중의 산소와 반을하여 산화물형태로 슬래그화 된다.A part of the silicon introduced as a deoxidizer is dissolved in molten steel and remains in molten steel, and the remainder slags to an oxide form in half the oxygen in molten steel.
한편, 동일 투입량에서 페로 실리콘을 투입하기 전의 용강중의 산소 농도가 높을 수록 용강중에 픽업되는 실리콘은 적어지고, 투입되는 실리콘이 탈산에 기여하는 효율이 증가되며, 투입되는 실리콘량이 증가할수록 투입된 페로 실리콘이 탈산에 기여하는 비율은 감소하게 된다.On the other hand, the higher the oxygen concentration in the molten steel before the ferro silicon is injected at the same dose, the less silicon is picked up in the molten steel, the more efficient the silicon contributes to the deoxidation, and the more ferro silicon is injected as the amount of silicon added is increased. The contribution to deoxidation is reduced.
본 발명에서는 제강 탈가스 공정에서 탈탄 작업 이후, 탈산 전 용존 산소농도가 300ppm이하인 경우에는 0.15-0.25kg/용강-톤의 페로 실리콘을 투입하고, 탈산 전 용존 산소농도가 300ppm이상인 경우에는 0.25-0.35kg/용강-톤의 페로 실리콘을 투입하여 2~3분동안 용강을 1차 탈산한 후, 2차적으로 알루미늄을 투입하여 최종탈산하는 것이 바람직하다.In the present invention, after the decarburization operation in the steelmaking degassing process, when the dissolved oxygen concentration before deoxidation is 300ppm or less, 0.15-0.25kg / mol-ton ferro silicon is added, and when the dissolved oxygen concentration before deoxidation is 0.25ppm or more. It is preferable to first deoxidize molten steel for 2 to 3 minutes by adding kg / molten-ton ferro silicon, and then finally deoxidize by adding aluminum secondary.
탈산제로 1차 투입되는 페로 실리콘의 양이 너무 많은 경우에는 상대적으로 알루미늄의 투입량이 많아져 생산비가 증가하고 또한 용강중에 알루미늄 산화물계 비금속개재물의 함량이 증가하고, 너무 적은 경우에는 용강중의 Si의 함량을 지나치게 증가시키게 되므로, 탈산 전 용존 산소농도가 300ppm이하인 경우에는 0.15-0.25kg/용강-톤으로, 탈산 전 용존 산소농도가 300ppm이상인 경우에는 0.25-0.35kg/용강-톤으로 설정하는 것이 바람직하다.If the amount of ferro-silicon injected as a primary deoxidizer is too large, the amount of aluminum added is relatively high, increasing the production cost, and also increasing the content of aluminum oxide-based nonmetallic inclusions in the molten steel, and, if too small, the content of Si in the molten steel. In this case, the dissolved oxygen concentration before deoxidation is 300 ppm or less, and 0.15-0.25 kg / melt-ton is preferably set to 0.25-0.35 kg / melt-ton when the dissolved oxygen concentration is 300 ppm or more. .
본 발명에서 탈산제로서 투입되는 페로 실리콘은 75중량%이상의 Si을 함유하는 페로실리콘이 바람직하다.The ferro silicon added as the deoxidizer in the present invention is preferably ferro silicon containing 75% by weight or more of Si.
본 발명에 따라 탈산처리함에 있어서, 실리콘에 의한 1차 탈산은 2차적으로 알루미늄으로 탈산하기 직전의 산소농도가 135~211ppm이 되도록 행하는 것이 바람직하다.In the deoxidation treatment according to the present invention, the primary deoxidation by silicon is preferably carried out so that the oxygen concentration immediately before deoxidizing to aluminum is 135 to 211 ppm.
상기 페로 실리콘을 투입하여 탈산시키는 경우 그 처리시간이 너무 짧은 경우에는 실리콘에 의한 충분한 탈산반응확보가 곤란하고, 너무 긴 경우에는 실리콘에 의한 탈산반응의 효율이 포화되고 탈가스 처리시간이 길어지므로, 페로 실리콘 투입후의 처리(유지)시간은 2∼3분으로 설정하는 것이 바람직하다.When the ferro silicon is added and deoxidized, if the processing time is too short, it is difficult to secure sufficient deoxidation reaction by silicon, and when too long, the efficiency of the deoxidation reaction by silicon is saturated and the degassing time is long. It is preferable to set the processing (holding) time after ferro silicon injection to 2 to 3 minutes.
한편, 제강 탈가스 공정에서 본 발명에 따라 탈산처리하기 위해서는 제강 탈가스 공정에서 처리될 용강의 온도를 1,590∼1,615℃로 설정하는 것이 바람직하다.On the other hand, in order to deoxidize in accordance with the present invention in the steelmaking degassing step, it is preferable to set the temperature of the molten steel to be treated in the steelmaking degassing step to 1,590 ~ 1,615 ℃.
상기한 바람직한 용강의 온도는 제강 탈가스 공정에서 승온을 하지 않아도 될 정도의 온도이다.The above-mentioned preferred molten steel temperature is such that the temperature does not need to be raised in the steelmaking degassing step.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
(실시예)(Example)
(종래예)(Conventional example)
용강을 탈가스 처리공정에서 탈가스 처리하여 극저탄소강을 제조할 시 탈산제로서순도 95% 및 탈산효율 55%인 알루미늄을 하기 표 1의 투입량으로 투입하여 탈산한 후, 결함율(%) 및 연속주조시 노즐막힘 정도를 조사하고, 그 결과를 하기 표 1에 나타내었다.When molten steel is degassed in the degassing process to produce ultra low carbon steel, aluminum having 95% purity and 55% deoxidation efficiency as the deoxidizer is added and deoxidized at the dosage of Table 1 below, followed by defect rate (%) and continuous The degree of nozzle clogging during casting was investigated, and the results are shown in Table 1 below.
이때, 용강량은 275톤 이고, 탈가스처리공정에 도착한 용강의 온도는 하기 표 1과 같고, 탈산재는 용강환류 및 성분보정전에 투입되었다.At this time, the amount of molten steel is 275 tons, the temperature of the molten steel arrived at the degassing process is shown in Table 1, the deoxidizer was added before the molten steel reflux and component correction.
(발명예)(Invention example)
용강을 탈가스 처리공정에서 탈가스 처리하여 극저탄소강을 제조할 시 탈산제로서 페로 실리콘을 하기 표 1의 투입량으로 투입하여 부분적으로 탈산한 다음, 2차로 순도 95% 및 탈산효율 55%인 알루미늄을 하기 표 1의 투입량으로 투입하여 최종 탈산한 후, 결함율(%) 및 연속주조시 노즐막힘 정도를 조사하고, 그 결과를 하기 표 1에 나타내었다.When molten steel is degassed in the degassing process to produce ultra low carbon steel, ferro silicon is added as the deoxidizer in the amounts shown in Table 1, and partially deoxidized. Secondly, aluminum having a purity of 95% and a deoxidation efficiency of 55% is used. After the final deoxidation by the input amount of Table 1, the defect rate (%) and the degree of nozzle clogging during continuous casting were investigated, and the results are shown in Table 1 below.
이때, 용강량은 275톤이고, 탈가스처리공정에 도착한 용강의 온도는 하기 표 1과 같고, 페로 실리콘은 1차 측온측산시 투입되고, 그리고 2차 알루미늄은 실리콘 탈산 후 2-3분경과후에 투입되었다.At this time, the amount of molten steel is 275 tons, the temperature of the molten steel arriving at the degassing process is shown in Table 1 below, ferro silicon is added during the first temperature measurement, and secondary aluminum is 2-3 minutes after the silicon deoxidation Committed.
상기 표 1에 나타난 바와 같이, 본 발명에 따라 탈산제로서 페로 실리콘을 1차로 투입하여 부분적으로 탈산한 다음, 알루미늄을 2차로 투입하여 최종소둔하는 경우(발명예 1-6)에는 알루미늄만을 투입하는 경우(종래예 1-6)에 비하여 결함율이 낮을 뿐만 아니라 연속주조시 노즐 막힘도 발생하지 않음을 알 수 있다.As shown in Table 1 above, when ferro silicon is firstly added as a deoxidizer and partially deoxidized according to the present invention, and then aluminum is added secondly to final annealing (invention example 1-6), when only aluminum is added. It can be seen that not only the defect rate is lower than that of the conventional example 1-6, but the nozzle clogging does not occur during continuous casting.
상술한 바와 같이, 본 발명에 의하면, 탈가스 처리 공정에서의 용강의 탈산시 탈산제로서 페로 실리콘과 알루미늄을 사용함으로써 탈가스 처리 공정에서 용강중의 알루미늄 산화물계 개재물의 형성을 최소화시키면서 보다 경제적으로 용강을 탈산할 수 있다.As described above, according to the present invention, by using ferro silicon and aluminum as the deoxidizer during deoxidation of molten steel in the degassing process, molten steel is more economically minimized while minimizing the formation of aluminum oxide inclusions in the molten steel in the degassing process. It can deoxidize.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082114A KR20040055437A (en) | 2002-12-21 | 2002-12-21 | Method for deoxidizing molten steel in degassing process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082114A KR20040055437A (en) | 2002-12-21 | 2002-12-21 | Method for deoxidizing molten steel in degassing process |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040055437A true KR20040055437A (en) | 2004-06-26 |
Family
ID=37348111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020082114A KR20040055437A (en) | 2002-12-21 | 2002-12-21 | Method for deoxidizing molten steel in degassing process |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040055437A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101619378B (en) * | 2008-06-30 | 2011-07-27 | 鞍钢股份有限公司 | Molten steel deoxidation method |
CN102847903A (en) * | 2011-06-29 | 2013-01-02 | 鞍钢股份有限公司 | Method for manufacturing low-total-oxygen steel |
CN103276151B (en) * | 2013-06-06 | 2016-11-30 | 鞍钢股份有限公司 | Method for deoxidizing low-silicon steel by using silicon alloy |
CN107794329A (en) * | 2016-08-31 | 2018-03-13 | 鞍钢股份有限公司 | Method for producing low-silicon-aluminum killed steel by deoxidizing silicon-based alloy in converter |
KR20190077750A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Method for Manufacturing Steel with Low Sulfur |
CN114058931A (en) * | 2021-11-19 | 2022-02-18 | 攀钢集团攀枝花钢铁研究院有限公司 | Heavy rail steel and control method of manganese sulfide inclusion in production thereof |
-
2002
- 2002-12-21 KR KR1020020082114A patent/KR20040055437A/en not_active Application Discontinuation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101619378B (en) * | 2008-06-30 | 2011-07-27 | 鞍钢股份有限公司 | Molten steel deoxidation method |
CN102847903A (en) * | 2011-06-29 | 2013-01-02 | 鞍钢股份有限公司 | Method for manufacturing low-total-oxygen steel |
CN102847903B (en) * | 2011-06-29 | 2014-05-07 | 鞍钢股份有限公司 | Method for manufacturing low-total-oxygen steel |
CN103276151B (en) * | 2013-06-06 | 2016-11-30 | 鞍钢股份有限公司 | Method for deoxidizing low-silicon steel by using silicon alloy |
CN107794329A (en) * | 2016-08-31 | 2018-03-13 | 鞍钢股份有限公司 | Method for producing low-silicon-aluminum killed steel by deoxidizing silicon-based alloy in converter |
KR20190077750A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Method for Manufacturing Steel with Low Sulfur |
CN114058931A (en) * | 2021-11-19 | 2022-02-18 | 攀钢集团攀枝花钢铁研究院有限公司 | Heavy rail steel and control method of manganese sulfide inclusion in production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100922061B1 (en) | Method of manufacturing ultra low carbon ferritic stainless steel | |
KR101017511B1 (en) | Refining method of the molten steel for manufacturing ultra low carbon steel | |
KR100860656B1 (en) | Refining method of molten steel and method of producting extra-low-carbon steel using thereof | |
KR100929468B1 (en) | Refining method of molten steel and manufacturing method of high manganese low carbon steel using the same | |
KR20040055437A (en) | Method for deoxidizing molten steel in degassing process | |
KR100476806B1 (en) | A method for manufacturing extra low carbon steel | |
KR101280945B1 (en) | Flux and Refining method of molten steel for high oxygen steel | |
KR970004990B1 (en) | Decarburizing method of stainless steel | |
KR100887860B1 (en) | Method for manufacturing the ferrite stainless steel | |
KR101277611B1 (en) | Rh refining method for manufacturing ultra-low-carbon steel | |
KR20100045053A (en) | Method for refining ferritic stainless steel containing titanium | |
KR100992303B1 (en) | Method for refining of extra low sulfur stainless steel | |
KR100485095B1 (en) | Refining method of molten steel | |
KR20030089955A (en) | The method of decreasing nitrogen in deoxidized molten steel | |
KR100925598B1 (en) | Method for Refining Return Molten Steel | |
KR100448625B1 (en) | A method for manufacturing extra deep drawing quality hyper extra low carbon steel having high purity | |
KR100402005B1 (en) | A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS | |
KR20010009041A (en) | Method of refining ferritic stainless steel for deep drawing | |
JP7480751B2 (en) | METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL | |
US20240327938A1 (en) | Method for if-interstitial free steel production using scrap in arc furnace facilities | |
KR950010171B1 (en) | Making method of high purity steel | |
KR20020001434A (en) | A method for manufacturing high chrome ferrite stainless steel | |
KR100406434B1 (en) | Method for deoxidizing in the low carbon metal with Fe-Si | |
KR20040042540A (en) | A method for manufacturing of low carbon steel having high cleaness and low phosphorous | |
KR20020031862A (en) | A METHOD FOR MANUFACTURING Mn ADDED ULTRA LOW CARBON STEEL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |