KR20040052533A - The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density - Google Patents
The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density Download PDFInfo
- Publication number
- KR20040052533A KR20040052533A KR1020040014158A KR20040014158A KR20040052533A KR 20040052533 A KR20040052533 A KR 20040052533A KR 1020040014158 A KR1020040014158 A KR 1020040014158A KR 20040014158 A KR20040014158 A KR 20040014158A KR 20040052533 A KR20040052533 A KR 20040052533A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- carbon steel
- tinx
- maximum
- hardness
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
- C22C33/0271—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
Description
이 발명에서는 총 12가지의 타이어 제조용 기계 중에서 컨베이어 부품, 등 비교적 내마모성이 필요하고 표면처리가 용이한 탄소강(S45C) 12개의 샘플을 선정하여 진공상태에서 제조되는 물리증착박막법을 이용, 예열과정과, 모재 최고 표면온도 변화과정, 제조시간 변화과정, 질소가스압력 유지과정, 바이아스전압 변화과정, 자기장세기 변화과정, 등 총 6단계의 과정을 거쳐 미소경도가 더 큰 탄소강을 제조하였다.In the present invention, the preheating process is performed using a physical vapor deposition thin film which is manufactured in vacuum state by selecting 12 samples of carbon steel (S45C) that require relatively wear resistance and easy surface treatment among the 12 tire manufacturing machines. The carbon steel with the finer hardness was manufactured through a total of six steps including the process of changing the maximum surface temperature of the base metal, changing the manufacturing time, maintaining the nitrogen gas pressure, changing the bias voltage, and changing the magnetic field strength.
컨베이어의 회전부는 약간의 오차만 있어도 틀어져 불량품이나 2차공정이 발생하여 수명이 단축되는데 다른 부품과 강도가 달라서 스프링이 튀거나 핀이 과도한 부하를 받아 수출물을 제대로 밀어내지 못하는 원인이 되므로 컨베이어의 내구성과 호환성을 위해 이 부품의 내마모성 증가를 위한 표면처리는 중요한 의미가 있다.The rotating part of the conveyor is twisted even with a slight error, resulting in a defective product or a secondary process, which shortens the service life.Because the strength is different from other parts, the spring may splash or the pin may be overloaded, which may prevent the export from being pushed properly. For durability and compatibility, surface treatment to increase the wear resistance of this part is important.
금속 표면 개선을 위한 박막제조 방법 중에서 물리증착박막 방법은 이온원을 모재에 부착시키는 방법으로 반도체제조 등에 핵심적인 기술이다. 아크에 의해 발생된 이온플라즈마에 구속 자기장을 인가하여 방향성을 이롭게 하고 강한 바이아스 전원과 적절한 질소가스 압력 및 모재온도의 선택은 이 발명의 핵심이다. 이 때 가공시간을 무한히 할 경우 제조단가만 커지고 박막경도 증가에 효과가 없으므로 적절한 제조시간 발견도 역시 중요하다. 또한 적절한 모재예열도 경도를 증가시키는 것으로 밝혀졌다.Among the thin film manufacturing methods for improving the metal surface, the physical vapor deposition thin film is a method of attaching an ion source to a base material and is a core technology for semiconductor manufacturing. The application of a confining magnetic field to the ion plasma generated by the arc facilitates directionality, and the selection of a strong bias power source, an appropriate nitrogen gas pressure, and a substrate temperature are key to this invention. In this case, if the processing time is infinite, only manufacturing cost increases and thin film hardness is not effective. It has also been found that proper preheating of the base increases hardness.
플라즈마 이온원은 99.5%의 순도를 가진 15cm×20cm×0.6cm의 냉각수가 지나는 티타늄 판을 스텐레스 덥게를 씌워 만들었다. 모재를 넣고 회전을 시키며 진공작업과 동시에 진공로 안의 저항열선에 의한 가열을 하여 적정온도에 예열을 한 다음 알곤가스와 질소가스를 주입시켜 압력을 조절하고 이어서 자기장에 구속되도록 아크를 발생시킨다. 이때 바이아스 전압을 모재(음극)와 접지된 진공로(양극) 사이에 걸어주면 박막증착이 모재에 이루어지며 여러번의 실험을 통하여 가장 경제적인 코팅시간을 찾아야 한다. 왜냐하면 어느 적정시간 이후에는 강도가 일정하게 유지되기 때문이다. 아크 이온 발생 시 100A 20V의 일정한 전력이 공급되어지며 100A 50V의 전원이 공급되는 텅스텐 침이 달린 트리거(순간적으로 티타늄 음극판을 닿았다가 떨어짐을 반복하는 장치)에 의해 아크가 발생한다. 이 때 균일한 아크가 방향성을 갖도록 유도하기 위하여 플라즈마 구속 자기장을 걸어준다. 바이아스 전압 때문에 이온은 모재에 강하게 박히고 전자들은 반대로 진공로를 따라 접지로 사라진다.The plasma ion source was made of stainless steel covering a titanium plate through which a 15 cm x 20 cm x 0.6 cm coolant with 99.5% purity was passed. The base material is inserted and rotated, and at the same time as the vacuum operation, it is heated by the resistance heating wire in the vacuum furnace and preheated to the appropriate temperature. At this time, if the bias voltage is applied between the base material (cathode) and the grounded vacuum furnace (anode), thin film deposition is performed on the base material and the most economical coating time must be found through several experiments. This is because the intensity remains constant after a certain time. When the arc ion is generated, the arc is generated by a trigger with a tungsten needle (a device that repeatedly touches and drops the titanium negative electrode plate) which is supplied with a constant power of 100 A and 20 V and a power supply of 100 A and 50 V. At this time, a plasma confined magnetic field is applied to induce a uniform arc to have a directivity. Because of the bias voltage, the ions are strongly embedded in the substrate and the electrons disappear into the ground along the vacuum path.
전형적으로 질화티타늄 박막은 공구나 기계류 등 내마모성을 요구하는 분야에 주로 이용되어져 왔다. 이 박막을 내마모성을 요구하는 탄소강에 응용함으로써기계의 수명을 연장시키고 고온에서 지속적으로 작동 시에도 균일한 제품을 생산하도록 해준다. 고가의 정교하고 안전한 타이어를 만드는 컨베이어 기술이 비약적으로 발전하는 시점에서 초정밀도를 요구하는 컨베이어 부품생산에서는 이 방법이 필수적으로 요구된다고 할 것이다.Typically, titanium nitride thin films have been mainly used in applications requiring wear resistance, such as tools and machinery. The application of this thin film to wear-resistant carbon steels extends the life of the machine and enables it to produce a uniform product even during continuous operation at high temperatures. This is a necessity for the production of conveyor parts that require ultra-precision at the time of the rapid development of conveyor technology to make expensive, precise and safe tires.
본 발명은 가장 널리 쓰이는 금속재질인 탄소강(S45C) 내마모성 개선을 위하여 물리증착박막을 이용 질화티타늄 박막을 제조할 때, TiNx의 복합 grain 표면밀도를 조사함으로써 쉽게 최대 미소경도 상태를 찾는데 그 목적이 있다.In order to improve the wear resistance of carbon steel (S45C), which is the most widely used metal material, the present invention aims to find the maximum microhardness state easily by investigating the composite grain surface density of TiNx when manufacturing a titanium nitride thin film using a physical vapor deposition thin film. .
기존의 질화티타늄박막 제조방법에 모재의 예열단계와 제어하기 위한 자력선의 도입을 더하여 모두 6가지의 물리변수를 가지고 경도를 높이기 위한 최적화된 장비를 개발하였다. 박막이 모재에 만들어질 때 모재의 온도가 균일한 코팅을 위해 매우 중요한 변수임이 밝혀져 장치의 운전 전에 400 ℃까지 예열하였다. 또한 아크에 의한 티타늄 이온이 난류를 형성함으로써 균일한 코팅이 되지 않는 것을 방지하기 위해 자기장을 걸어줌으로써 싸이클로트론 운동을 하도록 하여 방향성을 따라 제이가 가능하도록 하였다. 이와 함께 흔히 질화티타늄박막의 제조 시 필수적으로 고려되는 바이아스 전압, 코팅시간, 표면온도, 기체압력을 더하여 6가지의 물리변수를 변경하여 제조함으로써 가장 미소경도가 큰 박막제조를 위한 최적화 조건을 찾는다. 이때 제조된 샘플을 경도계에 의존할 경우 동일한 샘플에 대해 박막 전후에 대한 경도를 비교해야 하는 복잡한 과정이 필요한 반면(측정오차가 크고 경도에 따라 측정기가 여러가지임) , 본 발명에서처럼 TiNx의 복합 grain 표면밀도를 조사함으로써 단번에 쉽게 최대 미소경도 상태를 알 수 있다.In addition to the existing titanium nitride thin film manufacturing method, the preheating stage of the base metal and the introduction of magnetic lines for control were developed to develop an optimized equipment for increasing hardness with all six physical variables. When the thin film was made on the substrate, it was found that the temperature of the substrate was a very important parameter for uniform coating and preheated to 400 ° C. prior to operation of the device. In addition, in order to prevent the titanium ions due to the arc to form a turbulent flow to prevent uniform coating, the cyclotron movement was performed by applying a magnetic field to enable the Jay according to the direction. In addition, the optimum conditions for the thinnest thin film manufacturing are found by changing six physical variables by adding bias voltage, coating time, surface temperature, and gas pressure, which are often considered essential in the production of titanium nitride thin film. . In this case, if the manufactured sample is dependent on the hardness tester, a complicated process of comparing the hardness before and after the thin film for the same sample is required (measuring error is large and the measuring instruments vary depending on the hardness), but the composite grain surface of TiNx as in the present invention By investigating the density, it is easy to know the maximum microhardness state at once.
도 1은 본 발명에 의한 방법을 사용하는 장치의 개략도1 is a schematic representation of an apparatus using the method according to the invention
도 2는 본 발명에 의해 제조된 TiNx의 복합 grain 표면밀도를 보여주는 SEM 사진Figure 2 is a SEM photograph showing the surface density of the composite grain of TiNx prepared by the present invention
도 3는 본 발명에 의해 제조된 TiNx의 복합 grain 중에서 하나의 박막결정을 확대한 SEM 사진FIG. 3 is an enlarged SEM photograph of one thin film crystal among TiNx composite grains prepared according to the present invention. FIG.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1: 티타늄 음극판1: titanium negative plate
2: 텅그텐 트리거2: tungsten trigger
3: 영구 자석3: permanent magnet
4: 유리창4: glass window
5: 진공 노(양극)5: vacuum furnace (anode)
6: 피박막 시편(음극)6: film-film specimen
7: 시편 홀더7: specimen holder
8: 히터8: heater
9: 가스 주입구9: gas inlet
10: 진공 펌프10: vacuum pump
11: 시편 회전장치11: Specimen Rotator
이하 본 발명에 의한 탄소강 내마모성 향상을 위한 질화티타늄 박막제조시 최대 미소경도에 대한 신속 검출 방법을 첨부 도면에 의거 상세히 설명하면 다음과 같다.Hereinafter, a method for quickly detecting a maximum microhardness in manufacturing a titanium nitride thin film for improving wear resistance of carbon steel according to the present invention will be described in detail with reference to the accompanying drawings.
도 1의 본 발명의 방법을 구현하기 위한 장치의 개략도가 도시되어 있다. 장치의 구성은 티타늄 음극판(1), 아크발생을 위한 텅스텐 트리거(2)와 진공 노(5), 그리고 5의 외벽에 일정한 간격으로 부착되어 1에서 발생된 플라즈마 이온을 제어하는 영구자석배열(3)과 5의 내부를 감시하며 각종 진단장비를 주입하도록 고안된 유리창(4)과 예열용 오옴 히터(8)와, 그리고 모재시편(6)과 그 홀더(7) 및 회전장치(11)와, 마지막으로 5의 내부의 가스공급을 위한 주입구(9)와 내부 저 진공압력을 유지하기 위한 진공펌프(10)로 구성된다.A schematic diagram of an apparatus for implementing the method of the invention of FIG. 1 is shown. The device consists of a titanium negative electrode plate (1), a tungsten trigger (2) for arcing (2) and a vacuum furnace (5), and a permanent magnet array (3) attached at regular intervals to control the plasma ions generated at 1 (3). Glass window 4 and preheating ohmic heater 8 designed to inject various diagnostic equipment by monitoring the inside of the head), and 5, the base material specimen 6, its holder (7) and the rotating device (11), and It consists of an inlet (9) for supplying the gas in the interior of 5 and the vacuum pump (10) for maintaining the internal low vacuum pressure.
상기 장치를 이용하여 TiNx의 복합 grain 표면밀도를 조사함으로써 단번에 쉽게 최대 미소경도 상태를 결정할 수 있는 방법의 실시예는 다음과 같다.An embodiment of the method for determining the maximum microhardness state at a time by easily examining the composite grain surface density of TiNx using the above apparatus is as follows.
먼저 장치를 시작하기 전에 8을 이용하여 400℃까지 5의 내부온도를 높인다. 질소트랩이 달린 분산펌프나 터보펌프(10)를 이용하여 5의 내부압력을 1.5×10-6torr까지 떨어뜨린 후에 9를 통해 질소(86%)와 아르곤(14%) 가스가 혼합된 가스를 주입시켜 5의 내부압력을 2.0×10-3torr까지 높인다.First increase the internal temperature of 5 to 400 ° C using 8 before starting the unit. Using a dispersion pump or turbo pump (10) with a nitrogen trap, the internal pressure of 5 was dropped to 1.5 × 10 -6 torr, and then a mixture of nitrogen (86%) and argon (14%) gas through 9 was carried out. Inject to increase the internal pressure of 5 to 2.0 × 10 -3 torr.
20볼트 100암페어의 균일한 전류를 1에 인가하고 50볼트 100암페어의 전류가흐르는 트리거 2를 작동시켜 티타늄 이온을 발생시킨다. 이 때 이온들은 3의 구속을 받아서 난류운동 없이 방향성을 갖는다.Titanium ions are generated by applying a uniform current of 20 volts 100 ampere to 1 and triggering Trigger 2 with a current of 50 volts 100 amps. At this time, the ions are bound by 3 and have a directivity without turbulent motion.
6을 7에 넣고 11을 작동시킨 후에 1과 6 사이에 250볼트의 바이아스를 걸어준다. 이 시간부터 코팅시간을 재기 시작한다. 이때 4를 통해 외부에서 적외선 온도계를 발사하여 모재온도를 측정하며 필요시 바이어스를 한두번 더 조정한다. 코팅시간을 정하여 바이아스를 끄고 재빨리 2를 중단시킨다.Put 6 in 7, run 11, and put a 250 volt vias between 1 and 6. From this time, the coating time starts. At this time, the infrared thermometer is launched from the outside to measure the base material temperature, and if necessary, the bias is adjusted once or twice more. Set the coating time to turn off the vias and quickly stop 2.
도2와 도3은 본 발명을 통하여 얻은 탄소강(S45C) 샘플에 대한 TiNx의 복합 grain에 대한 SEM 사진들이다. 도2는 본 발명에 의해 제조된 TiNx의 복합 grain 표면밀도를 보여주는 SEM 사진이고 도3은 본 발명에 의해 제조된 TiNx의 복합 grain 중에서 하나의 박막결정을 확대한 SEM 사진이다.2 and 3 are SEM pictures of the composite grain of TiNx for the carbon steel (S45C) sample obtained through the present invention. FIG. 2 is an SEM photograph showing the surface density of the composite grain of TiNx prepared according to the present invention, and FIG. 3 is an enlarged SEM photograph of one thin film crystal among the composite grains of TiNx prepared according to the present invention.
이상에서 상술한 바와 같이 본 발명은, Tread Stitcher 등 12가지의 타이어 제조용 기계 중에서 컨베이어 부품, 등 비교적 내마모성이 필요하고 표면처리가 용이한 탄소강(S45C) 12개의 샘플을 선정하여 진공상태에서 제조되는 물리증착박막법(도1)을 이용하였다. 샘플의 SEM사진을 통하여 TiNx의 복합 grain의 표면밀도를 조사함으로써 미소경도가 최대 2.6배 증가하는 것을 알았는데 이 방법은 시간 소모가 적고 더 정확해서 용이하다는 것이다.As described above, in the present invention, a physical body manufactured in vacuum state by selecting 12 samples of carbon steel (S45C), which require relatively wear resistance and easy surface treatment, among conveyor parts, among 12 kinds of tire manufacturing machines such as a tread stitcher, etc. The deposited thin film method (Fig. 1) was used. The SEM image of the sample showed that the microhardness increased up to 2.6 times by investigating the surface density of TiNx composite grains. This method is less time consuming and more accurate and easier.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040014158A KR20040052533A (en) | 2004-02-19 | 2004-02-19 | The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040014158A KR20040052533A (en) | 2004-02-19 | 2004-02-19 | The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040052533A true KR20040052533A (en) | 2004-06-23 |
Family
ID=37346121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040014158A KR20040052533A (en) | 2004-02-19 | 2004-02-19 | The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040052533A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10208376B2 (en) | 2014-11-05 | 2019-02-19 | Yantai Shougang Magnetic Materials Inc. | Apparatus and method for coating of small Nd-Fe-B magnets |
CN114717511A (en) * | 2022-03-30 | 2022-07-08 | 北矿磁材(阜阳)有限公司 | Preparation method of Al film on surface of sintered neodymium-iron-boron magnet |
-
2004
- 2004-02-19 KR KR1020040014158A patent/KR20040052533A/en not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10208376B2 (en) | 2014-11-05 | 2019-02-19 | Yantai Shougang Magnetic Materials Inc. | Apparatus and method for coating of small Nd-Fe-B magnets |
CN114717511A (en) * | 2022-03-30 | 2022-07-08 | 北矿磁材(阜阳)有限公司 | Preparation method of Al film on surface of sintered neodymium-iron-boron magnet |
CN114717511B (en) * | 2022-03-30 | 2023-08-04 | 北矿磁材(阜阳)有限公司 | Preparation method of Al film on surface of sintered NdFeB magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960002632B1 (en) | The method and the equipment for plasma-energized magnetron sputtering vapor deposition | |
EP0797688B1 (en) | Method for deposition of diamondlike carbon films | |
US20060076231A1 (en) | Method for magnetron sputter deposition | |
JP2716371B2 (en) | Measurement method of plasma processing characteristics | |
EP2383366B1 (en) | Method for producing diamond-like carbon membrane | |
EP2754730B1 (en) | Carbon film forming apparatus | |
US9175381B2 (en) | Processing tubular surfaces using double glow discharge | |
JP2007504630A (en) | Replaceable plate thermally expanded plasma apparatus and method | |
JPWO2009102070A1 (en) | Diamond-like carbon film forming apparatus and method for forming diamond-like carbon film | |
JP2002541604A (en) | Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source | |
BRPI0714437B1 (en) | METHOD FOR MANUFACTURING INSULATING LAYERS ON AT LEAST ONE WORKPLACE THROUGH VACUUM COATING | |
EP2122006B1 (en) | Methods and apparatus for forming diamond-like coatings | |
WO2016156496A1 (en) | Method for producing coated substrates | |
DE60300293T2 (en) | An article provided with a carbon coating and process for its production | |
KR20040052533A (en) | The Method of multiple-kinds-grain Titanium nitride (TiNx) synthesis on carbon steel (S45C) with maximal microhardness using surface density | |
CN100560787C (en) | In magnetized plasma source, on metal substrate, form titanium nitride membrane | |
KR20100001086A (en) | Hybrid plasma pvd coating apparatus and coating method thereby | |
JP2001335932A (en) | Method for controlling solid surface treatment by low temperature plasma | |
He et al. | Development of titanium nitride coating for SNS ring vacuum chambers | |
JP4521606B2 (en) | Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus | |
KR20030037236A (en) | Multi-synthesis of TiN deposition on mould bases for increasing surface hardness | |
KR200436092Y1 (en) | A vacuum evaporation coating apparatus for ion nitriding treatment | |
Sun et al. | Inner surface modification of 40Cr steel cylinder with a new plasma source ion implantation method | |
JPH06280000A (en) | Plasma surface treatment method and device | |
JP2002256429A (en) | Sputtering apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |