KR20040050315A - Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body - Google Patents

Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body Download PDF

Info

Publication number
KR20040050315A
KR20040050315A KR1020020078116A KR20020078116A KR20040050315A KR 20040050315 A KR20040050315 A KR 20040050315A KR 1020020078116 A KR1020020078116 A KR 1020020078116A KR 20020078116 A KR20020078116 A KR 20020078116A KR 20040050315 A KR20040050315 A KR 20040050315A
Authority
KR
South Korea
Prior art keywords
adsorption
energy source
photocatalyst
air
magnetic field
Prior art date
Application number
KR1020020078116A
Other languages
Korean (ko)
Other versions
KR100502579B1 (en
Inventor
강미숙
김성욱
Original Assignee
강미숙
김성욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강미숙, 김성욱 filed Critical 강미숙
Priority to KR10-2002-0078116A priority Critical patent/KR100502579B1/en
Publication of KR20040050315A publication Critical patent/KR20040050315A/en
Application granted granted Critical
Publication of KR100502579B1 publication Critical patent/KR100502579B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0034Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using magnetic forces to remove particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PURPOSE: Provided is an air cleaning device comprising a system of an energy source, a semiconductor catalyst and an adsorption part which decomposes air-contaminants by generating electrons having a new electron spin by strong magnetic filed and excitation of lots of electrons. CONSTITUTION: The device comprises an electromagnetic field generating part producing a magnetic field by introducing a bundle of coils into an air cleaning plate, an oxidation-decomposing part by using a photocatalyst, a photocatalyst energy source part such as an ultraviolet rays lamp and plasma and an adsorption part such as inorganic porous body and carbon black to easily adsorb air contaminants.

Description

에너지원/반도체 촉매/흡착부의 시스템으로 이루어진 공기정화장치 {AIR CLEANING APPARATUS UTILIZING SYSTEM CONSISTING OF ENERGY SOURCE, SEMICONDUCTOR CATALYST AND ABSORBING BODY}Air cleaning device consisting of energy source / semiconductor catalyst / adsorption system {AIR CLEANING APPARATUS UTILIZING SYSTEM CONSISTING OF ENERGY SOURCE, SEMICONDUCTOR CATALYST AND ABSORBING BODY}

본 발명은 에너지원, 반도체 촉매 및 흡착부를 필수적으로 구성된 공기정화장치에 관한 것이다. 더 상세하게는, 본 발명은 반도체 촉매의 유기물질 분해능을 활성화시키기 위한 에너지원으로서 전자기장을 이용하고, 또한 필요에 따라 UV에너지원을 부가하여 구성시켜 오염물질의 분해, 및 흡착부에 흡착, 제거하는 공기정화장치에 관한 것이다.The present invention relates to an air purifier consisting essentially of an energy source, a semiconductor catalyst, and an adsorption unit. More specifically, the present invention uses an electromagnetic field as an energy source for activating the resolution of the organic material of the semiconductor catalyst, and, if necessary, by adding a UV energy source to decompose the pollutants and adsorption and removal of the contaminants. It relates to an air purifier.

종래부터, 가정이나 산업현장 등에서 공기를 정화하기 위해 사용되어 왔던 필터의 대부분은 고분자 수지섬유인 부직포나 활성탄과 같은 흡착 탈취 필터를 사용하여 왔다. 그러나, 이러한 공기정화 필터들은 먼지 등을 여과하는 데는 용이하였으나, 오염물질의 분해 또는 악취제거능이나 세균의 살균능은 만족스럽지 못한 문제점이 있었다. 최근, 이러한 문제점들을 해결하기 위해 티타니아와 같은 반도체 물질의 광산화 반응을 이용한 대기오염물질의 제거 및 살균, 탈취 등을 갖는 광촉매 필터가 등장하고 있다.In the past, most of the filters that have been used to purify the air in homes, industrial sites, and the like have used adsorption deodorization filters such as nonwoven fabric and activated carbon, which are polymer resin fibers. However, these air purification filters are easy to filter dust and the like, but there is a problem that the decomposition of the pollutants or odor removal or bactericidal ability is not satisfactory. Recently, photocatalyst filters have been introduced to remove, sterilize, and deodorize air pollutants by using a photooxidation reaction of a semiconductor material such as titania.

티타니아(TiO2)와 같은 반도체 금속산화물들은 고유한 밴드갭 에너지[bandgap energy(Eg)보다 큰 에너지를 받게 되면 밸런스 밴드(valence band)의 전자(e-)가 여기되어 전도 밴드(conduction band)로 전이되고, 밸런스 밴드에는 정공(h+)이 생성되어 이들이 TiO2입자의 표면으로 이동하게 된다. 이때 TiO2입자표면에 있는 물이나 OH-등과 h+가 반응하여 OH 라디칼을 생성하게 되고, 이들은 입자표면에 흡착되어 있는 유기물을 산화하여 CO2와 H2O 등의 무해한 물질로 변화하게된다.Semiconductor metal oxides such as titania (TiO 2 ) are energized in the balance band (e ) by conduction bands when they receive an energy greater than the inherent bandgap energy (E g ). In the balance band, holes (h + ) are generated and they move to the surface of the TiO 2 particles. At this time, water or OH on the TiO 2 particle surface is as h + and to generate OH radical in the reaction, which oxidizes the organic substances adsorbed to the particle surface is changed into harmless substances, such as CO 2 and H 2 O.

따라서, 티타니아와 같은 반도체 광촉매는 오폐수 처리는 물론 공기정화처리 시스템에 이용되어 대기오염물을 처리하는데 응용되고 있다. 그러나, 대기오염정화 시스템 등으로 보고된 초기의 발명(시스템 분야; UV광/티타니아 광촉매, UV광/티타니아 광촉매/카본블랙 지지체 등)들은 대기오염물질의 제거에 있어서, 광촉매의 광분해 산화반응보다는 다공체막 등에 의한 흡착능에 주로 의존을 하고 있는데, 그 이유는 광촉매의 광반응성이 다른 화학반응보다 다소 느리고, 그 성능이 낮으며, UV에너지원의 제약과 광촉매 반응 중에 생성되는 홀(hole)과 여기된 전자간의 재결합에 의한 활성의 저하와 함께 동반되는 낮은 수명도에 기인한다. 이러한 문제점을 보안하기 위해 조촉매 (전이금속이나 알칼리이온 등)를 티타니아에 도핑(doping)하여 전자/홀(hole) 재결합에 변화를 유도하고자 하는 연구와, 더욱이 최근 들어서는 규칙적인 결정성과 넓은 표면적을 갖고 있는 제올라이트 유사체를 티타니아의 담체로 사용하거나, 그의 골격구조 내에 티타늄 산화물을 안정하게 도입시켜 보다 높은 기능성을 도모하고자 하는 시도들도 이루어지고 있다. 또한, 기존에 광촉매 시스템에서 UV광에 한정되어 있던 에너지원으로 플라즈마 고주파를 사용하거나 전기집진방식을 도입하는 등, 보다 강력한 에너지원을 사용함으로써 활성이 높고, 안정성 있는 산화반응을 확립하고자하는 시도들이 행해지고 있다. 하지만, 이들 또한 에너지원 한계의 극복과 광산화반응의 속도부분에서는 어느 정도 보완이 이루어졌지만, 아직도 홀과 전자의 재결합에 의해 야기되는 촉매활성저하 부분 보완에 문제가 있다.Therefore, semiconductor photocatalysts such as titania are used in air purification treatment systems as well as wastewater treatment, and are applied to treat air pollutants. However, the early inventions (system field; UV light / titania photocatalyst, UV light / titania photocatalyst / carbon black support, etc.) reported as an air pollution purification system or the like are more porous than photodegradation oxidation reactions of photocatalysts in removing air pollutants. It is mainly dependent on the adsorption capacity by the membrane, etc., because the photoreactivity of the photocatalyst is somewhat slower than other chemical reactions, and its performance is lower. This is due to the low lifetime accompanied by a decrease in activity due to recombination between electrons. In order to secure this problem, studies on inducing changes in electron / hole recombination by doping cocatalysts (such as transition metals or alkali ions) to titania and, more recently, regular crystallinity and large surface area Attempts have been made to use zeolite analogues as carriers for titania or to introduce titanium oxides stably into their frameworks to achieve higher functionality. In addition, attempts to establish a highly active and stable oxidation reaction by using a more powerful energy source, such as the use of plasma high-frequency or electrostatic precipitating method as an energy source previously limited to UV light in photocatalyst systems It is done. However, they have also been supplemented to some extent in overcoming the limitations of energy sources and in the rate of the photooxidation reaction, but there is still a problem in compensating for the reduced catalytic activity caused by the recombination of holes and electrons.

본 발명자는 상기의 문제점을 해결하기 위하여 예의 연구한 결과, 도 1 및/또는 도 2에 나타낸 바와 같이, 반도체 촉매(광촉매 물질) 및 흡착부에 전자기 발생부를 구성시킴으로서 공기 정화장치내에서 강력한 자기장을 형성시켜 반도체 촉매내의 보다 많은 전자의 여기와 자장에 의한 새로운 형태의 전자스핀을 갖는 전자를 생성시킴으로써 종래의 광시스템에서와는 달리 뛰어난 오염물질을 산화시킬 수 있음을 발견하고, 본 발명을 완성하게 되었다.As a result of intensive studies to solve the above problems, the present inventors, as shown in Figs. 1 and / or 2, form a strong magnetic field in an air purifier by constructing an electromagnetic generator in a semiconductor catalyst (photocatalyst material) and an adsorption unit. The present invention has been found to be capable of oxidizing superior contaminants unlike conventional optical systems by forming and producing electrons with new types of electron spins due to more electron excitation and magnetic fields in the semiconductor catalyst, thus completing the present invention.

즉, 본 발명은 전자기 발생부, 반도체 물질의 산화 분해부, 흡착부로 이루어진 공기정화기를 제공하는 것이다.That is, the present invention provides an air purifier consisting of an electromagnetic generator, an oxidative decomposition part of a semiconductor material, and an adsorption part.

또한, 본 발명은 전자기 발생부, 반도체 물질의 산화 분해부, UV 에너지원부, 및 흡착부로 이루어진 공기정화기를 제공하는 것이다.The present invention also provides an air purifier consisting of an electromagnetic generator, an oxidative decomposition part of a semiconductor material, a UV energy source part, and an adsorption part.

더욱이, 본 발명은 전자기 발생부, 반도체 물질의 산화 분해부, UV 에너지원부, 다공체 흡착부 및 카본 블랙 흡착부로 이루어진 공기정화기를 제공하는 것이다.Furthermore, the present invention provides an air purifier composed of an electromagnetic generator, an oxidative decomposition part of a semiconductor material, a UV energy source part, a porous body adsorption part, and a carbon black adsorption part.

도 1은 본 발명의 1 실시예에 따른 공기정화 장치의 단면도를 나타낸다.1 is a cross-sectional view of an air purifying apparatus according to an embodiment of the present invention.

도 2는 본 발명의 1 실시예에 따른 공기정화 장치의 흡착 및 오염물질 산화분해 사시도를 나타낸다.Figure 2 shows a perspective view of the adsorption and contaminant oxidative decomposition of the air purification apparatus according to an embodiment of the present invention.

도 3은 본 발명에 다른 실시예에 따른 흡착 및 오염물질 산화분해부 및 그의 전자기장 발생부 및 흡착산화분해부를 나타낸다.3 shows an adsorption and contaminant oxidative decomposition unit and its electromagnetic field generating unit and adsorption oxidative decomposition unit according to another embodiment of the present invention.

도 4는 본 발명에 따른 자장에 의한 반도체 표면에서의 전자 여기 상태를 나타낸다.4 shows an electron excited state on a semiconductor surface by a magnetic field according to the present invention.

도 5는 본 발명에 따른 반도체/자장 시스템의 산화반응 메카니즘을 나타낸다.5 shows the oxidation mechanism of the semiconductor / magnetic field system according to the present invention.

이하, 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

도 1 및 도 2에 나타난 바와 같이, 본 발명은 전자기장 발생부와 산화분해부 및 흡착부로 구성되어 있다. 전자기 발생부 및 산화 분해부는 자장 산화분해반응을위해 구성시켰으며, 흡착부는 오염물질의 용이한 흡착을 위해 도입되었다.As shown in FIG. 1 and FIG. 2, the present invention is composed of an electromagnetic field generating unit, an oxidative decomposition unit and an adsorption unit. The electromagnetic generating part and the oxidative decomposition part were configured for the magnetic field oxidative decomposition reaction, and the adsorption part was introduced for the easy adsorption of contaminants.

흡착부는 통상의 다공체 흡착체 및 또는 카본블랙 흡착체를 이용하는 것이 바람직하며, 카본블랙 흡착체는 카본 섬유를 사용하여도 좋다.It is preferable to use a normal porous adsorbent and / or a carbon black adsorbent for the adsorption unit, and the carbon black adsorbent may use carbon fibers.

도 2에서, 전자기장 발생부 및 UV 에너지원부를 제외한 나머지 제공되는 부분들을 동시에 혼합 배합하여 일체화하여도 좋다.In FIG. 2, the portions provided except for the electromagnetic field generating unit and the UV energy source unit may be simultaneously mixed and combined to integrate.

본 발명에서는 강력한 자기장을 걸어 반도체 촉매내의 보다 많은 전자의 여기와 자장에 의한 새로운 형태의 전자스핀을 갖는 전자를 생성시킴으로써 종래의 광시스템과는 달리 새로운 활성을 나타낼 수 있도록 하였다. 또한 본 발명은 알루미늄 실리케이트 계의 다공성막을 도입하여 오염물질의 용이한 흡착과 다공체 내부에 함유된 다양한 금속들로 하여금 여기된 전자의 수용체 역할을 수행하게 하여 그 산화반응 성능을 높이는 것이 바람직하다. 더욱이, 높은 표면적과 흡착능이 뛰어난 카본블랙(활성탄)막을 맨 바깥으로 위치시킴으로써 대기오염물질에 대한 높은 흡착능은 물론 시스템을 견고하게 하여 내부의 시스템의 손상을 최소화하고, 취급하기 용이하게 단순화시켜 미관상의 효과까지 이루어지게 하는 것이 바람직하다.In the present invention, unlike the conventional optical system, new activity can be exhibited by applying a strong magnetic field to generate electrons having a new type of electron spin due to the excitation of more electrons in the semiconductor catalyst and the magnetic field. In addition, the present invention preferably introduces an aluminum silicate-based porous membrane to facilitate the adsorption of contaminants and various metals contained in the porous body to act as acceptors of excited electrons, thereby enhancing its oxidation performance. Moreover, by placing carbon black (activated carbon) film with high surface area and excellent adsorption capacity to the outside, it has high adsorption capacity to air pollutants as well as robust system to minimize damage to the internal system and simplify the handling. It is desirable to achieve the effect.

도 2에 대해서 설명한다. 도 2는 전자기장 발생부, 산화분해부(광촉매 반도체물질), UV에너지원부, 흡착부 1(다공체), 흡착부 2 (카본블랙) 등 다섯 부분으로 되어 있다. 에너지원부와 산화분해부는 자장 산화분해반응을 위해 구성되었으며, 다공체막와 카본블랙막은 오염물질의 용이한 흡착과 여기된 전자의 수용체 등으로 이용하기 위해 도입되었다. 이들은 각각 판상형으로 조립되어 있으며 자장코일을 중심으로 양쪽이 반도체물질막, 다공체막, 카본블랙막의 순서로 배치되어 있으며,자장형성의 용이성을 위해 코일은 도 2과 같이 스프링형태로 구부러져 있으며, 공기중의 오염물질의 흡착을 용이하게 하기 위해 이들이 조립된 부품은 일정하게 구멍이 뚫린 형태를 제공하고 있다.2 will be described. 2 is composed of five parts: an electromagnetic field generating unit, an oxidative decomposition unit (photocatalytic semiconductor material), a UV energy source unit, an adsorption unit 1 (porous body), and an adsorption unit 2 (carbon black). The energy source and the oxidative decomposition part were configured for the magnetic field oxidative decomposition reaction, and the porous membrane and the carbon black membrane were introduced to facilitate the adsorption of pollutants and the acceptor of excited electrons. They are each assembled in a plate shape, and both sides of the magnetic field coil are arranged in the order of the semiconductor material film, the porous film, and the carbon black film. For ease of magnetic field formation, the coil is bent in a spring shape as shown in FIG. In order to facilitate the adsorption of pollutants, the parts assembled with them are provided with a form of a constant hole.

또한, 도 3은 본 발명에 다른 실시예에 따른 흡착 및 오염물질 산화분해부 및 그의 전자기장 발생부 및 흡착산화분해부를 나타낸다. 이 실시예에 따른 공기정화 장치의 흡착 및 오과 같이 에너지원부를 제외한 나머지 부분들을 동시에 혼합 배합하여 일체화가 가능하며, 이때 각 단계의 재료들에 의한 흡착능과 산화분해능을 복합적으로 얻을 수 있게 균일하게 섞여 있다.3 illustrates an adsorption and contaminant oxidative decomposition unit, an electromagnetic field generating unit, and an adsorption oxidative decomposition unit according to another embodiment of the present invention. It is possible to integrate and mix the remaining parts except the energy source part at the same time, such as the adsorption and erroneous air purification device according to this embodiment, wherein the adsorption capacity and oxidative resolution by the materials of each step is mixed uniformly have.

도 4에 본 발명에 따라, 자장에 의한 반도체 물질내의 전자의 여기 메카니즘을 나타낸다. 본 발명에서는 에너지원으로서 강력한 자기장을 걸어 반도체 촉매내의 보다 많은 전자의 여기를 도모하였으며, 이때 도 4에서 보여주는 바와 같이 자장에 의한 전자의 여기는 UV광에 의한 여기(singlet 만) 와는 달리 전자의 스핀상태가 두가지 형태의 단일 피크(singlet)와 3중 피크(triplet)를 생성시킴으로써 광에 의한 여기와는 달리 새로운 활성을 나타낼 수 있음을 나타낸다. 또한, 본 발명은 이러한 자장/반도체촉매 시스템뿐만이 아니라 규칙적인 3차원 구조와 넓은 표면적 그리고 높은 안정도를 가지고 있는 다공성막을 도입하여 오염물질의 흡착을 보다 용이하게 하고자 하였다.In Fig. 4, the excitation mechanism of the electrons in the semiconductor material due to the magnetic field is shown. In the present invention, a strong magnetic field is applied as an energy source to promote the excitation of more electrons in the semiconductor catalyst. As shown in FIG. 4, the excitation of electrons by the magnetic field is different from the UV light excitation (singlet only). By generating two types of single peak and triple peak, it is possible to show new activity unlike excitation by light. In addition, the present invention was intended to facilitate the adsorption of contaminants by introducing a porous membrane having a regular three-dimensional structure, a large surface area and high stability as well as such a magnetic / semiconductor catalyst system.

그리고, 도 5에서 나타낸 바와 같이 다공체 내부에 함유된 다양한 금속들로 하여금 여기된 전자의 수용체 역할을 수행하게 하여 그 산화반응 성능을 높였다. 또한, 마지막으로 표면적과 흡착능이 뛰어난 카본블랙(활성탄)막을 맨 바깥으로 배치시킴으로써 대기오염물질에 대한 높은 흡착능은 물론 이에 따른 반도체 촉매/자장 시스템에 의한 산화분해 성능을 돕고자 하였다. 이와 같은 배치는 도 5에서와 같이, 여기된 전자의 홀과의 재결합 시간이 길어짐으로써 기존의 광촉매시스템에 의한 공기정화 능력을 한층 높일 수 있다.As shown in FIG. 5, various metals contained in the porous body play a role of an acceptor of excited electrons, thereby enhancing its oxidation performance. Finally, the carbon black (activated carbon) film having excellent surface area and adsorption capacity is disposed to the outside to help high adsorption capacity to air pollutants as well as oxidative decomposition performance by the semiconductor catalyst / magnetic field system. In this arrangement, as shown in FIG. 5, the recombination time with the holes of the excited electrons becomes long, thereby further enhancing the air purification capability of the existing photocatalyst system.

이하, 본 발명에서 사용되는 막들의 성분들에 대하여 상세히 설명한다.Hereinafter, the components of the films used in the present invention will be described in detail.

본 발명의 시스템에 사용되는 반도체 촉매로는 티타니아를 들 수 있다. 티타니아의 결정구조는 아나타제형의 졸상으로 그 입자 사이즈는 50∼100nm 정도의 것으로 여기에 조촉매로써 Fe, Sn, Zn 등을 소량 첨가할 수 있다. 물론 상업적으로 시판(Degussa P-25 등)되거나 여러 방법(sol-gel, hydrothemal, solvothermal method 등) 등으로 합성된 티타니아 분말을 용매에 분산시켜 코팅하여 사용한다.Examples of the semiconductor catalyst used in the system of the present invention include titania. The crystal structure of titania is an anatase type sol and its particle size is about 50 to 100 nm, and a small amount of Fe, Sn, Zn or the like can be added thereto as a promoter. Of course, commercially available titania powders (such as Degussa P-25) or synthesized by various methods (sol-gel, hydrothemal, solvothermal methods, etc.) are dispersed and used in a solvent.

또한, 다공체막의 재료로는 동공이 규칙적이고 표면적이 넓은 알루미늄 실리케이트 형태를 주로 사용하였으며 전도도의 흐름을 용이하게 할 수 있는 인이 함유된 SAPO계열 다공체도 사용 가능하다. 본 발명에서의 다공체로는 제올라이트 Y, 제올라이트 A, SAPO-34 등을 들 수 있다.In addition, as a material of the porous membrane, the aluminum silicate form of the pupil having a regular and large surface area is mainly used, and a SAPO-based porous body containing phosphorus which can facilitate the flow of conductivity may be used. Zeolite Y, zeolite A, SAPO-34, etc. are mentioned as a porous body in this invention.

카본블랙 성분으로는 시판용 카본 블랙(표면적 300m2/g, 1000m2/g)이나 카본섬유 또는 카본나노튜브 등을 들 수 있다.Examples of the carbon black component include commercially available carbon black (surface area 300 m 2 / g, 1000 m 2 / g), carbon fibers, carbon nanotubes, and the like.

실시예Example

본 발명에 관하여 다음과 같이 실시한 실시예를 도시한다.The embodiment implemented as follows with respect to this invention is shown.

모든 실시예는 도 1, 3의 장치를 사용하고, 같은 크기의 탈취필터(카본 블랙)를 사용하였으며, 이 필터에 광촉매, 다공체를 혼합 함침하여 경화후, UV광원(18W 살균용을 조사하며 자기장을 걸어주었으며, 담배연기의 주성분인 암모니아, 아세트알데히드, 초산 혼합물의 제거율을 30분 후 검지관을 통해 측정하였다.All the examples used the apparatus of FIGS. 1 and 3, and used the same size of the deodorizing filter (carbon black), after curing by impregnating a mixture of photocatalyst, porous body, UV light source (18W sterilization for irradiation The removal rate of ammonia, acetaldehyde, and acetic acid mixture, which are the main components of tobacco smoke, was measured after 30 minutes through a detection tube.

비교예 1. 흡착용 탈취필터(카본블랙) 단독사용, UV광원 조사함.Comparative Example 1. Deodorization filter (carbon black) for adsorption alone, UV light irradiation.

비교예 2. 흡착용 탈취필터(카본블랙)에 다공체(제올라이트 Y) 및 광촉매를 함침하여 사용, UV광원 조사하지 않음.Comparative Example 2. The adsorption deodorization filter (carbon black) was impregnated with a porous body (zeolite Y) and a photocatalyst, and not irradiated with UV light.

실시예 3. 흡착용 탈취필터(카본블랙)에 다공체(제올라이트 유사체 SAPO-34) 및 광촉매를 함침하여 사용, UV광원 조사.Example 3. The deodorization filter (carbon black) for adsorption was used by impregnating a porous body (zeolite analog SAPO-34) and a photocatalyst, and UV light source irradiation.

실시예 4. 흡착용 탈취필터(카본블랙)에 다공체(제올라이트 유사체 SAPO-34) 및 광촉매를 함침하여 사용, 자기장 걸어줌.Example 4. A magnetic field was applied by impregnating a porous body (zeolite analog SAPO-34) and a photocatalyst in an adsorption deodorizing filter (carbon black).

실시예 5. 흡착용 탈취필터(카본블랙)에 다공체(제올라이트 유사체 SAPO-34) 및 광촉매를 함침하여 사용, UV광원 조사, 자기장 걸어줌.Example 5 Impregnated with a porous body (zeolite analog SAPO-34) and photocatalyst in adsorption deodorization filter (carbon black), UV light source irradiation, magnetic field is applied.

제거율은 다음의 식에 의한다.The removal rate is based on the following equation.

제거율 : (초기농도 - 30분 후 농도)/초기농도 X 100Removal rate: (initial concentration-concentration after 30 minutes) / initial concentration X 100

초기 제거율 : (암모니아 제거율 + 아세트 알데히드 제거율 X 2 + 초산제거율)/4Initial removal rate: (ammonia removal rate + acetaldehyde removal rate X 2 + acetic acid removal rate) / 4

상기 실시예에 의한 결과를 하기 표 1에 나타낸다.The results according to the above examples are shown in Table 1 below.

표 1Table 1

유기오염물질제거율Organic pollutant removal rate 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 암모니아 제거율Ammonia removal rate 96.596.5 97.097.0 96.896.8 96.796.7 98.098.0 아세트알데히드 제거율Acetaldehyde Removal Rate 85.285.2 94.094.0 96.296.2 96.696.6 100.0100.0 초산 제거율Acetic Acid Removal Rate 90.490.4 91.391.3 94.594.5 95.295.2 96.596.5 초기 제거율Initial removal rate 89.389.3 90.190.1 96.996.9 99.599.5 98.698.6

상기 결과로부터 종래 사용하는 흡착용 필터을 사용하고, UV 광원을 조사하는 경우(비교예 1)나, 흡착용 필터에 광촉매와 다공체를 함침하여 사용하되 UV 광원을 사용하지 않는 경우(비교예 2)는 흡착용 필터에 광촉매와 다공체를 함침하여 사용하되 UV 광원을 사용하는 경우(실시예 1), 흡착용 필터에 광촉매와 다공체를 함침하여 사용하되 UV 광원을 사용하지 않는 경우(실시예 2) 및 흡착용 필터에 광촉매와 다공체를 함침하여 사용하되 UV 광원과 자기장을 걸어준 경우(실시예 3)의 실험결과는 암모니아 제거율은 큰 차이가 없었으나, 아세트알데히드나 아세트산의 제거율은 모두 비교예에 비하여 본원 발명의 것이 우수함을 알 수 있다. 즉, 가장 바람직한 것은 흡착용 필터에 광촉매와 다공체를 함침하여 사용하되 UV 광원 및/또는 자기장을 걸어주는 경우에 유기 오염물질을 효과적으로 제거할 수 있음을 알 수 있다.From the above results, a case of using a conventionally used adsorption filter and irradiating a UV light source (Comparative Example 1), or impregnating a photocatalyst and a porous body in the adsorption filter, but not using a UV light source (Comparative Example 2) When the photocatalyst and the porous body are used to impregnate the adsorption filter but use a UV light source (Example 1), when the photocatalyst and the porous body are used to impregnate the adsorption filter but do not use the UV light source (Example 2) and adsorption When the filter was impregnated with the photocatalyst and the porous body, but the UV light source and the magnetic field were applied (Example 3), the ammonia removal rate was not significantly different, but the removal rate of acetaldehyde or acetic acid was higher than that of the comparative example. It can be seen that the invention is excellent. In other words, the most preferable is that the adsorption filter is impregnated with the photocatalyst and the porous body, but the organic contaminants can be effectively removed when the UV light source and / or the magnetic field are applied.

이상에서와 같이, 본 발명의 공기정화시스템을 사용하여 각종 대기오염물질을 처리하는 경우, 아래와 같은 효과가 발생한다.As described above, when treating various air pollutants using the air purification system of the present invention, the following effects occur.

즉, 종래의 광촉매 단독 시스템이나 흡착용 필터법, 또는 플라즈마시스템,오존시스템에서 보다 대기오염물질이 단시간에 대량 제거가 가능하고, 시스템의 수명도 기존보다 길어지고, 종래의 시스템들보다 간편하고, 크기가 작으며, 자장코일을 내장시킴으로써 안전하며, 광촉매 및 UV광에 의한 살균효과를 증대시키고, 종래의 시스템에 비해 저렴하게 제조할 수 있으며, 자장에 의한 광촉매의 핵심부품들을 모듈화하여 비교적 저렴한 비용으로 다른 분야(예를 들어 오폐수처리, 살균 등)로의 응용이 확대될 수 있다.That is, in the conventional photocatalyst alone system, adsorption filter method, plasma system, or ozone system, air pollutants can be removed in a short time, and the life of the system is longer than before, and it is simpler than conventional systems. Small size, safe by incorporating magnetic coil, increase sterilization effect by photocatalyst and UV light, can be manufactured cheaply compared with conventional systems, and relatively low cost by modularizing core components of photocatalyst by magnetic field This can be extended to other applications (eg wastewater treatment, sterilization, etc.).

Claims (3)

공기 정화 시스템에 있어서, 흡착용 탈취 필터에 다공체 및 광촉매를 함침시킨 흡착부와 UV 광원 및 자장으로 이루어진 군에서 선택된 1종이상의 에너지 원으로 구성된 공기정화시스템.An air purification system comprising: an adsorption section in which an adsorption deodorization filter is impregnated with a porous body and a photocatalyst, and at least one energy source selected from the group consisting of a UV light source and a magnetic field. 제 1항에 있어서,The method of claim 1, 반도체 촉매가 티타니아나 그 조촉매를 함유한 자장원을 구비한 공기정화기Air purifiers with magnetic fields containing semiconductor catalysts or titania or its promoters 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 다공체막과 카본블랙막이 동시에 함유한 공기정화기Air purifier containing both porous membrane and carbon black membrane
KR10-2002-0078116A 2002-12-10 2002-12-10 Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body KR100502579B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0078116A KR100502579B1 (en) 2002-12-10 2002-12-10 Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0078116A KR100502579B1 (en) 2002-12-10 2002-12-10 Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body

Publications (2)

Publication Number Publication Date
KR20040050315A true KR20040050315A (en) 2004-06-16
KR100502579B1 KR100502579B1 (en) 2005-07-22

Family

ID=37344532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0078116A KR100502579B1 (en) 2002-12-10 2002-12-10 Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body

Country Status (1)

Country Link
KR (1) KR100502579B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148211A3 (en) * 2020-01-23 2021-10-14 Kunststoff Helmbrechts Ag Method and devices for purifying exhaust air

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000433A (en) * 1998-06-16 2000-01-07 Aqueous Reserch:Kk Photocatalyst filter device
KR100317798B1 (en) * 1999-03-09 2002-01-18 황해웅 Automatic air cleaner
KR100345582B1 (en) * 1999-11-13 2002-07-27 김기원 Apparatus for activating the intake air magnetically
KR20020076567A (en) * 2001-03-29 2002-10-11 이후근 Air purifier for removal of electromagnetic wave and harmful gases
ITMI20010816A1 (en) * 2001-04-13 2002-10-13 Deparia Engineering S R L AIR PURIFIER SUSCEPTIBLE TO USE A COLD PLASMA ELECTROSTATIC CATALYTIC DEVICE
KR100451703B1 (en) * 2001-07-03 2004-10-08 (주)네오포텍 Producing method of photo catalyst body with honeycomb monolith type and air cleaner using it
KR100529749B1 (en) * 2002-12-09 2005-11-22 (주) 이오 High Voltage And High Frequency Pulse Process Electron Generation Device For A Pollutant Treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021148211A3 (en) * 2020-01-23 2021-10-14 Kunststoff Helmbrechts Ag Method and devices for purifying exhaust air

Also Published As

Publication number Publication date
KR100502579B1 (en) 2005-07-22

Similar Documents

Publication Publication Date Title
ES2376661T3 (en) SYSTEMS FOR THE ELIMINATION OF FLUX FLOW POLLUTANTS.
KR101743317B1 (en) Led photocatalysts module using photocatalysts
WO2006100303A2 (en) Lighting means and method for obtaining lighting means
JP2013508012A (en) Indoor air purification and sterilization equipment
KR101000306B1 (en) Deodorizing device using ultraviolet ray and Photocatalyst
Paz Composite titanium dioxide photocatalysts and the" adsorb & shuttle" approach: a review
US9962457B2 (en) Method and device for purification and deodorization of air
CN102811794A (en) System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation
CN101590265A (en) Horizontal indoor air UV sterilization and filtration purifier
KR100469005B1 (en) Photocatalytic system for the removal of volatile organic compounds
JP4806108B2 (en) Deodorizing device
WO2001062307A1 (en) Apparatus for removing chemical substance
RU104866U1 (en) PHOTOCATALYTIC AIR CLEANING DEVICE
US20060043026A1 (en) Method and apparatus for fluid purification
CN101590251A (en) Horizontal indoor air purifier based on ozone oxidation
KR102096523B1 (en) Air purifying device having an air purifying module
KR100502579B1 (en) Air cleaning apparatus utilizing system consisting of energy source, semiconductor catalyst and absorbing body
KR20030042109A (en) Catalytic compound for purification of air and water and method and apparatus for purification of air and water using the same
KR102286104B1 (en) Apparatus for Removing VOCs and VOCs Removing Method Using the Same
KR102341929B1 (en) Air purification and sterilization system
KR100478803B1 (en) Processing methode for air purification and equipment therefor
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
JP2000152983A (en) Air cleaner
KR100475276B1 (en) Air purification method
KR100445761B1 (en) Method for making activated carbon filter coated with photocatalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080711

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee