KR20040053602A - Desulfurization material injecting method for improving desulfurizing efficiency - Google Patents

Desulfurization material injecting method for improving desulfurizing efficiency Download PDF

Info

Publication number
KR20040053602A
KR20040053602A KR1020020080750A KR20020080750A KR20040053602A KR 20040053602 A KR20040053602 A KR 20040053602A KR 1020020080750 A KR1020020080750 A KR 1020020080750A KR 20020080750 A KR20020080750 A KR 20020080750A KR 20040053602 A KR20040053602 A KR 20040053602A
Authority
KR
South Korea
Prior art keywords
molten iron
desulfurizer
hot metal
desorbent
desulfurizing
Prior art date
Application number
KR1020020080750A
Other languages
Korean (ko)
Inventor
노우진
정태정
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020080750A priority Critical patent/KR20040053602A/en
Publication of KR20040053602A publication Critical patent/KR20040053602A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE: A desulfurizer injecting method for improving hot metal desulfurizing efficiency is provided to reduce consumption of desulfurizer and shorten desulfurizing time by maximizing efficiency of reaction of desulfurizer with sulfur during hot metal pre-treating operation. CONSTITUTION: In a method for injecting desulfurizer into hot metal when desulfurizing hot metal, the desulfurizer injecting method for improving hot metal desulfurizing efficiency comprises the processes of forming a pipe line(12) inside an impeller(10) mechanically rotated; injecting powder shaped desulfurizer(14) into hot metal through the pipe line by pressure of nitrogen gas, and injecting lump shaped desulfurizer onto the surface of hot metal at the same time; and desulfurizing hot metal as rotationally agitating hot metal, wherein desulfurizing process is performed by selectively injecting the powder shaped desulfurizer, the lump shaped desulfurizer or both thereof into hot metal according to circumstances.

Description

용선 탈류효율 향상을 위한 탈류제 투입방법{DESULFURIZATION MATERIAL INJECTING METHOD FOR IMPROVING DESULFURIZING EFFICIENCY}DESULFURIZATION MATERIAL INJECTING METHOD FOR IMPROVING DESULFURIZING EFFICIENCY

본 발명은 용선을 용강으로 정련하는 제강 공정에서 용선에 함유되어 있는불순물인 유황(SULFUR)을 제거하기 위해 전로에서 정련하기 전에 용선 운반용기에서 미리 탈류처리하는 용선예비처리 작업시 탈류제가 유황과 반응하는 효율을 극대화시켜 탈류제의 사용량을 절감하고 처리시간을 단축시킬 수 있도록 한 용선 탈류효율 향상을 위한 탈류제 투입방법에 관한 것이다.In the present invention, in the steelmaking process of refining molten iron into molten steel, the desulfurization agent reacts with sulfur during the preliminary treatment of the molten iron in a molten iron vessel before refining in a converter to remove sulfur (SULFUR) contained in the molten iron. The present invention relates to a desulfurizer input method for improving the molten iron desulfurization efficiency to reduce the amount of desorbent and shorten the treatment time by maximizing efficiency.

일반적으로, 고로에서 생산된 용선을 대상으로 하는 탈류제중 널리 사용되는 것으로는 생석회계 탈류제, 칼슘카바이드계 탈류제, 탄산나트륨계가 있다.In general, among the desulfurization agents for molten iron produced in the blast furnace is a quicklime-based dehydrating agent, calcium carbide-based desorbent, sodium carbonate-based.

이러한 탈류제가 용선 안으로 침투하여 유황과 반응을 일으키도록 탈류제를 공급하는 방법으로는 탈류제의 입도로 구분하여 괴상(덩어리)으로 용선의 상부에 투입하는 방법과 미분체를 용선 안으로 취입하는 방법으로 대별할 수 있다.The method of supplying the desorbent so that the desorbent penetrates into the molten iron and reacts with the sulfur is divided into the particle size of the desorbent and injected into the upper part of the molten iron as a mass (lump) and the method of blowing the fine powder into the molten iron. It can be distinguished.

괴상의 탈류제를 사용할 경우는 도 1과 같이, 기계식 교반법인 KR(Kanvara Reactor) 방식을 사용하는데 이는 주로 괴상의 생석회(1a)를 상부에서 투입하고 표면에 내화물을 입힌 임펠러(2a)를 용선에 침지하여 회전시키면서 용선을 교반하며, 이때 발생하는 교반력에 의해 용선의 유황과 생석회가 반응하도록 한 방법이며; 미분체인 탈류제를 사용할 경우는 도 2와 같이, 표면에 내화물을 입힌 철제 파이프(2b)를 용선 안으로 담그고 이 파이프(2b)를 통하여 미분체인 탈류제(1b)를 강한 압력으로 용선 안으로 침투시켜 유황과 반응하도록 하는 주입(Injection)방법이 있는데 주입시의 압력은 용선에 교반력을 부여하는 역할도 담당하고 있다.In the case of using a bulk desorbent, as shown in Fig. 1, a mechanical stirring method (KR) is used, which is mainly a KR (Kanvara Reactor) method, in which a bulky lime (1a) is introduced from the top and a refractory impeller (2a) coated on the surface of the molten iron. Stirring the molten iron while immersing and rotating, wherein the sulfur and the quicklime of the molten iron react by the stirring force generated; In the case of using the fine powder desorbent, as shown in FIG. 2, the iron pipe 2b coated with refractory on the surface is immersed in the molten iron, and the fine powder desorbent 1b is penetrated into the molten iron through a strong pressure through the pipe 2b. There is an injection method that reacts with the pressure, and the pressure at the time of injection also plays a role of imparting agitation force to the molten iron.

통상, 생석회에 의한 탈류 반응식은 다음과 같다.Usually, the dehydration scheme by quicklime is as follows.

[반응식][Scheme]

CaO + [S]+ [C] = (CaS) + COCaO + [S] + [C] = (CaS) + CO

CaC2+ [S] = (CaS) + 2[C]CaC 2 + [S] = (CaS) + 2 [C]

탈류반응은 위의 반응식과 같이 치환반응에 의해 일어나는데 용선중 황(S)과 탈류제와의 접촉속도가 탈류속도를 지배하는데 용선중 황의 이동은 용선의 유동특성에 의해 지배된다.The degassing reaction is caused by substitution reaction as in the above equation, and the contact speed between sulfur (S) and desorbent in molten iron dominates the degassing rate, and the movement of sulfur in molten iron is governed by the flow characteristics of molten iron.

즉, 용선의 교반특성을 개선함으로써 용선중 황의 이동속도를 빠르게 하여 탈류제와의 반응확률을 증대시킴으로서 탈류반응 속도를 증대시킬 수 있다.In other words, by improving the stirring characteristics of the molten iron can increase the rate of reaction of the molten iron to increase the reaction probability with the desorbing agent to increase the rate of deflow reaction.

그러나, KR 탈류법은 상부에 별도로 설치된 호퍼에서 탈류제를 피더로 절출하여 용선의 표면에 투입함에 반해, 분체의 탈류제를 사용할 경우에는 처리중 발생하는 분진 등을 흡입하기 위한 덕트로 탈류제가 흡입되어 손실되기 때문에 탈류제의 입도는 괴상의 탈류제로 한정되고, 임펠러를 회전시킬 때 발생하는 교반력에 의해 생긴 용선의 와류에 의해 상부에 투입한 탈류제가 용선중으로 침투하여 탈류반응이 진행되므로 임펠러의 회전속도가 클수록 탈류제의 분산이 커지며 탈류제와 유황과의 반응효율도 커짐을 알 수 있다.However, in the KR dehydration method, the desorbent is fed into the surface of the molten iron in a hopper separately installed at the top, and when desorbent is used, the desorbent is sucked into the duct for sucking dust generated during processing. The particle size of the desorbent is limited to the bulk desorbent, and the desorbent introduced to the upper side is introduced into the molten iron by the vortex of the molten iron caused by the stirring force generated when the impeller is rotated. It can be seen that the higher the rotation speed, the greater the dispersion of the desorbent and the greater the reaction efficiency of the desorbent and the sulfur.

하지만, 와류에 의해 혼입된 탈류제는 임펠러가 회전하는 만큼 빠르게 반응하지 못하여 투입된 탈류제(생석회)가 탈류에 기여하는 탈류제 반응효율(하기한 식 1)의 상승에 크게 기여하지 못하기 때문에 주어진 처리시간내에 원하는 범위의 탈류를 행하기 어렵다.However, because the desorbent mixed by the vortex does not react as fast as the impeller rotates, the desorbent (quick lime) does not contribute to the increase of the desorbent reaction efficiency (Eq. It is difficult to carry out dehydration in a desired range within the treatment time.

또한, 괴상의 탈류제를 사용하므로써 투입량에 비해 용선과 반응하는 면적이 적으므로 높은 효율을 얻기 어렵고, 처리용기 밖으로 용선이나 슬래그가 넘쳐 흐를염려가 있어 임펠러의 침적깊이비(하기한 식 2)를 낮게 유지하여야 하기 때문에 용기 하부에서는 반응효율이 극히 나빠 탈류가 잘 일어나지 않는 반응 정체구역이 존재하는 문제점이 있다.In addition, the use of a bulk desorbent reduces the area of reaction with the molten iron relative to the input amount, making it difficult to obtain high efficiency, and the molten iron and slag may overflow out of the processing vessel, and the impeller depth ratio (Equation 2) Since the reaction vessel is extremely poor in the lower part of the vessel because it has to be kept low, there is a problem that there is a reaction stagnation zone in which dehydration does not occur.

한편, 주입방법은 상부에 별도로 설치되어 있는 호퍼에서 직하부의 디스펜서로 탈류제를 절출하고 질소 등으로 디스펜서를 가압하여 용선안으로 침지되어 있는 랜스를 통하여 취입하며, 교반력을 동시에 부여하는 방식으로 사용되는 탈류제의 입도는 미분체 상태로 한정되는데 용선안에서 탈류제의 자체 교반력이 약하여 용선위로 부상하는 속도가 비교적 빠르므로 반응효율이 떨어지고, 또한 2~3회 사용시 랜스에 리크가 발생하고 랜스 선단이 절단되어 떨어져 나가는 등 랜스수명이 짧아 경제성도 떨어진다.On the other hand, the injection method is used to remove the dehydrating agent from the hopper separately installed in the upper portion to the dispenser in the lower portion, pressurize the dispenser with nitrogen, and blow it through the lance immersed in the molten iron and apply the stirring force at the same time. The particle size of the desorbent is limited to the fine powder state, but the self-stirring force of the desorbent is weak in the molten iron, so that the rate of rise to the molten iron is relatively high, and thus the reaction efficiency decreases. The lance life is short, such as cutting off, resulting in poor economic efficiency.

(식 1)(Equation 1)

(식 2)(Equation 2)

침적깊이비(%) = 임펠러 침적깊이/용선 탕면의 높이 * 100Sedimentation Depth Ratio (%) = Impeller Depth Depth / Holder Floor Height * 100

본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, 용선 탈류제를 수급환경에 따라 괴상, 미분체 두 가지를 선택적 또는 동시에 사용할 수 있도록 대응성을 주고, 투입된 탈류제가 용선중에 체류하는 시간을 길게 함으로써 탈류제가 유황과 결합하는 기회를 증대시켜 탈류효율 향상에 의한 탈류제 사용량 절감의 효과와 투입된 탈류제가 용선중에 고르게 분포하도록 함으로써 반응 정체구역을 해소하여 탈류시간을 단축시킴에 따라 생산성을 향상시킬 수 있도록 한 용선 탈류효율 향상을 위한 탈류제 투입방법을 제공함에 그 목적이 있다.The present invention has been made in view of the above-described problems of the prior art as described above, and it has been created to solve this problem. By increasing the time the desorbent stays in the molten iron, it increases the chance of the desorbent to combine with sulfur, thereby reducing the amount of desorbent used by improving the degassing efficiency, and distributing the reaction stagnant zone by eliminating the reaction stagnant zone. The purpose of the present invention is to provide a degreasing agent input method for improving the molten iron desulfurization efficiency to improve the productivity by shortening.

도 1은 종래 임펠러를 이용한 기계식 교반에 의한 용선 탈류과정을 보인 예시도,1 is an exemplary view showing a molten iron degassing process by the mechanical stirring using a conventional impeller,

도 2는 종래 랜스를 이용하여 미분체를 취입하는 형태의 용선 탈류과정을 보인 예시도,Figure 2 is an exemplary view showing a molten iron degassing process of blowing the fine powder using a conventional lance,

도 3은 본 발명에 따라 내부에 파이프라인이 형성된 임펠러의 예시 단면도,3 is an exemplary cross-sectional view of an impeller with a pipeline formed therein according to the present invention;

도 4는 본 발명에 따른 탈류제 투입방법을 보인 동작상태도,Figure 4 is an operating state showing a desorbent input method according to the present invention,

도 5 및 도 6은 본 발명 실시예에 따른 기존방법과의 대비 그래프.5 and 6 are graphs compared with the existing method according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10....임펠러 12....파이프라인10 ... impeller 12 ... pipeline

14....탈류제 20....호퍼14..Degreaser 20 .... hopper

22....디스펜서22 .... Dispenser

본 발명의 상기한 목적은, 용선 탈류시 탈류제를 투입하는 방법에 있어서, 기계식으로 회전되는 임펠러 내부에 파이프라인을 형성하고 이 파이프라인을 통해 분체인 탈류제를 질소가스의 압력으로 취입함과 동시에 용선의 표면으로는 괴상의 탈류제를 투입하여 용선을 회전교반시키면서 탈류처리하는 것을 특징으로 하는 용선 탈류효율 향상을 위한 탈류제 투입방법을 제공함에 의해 달성된다.The above object of the present invention, in the method of injecting the desorbent during molten iron degassing, forming a pipeline inside the mechanically rotated impeller and blows the powder desorbent under the pressure of nitrogen gas through the pipeline; At the same time, the surface of the molten iron is achieved by providing a desulfurizing agent input method for improving the molten iron desulfurization efficiency, characterized in that the degreasing treatment while stirring the molten iron by the addition of a bulk desorbent.

이하에서는, 첨부도면을 참고하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명에 관계되는 탈류제의 투입방법은 괴상의 탈류제와 미분체인 탈류제를 선택적 또는 동시에 사용할 수 있도록 하고, 용선에 부여하는 교반력도 임펠러를 이용하되 임펠러 내부에 파이프라인을 형성하고 이를 통해 N2등의 가스와 함께 분체인 탈류제가 취입될 수 있도록 한 후 임펠러를 회전시킴으로써 래들위에 투입한 탈류제가 와류를 통하여 용선 안으로 혼입되어 괴생석회(CaO)를 함께 사용할 수 있게 구성한 것이다.In the method of introducing the desorbent according to the present invention, the bulk desorbent and the fine powder desorbent can be used at the same time or selectively, and the stirring force applied to the molten iron is also used by using an impeller to form a pipeline inside the impeller. The desorbent, which is powdered together with the gas such as N 2 , is blown and then rotated by the impeller, so that the desorbent added to the ladle is mixed into the molten iron through the vortex and used together with the CaO.

즉, 도 3에서와 같이, 교반력을 유발시키는 임펠러(10)의 내부에 중공형의 파이프라인(12)을 형성하고, 이 파이프라인(12)을 통해 질소가스와 함께 도 4에서와 같이 분체인 탈류제(14)가 투입될 수 있도록 하여 임펠러(10)에 의해 유발된 와류에 의해 탈류제(14)의 용강내 혼입이 원활하게 이루어지도록 한 것이다.That is, as shown in Figure 3, to form a hollow pipeline 12 in the interior of the impeller 10 causing the stirring force, through the pipeline 12 together with the nitrogen gas as shown in Figure 4 Phosphorus desorbent 14 is to be introduced to facilitate the in-mold mixing of the desorbent 14 by the vortex caused by the impeller (10).

작용에 있어, 호퍼(20)에는 분체인 탈류제(14)를 저장하고 필요한 양을 디스펜서(22)로 보내게 되면, 디스펜서(22)는 질소로 가압하여 탈류제(14)를 그 이송라인을 통하여 용선 내부로 침투시킨다.In operation, when the hopper 20 stores the powder desorbent 14 and sends the required amount to the dispenser 22, the dispenser 22 pressurizes with nitrogen to transfer the desorbent 14 to its transfer line. Penetrate into the charter.

이때, 투입된 탈류제(14)는 처리 용기의 아래방향으로 토출되며 용선의 교반력도 하방으로 형성되어 미분체인 탈류제(14)가 용선안에서 체류하는 시간이 길어지고 KR의 단점인 용기 하부에서의 반응 정체구역이 해소된다.At this time, the introduced desorbent 14 is discharged in the downward direction of the processing vessel and the stirring force of the molten iron is also formed downward so that the time for which the fine powder desorbent 14 stays in the molten iron is longer and the disadvantage of KR The reaction congestion zone is eliminated.

또한, 임펠러(10)가 지속적으로 회전하고 있기 때문에 용선 전체에 고르게 탈류제(14)를 분포시킬 수 있어서 탈류효율의 극대화를 도모할 수 있다.In addition, since the impeller 10 is continuously rotating, the deflow agent 14 can be evenly distributed throughout the molten iron, thereby maximizing the deflow efficiency.

한편, 용선의 표면에는 종전의 KR과 같이 투입된 또다른 탈류제인 괴상의 생석회가 임펠러(10)의 회전에 의한 교반력에 의해 용선과 지속적인 반응을 일으켜 이 두 가지 탈류작용에 의해 신속한 탈류작업이 이루어져 처리시간이 단축된다.On the other hand, on the surface of the molten iron, a mass quicklime, another desulfurizing agent introduced as in KR, causes a continuous reaction with the molten iron by the stirring force by the rotation of the impeller 10, so that the rapid dehydration is performed by these two deflowing actions. The processing time is shortened.

이하, 실시예에 대하여 설명한다.Hereinafter, an Example is described.

[실시예]EXAMPLE

고로에서 출선된 용선을 운반용기이자 반응용기인 레이들 담고 기존의 투입방법과 발명에 의한 방법으로 비교 처리를 실시하였다.The molten iron from the blast furnace was carried out using a ladle, which is a transport container and a reaction container, and compared with the conventional charging method and the method according to the invention.

그리고, 각각의 조건은 표 1에, 처리후의 결과는 표 2에 나타내었다.In addition, each condition is shown in Table 1, and the result after a process is shown in Table 2.

괴상의 탈류제와 미분체인 탈류제의 투입량 분할은 괴상 50% : 분체 50%의 비율로 투입하였고, 처리개시부터 종료시점까지 3분 간격으로 시료 샘플링과 온도를 측정하여 용선중 유황의 거동과 처리시간에 따른 온도강하량을 측정하였다.The separation of bulk desorbents and fine powder desorbents was carried out at a ratio of 50% to 50% of powder, and sampled and temperature measured at intervals of 3 minutes from the start of treatment to the end of the process. The temperature drop over time was measured.

또한, 정체구역의 유무를 확인하기 위하여 탈류처리 완료후 별도의 래들에 용선을 따라 붓고, 랜스를 침적시킨 후 질소를 2분간 취입하는 공취를 실시하여 용선을 균일하게 섞은 다음 시료를 채취하여 탈류처리후의 유황농도와 비교하였다.In addition, to confirm the presence of the stagnant zone, after completion of the dehydration treatment, a separate ladle is poured along the molten iron, and the lance is deposited, followed by a blown of nitrogen for 2 minutes to uniformly mix the molten iron, and then take a sample to perform the dehydration treatment. It was compared with the subsequent sulfur concentration.

상기 표 2의 탈류제 반응효율 ηCaO(%)과 탈류율, 탈류제 원단위는 각각 상술한 식 1과 식 3,4에 의해 계산된다.The desorbent reaction efficiency ηCaO (%), the dehydration rate, and the desorbent raw unit in Table 2 are calculated by the above-described equations 1 and 3,4, respectively.

(식 1)(Equation 1)

(식 3)(Equation 3)

탈류율(%)=(처리전 [%S]-처리후 [%S])/처리전 [%S] * 100% Withdrawal rate = ([% S] before treatment-[% S] after treatment) / [% S] before treatment * 100

(식 4)(Equation 4)

탈류제원단위(kg/t.p)=탈류제 투입량/처리용선량 *100Desulfurization unit (kg / t.p) = Desulfurizer input / treatment dose * 100

탈류제 반응효율은 투입된 탈류제(이 경우는 CaO)가 용선중의 유황과 어느정도 결합하였는지 효율을 나타낸다.The desorbent reaction efficiency represents the efficiency of the combined desorbent (in this case, CaO) with the sulfur in the molten iron.

상기 표 2의 결과에서, 본 발명에 의한 방법의 탈류제 반응 효율은 기존의 KR법이나 주입방법에 비해 월등히 양호한 결과를 나타내고 있는데, 이는 본 발명에서 강구한 수단 즉, 임펠러 내부에 설치한 파이프라인을 통해 공급되는 미분체 탈류제가 처리 용기의 하방으로 취입되고, 임펠러의 회전력은 탈류제가 상부로 부상하는 것을 억제하는 작용을 하기 때문에 탈류제 입자가 용선 내부에 고른 분포를 촉진하며, 용선중에서 체류하는 시간을 길게 하도록 하기 때문에 유황과의 반응하는 기회를 증대하기 때문이다.In the results of Table 2, the desorbent reaction efficiency of the method according to the present invention shows a much better result than the conventional KR method or injection method, which means that the means devised in the present invention, that is, the pipeline installed inside the impeller The fine powder desorbent supplied through the blower is blown into the lower side of the processing vessel, and the rotational force of the impeller serves to suppress the rise of the desorbent to the upper portion, thereby promoting the even distribution of the desorbent particles in the molten iron and remaining in the molten iron. This is because it increases the chance of reacting with sulfur because the time is long.

또한, 용선의 상층부에서는 상부로 투입되는 괴상의 탈류제가 임펠러의 회전력으로 용선에 발생한 와류에 의해 용선 안으로 휩쓸려 들어가기 때문에 용선 전체로 보면 상층부에서부터 하층부 까지 고르게 탈류반응이 이루어 진다. 이는 동시에 기존의 KR법이나 주입방법의 단점인 반응 정체구역을 해소하는 것을 의미하는데,탈류처리 후 측정한 유황농도와 질소만으로 용선을 고르게 섞은 후 유황농도를 측정한 값의 차이가 본 발명에 의한 방법에는 거의 없다는 것이 이를 증명해 주고 있다.In addition, in the upper part of the molten iron, the bulky desorbent injected into the upper part is swept into the molten iron by the vortex generated in the molten iron by the rotational force of the impeller, so that the entire molten iron is uniformly deflowed from the upper layer to the lower layer. At the same time, it means to solve the reaction stagnant zone, which is a disadvantage of the conventional KR method or the injection method, and the difference between the sulfur concentration measured after dehydration and the molten iron evenly mixed only with nitrogen was measured by the present invention. Almost nothing in the method proves this.

아울러, 도 5 는 탈류처리를 진행하는 동안 3분 간격으로 시료를 채취하여 측정한 용선중의 유황농도의 거동을 나타낸 것으로 본 발명에 의한 방법은 15분 경과 시점에서 통상적으로 탈류 처리 완료시점에서 나타나는 유황농도 0.005%에 달하고 있어 기존의 KR법이나 주입법에 비해 탈류 처리시간을 7분 정도 단축할 수 있고 탈류제 사용량도 30% 수준 절감할 수 있음을 알 수 있다.In addition, Figure 5 shows the behavior of the sulfur concentration in the molten iron measured by taking samples at intervals of 3 minutes during the dehydration process, the method according to the present invention usually appears at the completion of the dehydration process at 15 minutes As the sulfur concentration reaches 0.005%, it can reduce desulfurization treatment time by 7 minutes and reduce desulfurizer usage by 30% compared to the existing KR method or injection method.

또한, 도 6 은 탈류처리를 하는 동안의 용선 온도의 거동을 나타낸 것으로 개략적으로 1분 경과에 약 1℃정도 하강하고 있으며, 본 발명에 의한 방법의 결과에 의하면 약 15분 경과시에 탈류처리를 종료할 수가 있기 때문에 기존의 KR법이나 주입법과 비교할 때 용선온도 강하량을 30% 수준 줄일 수 있기 때문에 후공정인 전로공정에서 온도에 의한 부담을 줄일 수 있음을 알 수 있다.6 shows the behavior of the molten iron temperature during the dehydration treatment, which is roughly lowered by about 1 ° C. after 1 minute. According to the result of the method according to the present invention, the dehydration treatment is performed after about 15 minutes. As it can be terminated, it is possible to reduce the molten iron temperature drop by 30% compared with the conventional KR method or injection method, and thus it can be seen that the burden of temperature can be reduced in the converter process, which is a post process.

이상에서 상세히 설명한 바와 같이, 본 발명에 의한 탈류제 투입방법은 종래의 탈류처리 방법인 KR법과 주입법에 비해 괴상과 미분체 탈류제의 수급환경에 탄력적으로 대응할 수 있으며, 탈류제 사용량 절감과 탈류 처리시간의 단축, 온도 강하량 저감 및 우수한 탈류율을 얻을 수가 있고, 이에 따라 탈류작업에 소요되는 처리비용의 절감과 생산성 향상에 큰 효과를 거둘 수 있다.As described in detail above, the desorbent input method according to the present invention can flexibly cope with the supply and demand environment of the bulk and fine powder desorbent compared to the KR method and the injection method, which is a conventional dehydration method, reducing the amount of desorbent used and dewatering treatment It is possible to shorten the time, reduce the temperature drop, and obtain a good dewatering rate, which can greatly reduce the processing cost for the dewatering operation and improve productivity.

Claims (2)

용선 탈류시 탈류제를 투입하는 방법에 있어서,In the method of injecting the desorbing agent during molten iron 기계식으로 회전되는 임펠러 내부에 파이프라인을 형성하고 이 파이프라인을 통해 분체인 탈류제를 질소가스의 압력으로 취입함과 동시에 용선의 표면으로는 괴상의 탈류제를 투입하여 용선을 회전교반시키면서 탈류처리하는 것을 특징으로 하는 용선 탈류효율 향상을 위한 탈류제 투입방법.A pipeline is formed inside the impeller that is mechanically rotated, and through this pipeline, the powder degassing agent is blown under the pressure of nitrogen gas, and a bulk degassing agent is introduced to the surface of the molten iron while the molten iron is rotated and stirred to spin the molten iron. Desulfurizer input method for improving the molten iron desulfurization efficiency, characterized in that. 제1항에 있어서,The method of claim 1, 상기 탈류제는 괴상의 것과 미분체의 것을 상황에 따라 선택적하여 혹은 동시에 함께 투입하여 탈류처리하는 것을 특징으로 한는 용선 탈류효율 향상을 위한 탈류제 투입방법.The desulfurizing agent is a degreasing agent input method for improving the molten iron desulfurization efficiency, characterized in that the lumped and fine powders are selectively or simultaneously put together according to the situation.
KR1020020080750A 2002-12-17 2002-12-17 Desulfurization material injecting method for improving desulfurizing efficiency KR20040053602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020080750A KR20040053602A (en) 2002-12-17 2002-12-17 Desulfurization material injecting method for improving desulfurizing efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020080750A KR20040053602A (en) 2002-12-17 2002-12-17 Desulfurization material injecting method for improving desulfurizing efficiency

Publications (1)

Publication Number Publication Date
KR20040053602A true KR20040053602A (en) 2004-06-24

Family

ID=37346826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020080750A KR20040053602A (en) 2002-12-17 2002-12-17 Desulfurization material injecting method for improving desulfurizing efficiency

Country Status (1)

Country Link
KR (1) KR20040053602A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009800B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Method and apparatus for injecting the desulfurizer of hot metal
KR101246197B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 Method for supplying carbon additive in ladle furnace
KR101412124B1 (en) * 2012-09-27 2014-06-26 현대제철 주식회사 Converter apparatus
WO2015020262A1 (en) * 2013-08-07 2015-02-12 주식회사 포스코 Molten iron refining method and device thereof
KR20150018623A (en) * 2012-07-20 2015-02-23 제이에프이 스틸 가부시키가이샤 Molten iron preliminary treatment method and stirrer for molten iron preliminary treatment
KR101687292B1 (en) * 2015-12-18 2016-12-16 신일인텍 주식회사 Desulfurization device for ladle
KR20200079756A (en) 2018-12-26 2020-07-06 현대제철 주식회사 Method for controlling sulfur component in kanvara reactor process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009800B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Method and apparatus for injecting the desulfurizer of hot metal
KR101246197B1 (en) * 2011-02-24 2013-03-21 현대제철 주식회사 Method for supplying carbon additive in ladle furnace
KR20150018623A (en) * 2012-07-20 2015-02-23 제이에프이 스틸 가부시키가이샤 Molten iron preliminary treatment method and stirrer for molten iron preliminary treatment
CN104471082A (en) * 2012-07-20 2015-03-25 杰富意钢铁株式会社 Molten iron preliminary treatment method and stirrer for molten iron preliminary treatment
KR101412124B1 (en) * 2012-09-27 2014-06-26 현대제철 주식회사 Converter apparatus
WO2015020262A1 (en) * 2013-08-07 2015-02-12 주식회사 포스코 Molten iron refining method and device thereof
CN105452493A (en) * 2013-08-07 2016-03-30 株式会社Posco Molten iron refining method and device thereof
US10077482B2 (en) 2013-08-07 2018-09-18 Posco Molten iron refining method and device thereof
KR101687292B1 (en) * 2015-12-18 2016-12-16 신일인텍 주식회사 Desulfurization device for ladle
KR20200079756A (en) 2018-12-26 2020-07-06 현대제철 주식회사 Method for controlling sulfur component in kanvara reactor process

Similar Documents

Publication Publication Date Title
KR100695650B1 (en) Refining agent and refining method
JP6061053B2 (en) Hot metal desulfurization method and desulfurization agent
JP2005179690A (en) Method for desulfurizing molten pig iron
KR20040053602A (en) Desulfurization material injecting method for improving desulfurizing efficiency
JP2007031810A (en) Desulfurizing treatment method for molten iron
JP2010163697A (en) Method for desulfurizing molten pig iron
US20090013827A1 (en) Conditioned Quicklime for Injection to a Molten Bath of a Steel-Making Vessel
CN113122673A (en) CaC using calcium carbide2Process for pretreating converter blowing end point steel slag
JP5446300B2 (en) Hot metal desulfurization treatment method
JP4649694B2 (en) Hot metal refining method
JPS6333512A (en) Pre-treating method for molten iron
JPS63105914A (en) Treating method for refining molten iron
JP2000290714A (en) Method for refining molten iron
JP4882171B2 (en) Hot phosphorus dephosphorization method
JP5418248B2 (en) Hot metal desulfurization method
JP2001181723A (en) Flux for dephosphorizing molten iron and method of manufacturing molten low phosphorus iron
JPS62196314A (en) Operating method for converter
JP2001064715A (en) Desulfurizing agent for molten iron and using method thereof
SU975811A1 (en) Method for smelting steel
JPH0364410A (en) Pretreatment of molten iron
JP2006336036A (en) Method for desulfurizing molten iron
CN108588317A (en) a kind of ultra-pure pig iron preparation system and preparation method
JPH1088216A (en) Method for desulfurizing molten iron
JPS591609A (en) Refining method of molten iron
JP2010255054A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application