KR20040055071A - Method for forming low-defect GaN film - Google Patents
Method for forming low-defect GaN film Download PDFInfo
- Publication number
- KR20040055071A KR20040055071A KR1020020081660A KR20020081660A KR20040055071A KR 20040055071 A KR20040055071 A KR 20040055071A KR 1020020081660 A KR1020020081660 A KR 1020020081660A KR 20020081660 A KR20020081660 A KR 20020081660A KR 20040055071 A KR20040055071 A KR 20040055071A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- gan film
- substrate
- reactor
- gacl
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 42
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 claims abstract description 17
- 238000000927 vapour-phase epitaxy Methods 0.000 abstract description 8
- 238000004381 surface treatment Methods 0.000 abstract description 7
- 150000004820 halides Chemical class 0.000 abstract description 3
- 150000004678 hydrides Chemical class 0.000 abstract description 3
- 229910002601 GaN Inorganic materials 0.000 abstract 5
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02389—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 GaN막 형성방법에 관한 것으로서, 특히 GaN막을 에피텍셜 성장시킬 때 GaN막의 전위밀도를 감소시키는 방법에 관한 것이다.The present invention relates to a method of forming a GaN film, and more particularly, to a method of reducing the dislocation density of a GaN film when epitaxially growing a GaN film.
GaN은 부르자이트(Wurzite) 구조를 가지는 질화물 반도체로서 상온에서 가시광선의 청색 파장대에 해당하는 3.4 eV의 직접천이형 밴드갭을 가질 뿐만 아니라 InN 및 AlN와 전율고용체를 이루어 금지대폭의 조정이 가능하며 전율고용체의 전 조성 범위 내에서 직접천이형 반도체의 특성을 나타내기 때문에 청색표시 및 발광소자재료로서 가장 각광 받고 있다.GaN is a nitride semiconductor with a Wurzite structure, and has a direct transition bandgap of 3.4 eV corresponding to the blue wavelength band of visible light at room temperature. It is most popular as a blue display and light emitting device material because it exhibits the characteristics of the direct transition type semiconductor within the entire composition range of the electroluminescent solid solution.
GaN막은 통상 사파이어(Al2O3), 실리콘 카바이드(SiC), 또는 실리콘(Si) 기판 등에 MOCVD나 HVPE 방법 등으로 형성한다. 그런데, 이 경우 기판과 GaN막 사이의 격자상수 및 열팽창계수가 다르기 때문에 격자부정합(lattice mismatch)으로 인해 GaN막을 에피텍셜 성장시키는 것이 매우 어렵다. GaN 뿐만 아니라 AlN, InN, GaInN, AlGaN, 및 GaAlInN 등의 GaN계가 모두 이러하다.GaN films are usually formed by sapphire (Al2O3), silicon carbide (SiC), or silicon (Si) substrates by MOCVD or HVPE methods. However, in this case, since the lattice constant and the coefficient of thermal expansion between the substrate and the GaN film are different, it is very difficult to epitaxially grow the GaN film due to lattice mismatch. Not only GaN but also GaN-based such as AlN, InN, GaInN, AlGaN, and GaAlInN are all.
이를 극복하기 위한 방법으로서 격자변형(lattice strain)을 완화시키기 위한 완충층(buffer layer)을 비교적 낮은 온도에서 기판 상에 먼저 형성시킨 다음에 완충층 상에 GaN막을 성장시키는 방법 등이 일본공개 특허공보 소63-188983호 등에 개시된 바 있다. 그러나 완충층에 의한 이러한 완화는 GaN막의 에피텍셜 성장을 가능하게는 하지만 GaN막의 전위(dislocation) 밀도가 109~1010/cm2 정도로 여전히 높아 레이저 다이오드나 발광다이오드 등으로의 응용에 제한을 받는다.As a method for overcoming this problem, a method of first forming a buffer layer on a substrate at a relatively low temperature and then growing a GaN film on the buffer layer to alleviate lattice strain is disclosed in JP-A-63. -188983 and the like. However, such relaxation by the buffer layer enables epitaxial growth of the GaN film, but the dislocation density of the GaN film is still high, such as 10 9 to 10 10 / cm 2, which limits the application to laser diodes and light emitting diodes.
따라서, 본 발명이 이루고자 하는 기술적 과제는, HVPE법으로 GaN막을 에피텍셜 성장시키되 GaN막 성장시에 사용되는 기체를 주로 이용하여 기판표면을 처리하는 새로운 저결함화방법을 도입하여 번거로움없이 GaN막의 전위밀도를 감소시키는 GaN막 형성방법을 제공하는 데 있다.Therefore, the technical problem to be achieved by the present invention is to introduce a new low-defect method for epitaxially growing a GaN film by HVPE, but treating the substrate surface using a gas mainly used for growing the GaN film. A GaN film forming method for reducing dislocation density is provided.
도 1a 및 도 1b는 본 발명의 실시예에 따른 GaN막 형성방법을 설명하기 위한 흐름도들이다.1A and 1B are flowcharts illustrating a GaN film forming method according to an embodiment of the present invention.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 GaN막 형성방법은, 기판이 장입된 반응기 내로 In기체를 흘려보내 상기 기판 표면을 In 기체로 처리하는제1단계; 상기 반응기 내에 NH3 기체와 GaCl 기체를 교번하여 흘려보내 상기 기판 표면을 NH3 기체와 GaCl 기체로 번갈아 가면서 처리하는 제2단계; 및 상기 반응기 내에 NH3 기체와 GaCl 기체를 동시에 흘려보내 상기 기판 상에 GaN막을 에피텍셜 성장시키는 제3단계; 를 포함하는 것을 특징으로 한다. 여기서, 상기 제1단계는 900 내지 1100℃에서 행해지는 것이 바람직하고, 상기 제2단계는 1000 내지 1200℃에서 행해지는 것이 바람직하다.The GaN film forming method according to the present invention for achieving the above technical problem, the first step of treating the substrate surface with In gas by flowing In gas into the reactor into which the substrate is loaded; A second step of alternately flowing NH 3 gas and GaCl gas into the reactor to alternately treat the substrate surface with NH 3 gas and GaCl gas; And a third step of epitaxially growing a GaN film on the substrate by simultaneously flowing NH 3 gas and GaCl gas into the reactor. Characterized in that it comprises a. Here, the first step is preferably carried out at 900 to 1100 ℃, and the second step is preferably performed at 1000 to 1200 ℃.
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.
도 1a 및 도 1b는 본 발명의 실시예에 따른 GaN막 형성방법을 설명하기 위한 흐름도들이다.1A and 1B are flowcharts illustrating a GaN film forming method according to an embodiment of the present invention.
기판을 반응기에 장입시키고 기판표면처리단계를 수행한다(S10). 기판으로는 사파이어(Al2O3), 실리콘 카바이드(SiC), 또는 실리콘(Si) 기판 등을 사용할 수 있는데, 기판의 종류에 의해 본 발명이 제한을 받는 것은 아니다. 기판표면처리단계(S10)는 In기체로 기판표면을 처리하는 단계(S12)와 NH3와 GaCl 기체로 기판 표면을 번갈아 가면서 처리하는 단계(S18)를 포함한다.The substrate is charged to the reactor and the substrate surface treatment step is performed (S10). As the substrate, sapphire (Al 2 O 3), silicon carbide (SiC), or silicon (Si) substrate may be used, but the present invention is not limited by the type of substrate. Substrate surface treatment step (S10) includes the step of treating the substrate surface with In gas (S12) and the step of treating the substrate surface alternately with NH3 and GaCl gas (S18).
In 기체로 기판 표면을 처리하는 단계(S12)는 상기 반응기의 온도를 900 내지 1100℃로 유지하면서 GaN막 성장단계(S20) 시에 상기 반응기에 흘려주는 전체 기체량의 0.01 내지 0.1%에 해당하는 양으로 0.5 내지 5분 동안 In기체를 상기 반응기 내로 흘려보내어 상기 기판 표면을 처리하는 단계이다.Treating the substrate surface with In gas (S12) corresponds to 0.01 to 0.1% of the total amount of gas flowing into the reactor during the GaN film growth step (S20) while maintaining the temperature of the reactor at 900 to 1100 ° C. Treating the substrate surface by flowing In gas into the reactor in an amount of 0.5 to 5 minutes.
NH3와 GaCl 기체로 기판 표면을 번갈아 가면서 처리하는 단계(S18)는 상기 In 기체의 공급을 중단하고 행하는데, 구체적으로 상기 반응기의 온도를 1000 내지 1200℃로 유지하면서 GaN막 성장단계(S20) 시에 상기 반응기에 흘려주는 전체 기체량의 30 내지 50%에 해당하는 양으로 60 내지 90분 동안 NH3 기체를 상기 반응기 내로 흘려보내어 상기 기판 표면을 처리하고, 이어서 상기 NH3 기체의 공급을 중단하고 상기 반응기의 온도를 1000 내지 1200℃로 유지하면서 GaN막 성장단계(S20) 시에 상기 반응기에 흘려주는 전체 기체량의 30 내지 50%에 해당하는 양으로 60 내지 90분 동안 GaCl기체를 상기 반응기 내로 흘려보내어 상기 기판 표면을 처리하는 과정을 반복하는 단계이다. 물론, 1회만 행하여도 무방하다.Alternating the surface of the substrate with NH 3 and GaCl gas (S18) is performed by stopping the supply of In gas. Specifically, during the GaN film growth step (S20) while maintaining the temperature of the reactor at 1000 to 1200 ° C. Flowing the NH 3 gas into the reactor for 60 to 90 minutes in an amount corresponding to 30 to 50% of the total amount of gas flowing into the reactor to treat the substrate surface, and then stopping the supply of the NH 3 gas and The GaCl gas was flowed into the reactor for 60 to 90 minutes in an amount corresponding to 30 to 50% of the total amount of gas flowing into the reactor during the GaN film growth step (S20) while maintaining the temperature of 1000 to 1200 ℃. The process of treating the substrate surface is repeated. Of course, you may carry out only once.
이 단계에서 중요한 것은 NH3와 GaCl 기체를 동시에 상기 반응기에 공급하면 이들 사이에 반응이 일어나 기판 상에 GaN막이 증착되어 버리기 때문에 NH3와 GaCl 기체가 동시에 상기 반응기로 공급되는 일이 없도록 주의해야 한다.In this step, it is important to be careful not to supply NH3 and GaCl gas to the reactor at the same time because the reaction between them and the GaN film is deposited on the substrate.
NH3와 GaCl 기체 둘 중에 어느 것을 먼저 공급하느냐는 상관없으며 도 1a의 경우는 NH3 기체를 먼저 공급하는 경우이고, 도 1b의 경우는 GaCl 기체를 먼저 공급하는 경우이다.It is irrelevant to which one of NH3 and GaCl gas are supplied first. In FIG. 1A, NH3 gas is supplied first, and in FIG. 1B, GaCl gas is supplied first.
기판표면처리단계(S10)가 끝나면 상기 반응기의 온도를 ( ) 내지 ( )℃로 유지하면서 상기 반응기 내에 NH3 기체와 GaCl 기체를 동시에 흘려보내 상기 기판 상에 GaN막을 에피텍셜 성장시킨다(S20).그리고, GaN막이 형성된 기판을 상온까지 냉각시킨다(S30).After the substrate surface treatment step (S10) is finished, while maintaining the temperature of the reactor at () to () ℃ simultaneously flowing NH3 gas and GaCl gas in the reactor to epitaxially grow a GaN film on the substrate (S20). The substrate on which the GaN film is formed is cooled to room temperature (S30).
에피층(epilayer)을 성장시키는 방법으로는 크게 VPE(Vapor Phase Epitaxialgrowth), LPE(Liquid Phase Epitaxial growth), 및 SPE(Solid Phase Epitaxial growth)를 들 수 있다.Methods of growing an epilayer include a large phase phase epitaxial growth (VPE), a liquid phase epitaxial growth (LPE), and a solid phase epitaxial growth (SPE).
여기서, VPE는 반응가스를 기판위로 흘리면서 열에 의한 분해와 반응을 통해 기판 위에 결정을 성장시키는 것으로서 반응가스의 원료형태에 따라 수소화물 VPE(hydride VPE, HVPE), 할로겐화물 VPE(halide VPE), 유기금속 VPE(metal organic VPE, MOVPE) 등으로 분류할 수 있는데, 본 발명은 GaN막을 성장시킴에 있어서 HVPE(hydride VPE)방법을 사용한 것이다.Here, the VPE is to grow crystals on the substrate through decomposition and reaction by heat while flowing the reaction gas on the substrate, depending on the raw material of the reaction gas, hydride VPE (HVPE), halide VPE (halide VPE), organic It can be classified as metal organic VPE (MOVPE), etc. The present invention uses the HVPE (hydride VPE) method for growing a GaN film.
HVPE법으로 기판 상에 바로 GaN막을 성장시키면 통상 전위밀도가 107내지 108/cm2정도 되는데, 본 발명과 같이 기판표면 전처리(S18)를 행한 후에 GaN막을 성장시키면 이 보다 낮은 106/cm2이하의 전위 밀도를 갖게 된다.When grown directly GaN film on a substrate by HVPE method, there is 10 7 to 10 8 / cm 2 but normally dislocation density, after carrying the substrate surface pre-treatment (S18) as in the present invention GaN When grown film is lower than 10 6 / cm It has a dislocation density of 2 or less.
상술한 바와 같이 본 발명에 의하면, GaN막 성장(S20) 전에 기판표면 처리단계(S10)를 더 거침으로서 사파이어 등의 기판 상에 GaN막을 에피텍셜 성장시킬 수 있을 뿐만 아니라 GaN막의 전위밀도를 감소시킬 수 있다. 특히, 기판표면 처리단계(S10)는 처음에는 In 기체를 이용하고, 그 이후로는 GaN막을 에피텍셜 성장시키는데 사용되는 NH3와 GaCl 기체를 번갈아 가면서 이용하기 때문에 GaN막의 성장과 기판표면처리를 하나의 반응기 안에서 연속적으로 수행할 수 있어서 간단하게 GaN막의 전위밀도를 감소시킬 수 있다는 잇점이 있다.As described above, according to the present invention, the GaN film can be epitaxially grown on the substrate such as sapphire by further passing the substrate surface treatment step (S10) before the GaN film growth (S20), and the potential density of the GaN film can be reduced. Can be. In particular, since the substrate surface treatment step (S10) uses an In gas at first, and then alternately use NH3 and GaCl gas used to epitaxially grow the GaN film, the growth of the GaN film and the substrate surface treatment are performed in one step. It can be carried out continuously in the reactor, there is an advantage that it is possible to simply reduce the dislocation density of the GaN film.
본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0081660A KR100525725B1 (en) | 2002-12-20 | 2002-12-20 | Method for forming low-defect GaN film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0081660A KR100525725B1 (en) | 2002-12-20 | 2002-12-20 | Method for forming low-defect GaN film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040055071A true KR20040055071A (en) | 2004-06-26 |
KR100525725B1 KR100525725B1 (en) | 2005-11-03 |
Family
ID=37347806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0081660A KR100525725B1 (en) | 2002-12-20 | 2002-12-20 | Method for forming low-defect GaN film |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100525725B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090275190A1 (en) * | 2008-05-02 | 2009-11-05 | Grand Tech Co., Ltd | METHOD FOR FORMING BUFFER LAYER FOR GaN SINGLE CRYSTAL |
KR20170036299A (en) | 2015-09-24 | 2017-04-03 | 한국과학기술연구원 | Electric carts for stairs and hill |
-
2002
- 2002-12-20 KR KR10-2002-0081660A patent/KR100525725B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090275190A1 (en) * | 2008-05-02 | 2009-11-05 | Grand Tech Co., Ltd | METHOD FOR FORMING BUFFER LAYER FOR GaN SINGLE CRYSTAL |
US8383494B2 (en) * | 2008-05-02 | 2013-02-26 | Grand Tech Co., Ltd | Method for forming buffer layer for GaN single crystal |
KR20170036299A (en) | 2015-09-24 | 2017-04-03 | 한국과학기술연구원 | Electric carts for stairs and hill |
Also Published As
Publication number | Publication date |
---|---|
KR100525725B1 (en) | 2005-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5099763B2 (en) | Substrate manufacturing method and group III nitride semiconductor crystal | |
US8728938B2 (en) | Method for substrate pretreatment to achieve high-quality III-nitride epitaxy | |
US6528394B1 (en) | Growth method of gallium nitride film | |
CN101845670A (en) | The technology that is used for the growth of planar semi-polar gallium nitride | |
US20060175681A1 (en) | Method to grow III-nitride materials using no buffer layer | |
JPH02211620A (en) | Method of growing single crystal thin film of compound semiconductor | |
CN111081834B (en) | Novel method for growing GaN epitaxial layer on sapphire and GaN epitaxial layer | |
US9396936B2 (en) | Method for growing aluminum indium nitride films on silicon substrate | |
US9023673B1 (en) | Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions | |
KR100525725B1 (en) | Method for forming low-defect GaN film | |
JPH09295890A (en) | Apparatus for producing semiconductor and production of semiconductor | |
CN115188658A (en) | Growth method of graphical aluminum nitride buffer layer and semiconductor device | |
KR20040069526A (en) | Crystal growth method of nitride compound semiconductor | |
KR100589536B1 (en) | METHOD FOR PREPARING GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL | |
US20080203409A1 (en) | PROCESS FOR PRODUCING (Al, Ga)N CRYSTALS | |
JPH0754806B2 (en) | Method for growing compound semiconductor single crystal film | |
JP2677221B2 (en) | Method for growing nitride-based III-V compound semiconductor crystal | |
KR100626868B1 (en) | GaN film having a low dislocation density and formation method thereof | |
JP2020075839A (en) | SiC SUBSTRATE FOR GROWING GALLIUM NITRIDE BASED COMPOUND SEMICONDUCTOR | |
JPH08208385A (en) | Method for growing gallium nitride semiconductor crystal | |
KR101220825B1 (en) | Method of growing single crystal nitride | |
KR20090030651A (en) | A gallium nitride based light emitting device | |
KR20060072693A (en) | Gan substrate and method thereof | |
KR100599123B1 (en) | Fabrication method of nitride semiconductor | |
KR101532267B1 (en) | Method for manufacturing nitride-based light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131029 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141022 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151002 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20161012 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171011 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20181002 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20191001 Year of fee payment: 15 |