KR20040043150A - 광 마이크로 폰 - Google Patents

광 마이크로 폰 Download PDF

Info

Publication number
KR20040043150A
KR20040043150A KR1020040029481A KR20040029481A KR20040043150A KR 20040043150 A KR20040043150 A KR 20040043150A KR 1020040029481 A KR1020040029481 A KR 1020040029481A KR 20040029481 A KR20040029481 A KR 20040029481A KR 20040043150 A KR20040043150 A KR 20040043150A
Authority
KR
South Korea
Prior art keywords
light
light receiving
receiving element
diaphragm
light source
Prior art date
Application number
KR1020040029481A
Other languages
English (en)
Inventor
유태경
Original Assignee
에피밸리 주식회사
유태경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에피밸리 주식회사, 유태경 filed Critical 에피밸리 주식회사
Priority to KR1020040029481A priority Critical patent/KR20040043150A/ko
Publication of KR20040043150A publication Critical patent/KR20040043150A/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/48Water heaters for central heating incorporating heaters for domestic water
    • F24H1/52Water heaters for central heating incorporating heaters for domestic water incorporating heat exchangers for domestic water
    • F24H1/523Heat exchangers for sanitary water directly heated by the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 광 마이크로폰에 관한 것으로서, 반도체 레이저 광을 진동판에 입사시켜, 진동판이 외부 소리신호에 의해 위치 변형하는 것을 수광어레이 소자로 측정해 내는 원리로, 소리신호에 따른 진동판 위치 변형에 의해 진동판에서 레이저의 반사광의 경로 차이로 인한, 광 분포 변화를 다 수개의 수광 소자로 측정하여 신호 처리하는 것으로서, 레이저 광을 이용하여 진동판의 미세한 신호를 검출할 수 있게 하여 감도를 향상시키고, 레이저 빔과 홀로그램을 이용하므로서 렌즈나 광섬유등의 광학계를 제거하여 제조 공정을 단순화시키며, 광 고유의 특성으로 외부 전자파 간섭을 배제하였다.

Description

광 마이크로 폰{Optical microphone}
본 발명은 외부 음성 신호를 전기적 신호로 변환시키는 광 마이크로폰에 관한 것으로, 특히 진동판과, 레이저 광원, 홀로그램판, 어레이 수광소자로 광 마이크로폰을 구성하여 소리에 의해 변형되는 진동판에 레이저 광을 입사 시키고, 진동판에서 반사되는 광세기의 분포 변화를 수광소자로 측정하여 소리를 전기적 신호로변환시키는 고효율의 광 마이크로폰에 관한 것이다.
종래의 마이크로폰은 동작 원리에 따라 여러 가지 방법이 있는데, 가장 보편화된 것은 전하가 분극 형태로 보존되는 일렉트렉트(electret)를 이용하는 일렉트렉트 콘덴서 마이크로폰(electret condenser microphone)이 있다.
도 1은 종래의 일렉트렉트(electret) 콘덴서 마이크로폰의 단면도로서, 정전기를 가지는 일렉트렉트와 소리에 진동하는 금속 진동판을 인접시켜 전기장의 변화가 일렉트렉트에 보존된 전하의 변화를 시키고, 이것을 접합형 전계효과트렌지스터(junction type FET; 이하 JFET라 칭함)로 측정하는 원리이다.
먼저, 베이스(10)의 중앙부 상에 JFET(12)가 설치되어있으며, 그 외곽의 베이스(10)상에 설치된 틀체 형상의 내부 케이스(14) 상부에 전하가 분극 형태로 보존된 유기물질막인 일렉트렉트(16)가 부착되어있고, 그 상부에 인접하여 얇은 금속 진동판(18, diaphragm)이 위치하도록 외부 케이스(19) 상에 고정되어있다.
상기의 일렉트렉트(electret) 콘덴서 마이크로폰은 외부의 음성 신호(13)가 금속재질의 진동판(18)을 진동시키면, 진동판(18)의 위치가 변형되고, 이에따라 정전기장이 변화되어 일렉트렉트(16)가 반응하여 전기 신호를 발생시키며, 상기 일렉트렉트(16)의 변화를 근접한 JFET(12)가 감지하여 외부 음성 신호에 해당하는 전기적 신호를 출력한다.
상기와 같은 종래 기술에 따른 일렉트렉트(electret) 콘덴서 마이크로폰은 소형으로 구성할 수 있고, 저 가격 대량 생산이 가능하기 때문에 현재 휴대폰, 전화기, 컴퓨터 등에 폭 넓게 활용되고 있다.
그러나, 상기의 일렉트렉트(electret) 콘덴서 마이크로폰은 감도가 낮고, 전하가 보존되는 일렉트렉트 박막이 유기물이기 때문에 고온에서 특성이 저하되며, 정전기장의 변화를 전기 신호로 변환시키는 JFET의 입력 임피던스(impedance)가 너무 높아 외부의 신호 간섭 등에 너무 민감하게 반응하여, 잡음의 발생이 쉽고, 무선 통신용 단말기의 경우 전자파 잡음이 심한 문제점이 있다.
이를 해결하기 위한 또 다른 방법으로는 광을 이용하는 미세한 음성 신호를 측정해내는 여러 방식이 시도되었으나, 개념적인 제안에 그치고 있으며, 시제품이 가능하다고 하여도 고가이며 제한적 응용이 예상된다.
이와 같이 광을 이용한 방식은 광원의 종류에 따라 두 가지 방식이 있다. 첫 번째는 LED 광원을 사용하는 경우이다. LED는 저가격이고 다루기 쉬운 특성이 있으나, 빛이 모든 방향으로 방사되므로, 집광성을 고려하여 렌즈나 광섬유를 정렬해야 하는데, 이로 인하여 수율이 떨어지고, 제조 비용이 상승등의 문제가 발생하여, 상용화에 큰 걸림돌이 된다. 두 번째로 레이저를 이용하는 방법인데, 레이저는 빔을 조절하는 것이 매우 까다롭고 고가이어서, 진동판에서 반사되는 신호의 구별이 거의 불가능하여 상용화된 예제가 거의 없다.
도 2는 종래 기술의 제1실시 예에 따른 광 마이크로폰의 개략도로서, 미합중국 특허 제4,284,858호에 게시되어있는 예이다. 즉, 일측에 광원(20)이 고정되어있고, 상기 광원(20)과 대응되는 위치에 광섬유 수신기(22)가 설치되어 광검출기(23)와 AC 신호제어기(24)를 거쳐 전기 신호를 출력하며, 상기 광원(20)과 광섬유 수신기(22)의 사이에 폴리에틸렌 등으로 된 박막(25)이 링(26)에 고정되어 있어 소리에따라 진동하면 그 변형 정도에 따라 투과되는 광량이 변화되어 소리를 픽업한다.
도 3은 종래 기술의 제2실시 예에 따른 광 마이크로폰의 개략도로서, 미합중국 특허 제 3,622,791 호에 게시되어있는 예로서, 케이스(30) 상부에 고정된 진동판(31)이 소리에 따라 진동되면, 그 하부에 부착된 거울(32)이 진동하게 되고, 그 하부에 설치된 광원(33)과 렌즈(34), 반반사 석영 튜브(35) 및 광다이오드(36)로 구성되는 광학계에서 광경로차에 의한 소리를 로직 회로(37)에서 신호화하고, 상기 진동판(31)의 하부에 따로이 설치된 와이어(38)와 연결된 집산기(39)로 전기장의 변화를 측정하여 로직 회로(37)로 측정된 신호와 함께 조합된 전기신호를 발생시킨다.
도 4는 종래 기술의 제3실시 예에 따른 광 마이크로폰의 개략도로서, ( SPIE; International Society for Optical Engineering, Sept. 1999, Boston, MA), 마이크 외부에서 엘이디(40, 이하 LED라 칭함)를 마이크로폰 헤드(44)와 접속되는 광섬유(42)에 커플링하여, 진동판(46)에 입사하고 이를 다시 광섬유를 통하여 외부의 수광소자(48)에서 측정하는 방법이다.
상기와 같이 종래 기술에 따른 광 마이크로폰들은 광을 이용한다는 장점에도 불구하고, 광학계의 구성이 복잡하여 제조 과정이 어렵고, 부피가 너무 커서 전자 제품 속에 탑재하기 어려우면, 부품의 가격이 고가여서 상용화가 어렵고, 광학계의 안정성이 떨어져 제품의 신뢰성이 떨어지는 등의 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 광섬유나 렌즈 등의 광학계를 사용하지 않고 이를 홀로그램판으로 대체하여 진동판에 입사시키는 레이저 빔을 조절하며, 반도체 레이저와 수광 소자를 동일 평면에 위치시킬 수 있어 정확하게 레이저 빔을 조절할 수 있어, 광학계 구성이 간단하여 제조 과정이 간단하며, 소형화에 유리하고, 레이저 광을 이용하므로 고 감도로 진동판의 변형을 검출할 수 있으며, 유기 박막을 사용하지 않아 고온 신뢰성을 유지할 수 있고, 전자기/고주파에 의한 간섭을 방지할 수 있는 광 마이크로폰을 제공함에 있다.
도 1은 종래의 일렉트렉트(electret) 콘덴서 마이크로폰의 단면도.
도 2는 종래 기술의 제1실시 예에 따른 광 마이크로폰의 개략도.
도 3은 종래 기술의 제2실시 예에 따른 광 마이크로폰의 개략도.
도 4는 종래 기술의 제3실시 예에 따른 광 마이크로폰의 개략도.
도 5-a, 5-b 및 5-c는 본 발명의 광 마이크로폰의 원리를 설명하기 위한 개략도.
도 6는 외부 음성 신호에 의한 진동판의 변형을 설명하기 위한 개략도.
도 7-a 및 도 7-b는 본 발명의 어레이 수광소자의 신호 검출 원리를 설명하기 위한 개략도.
도 8은 수광 소자의 구성을 설명하기 위한 개략도.
도 9은 본 발명의 출력 신호의 특성 곡선.
도 10은 본 발명의 실시예에 따른 광 마이크로폰의 단면도.
< 도면의 주요 부분에 대한 부호의 설명 >
10,50,80 : 베이스12 : JFET
13 : 음성신호14 : 내부 케이스
16 : 일렉트렉트18,31,46,52,85 : 진동판
19 : 외부 케이스20,33 : 광원
22 : 광섬유 수신기23 : 광검출기
24 : AC 신호제어기25 : 박막
26 : 링30,58,88 : 케이스
32 : 거울34 : 렌즈
35 : 반반사 석영 튜브36 : 광다이오드
37 : 로직 회로38 : 와이어
39 : 집산기40 : 엘이디
42 : 광섬유44 : 마이크로폰 헤드
48,56,81 : 수광소자51 : 경사블럭
54,82 : 반도체레이져 광원57,87 : 음향홀
59,86 : 지지대60 : 특성 곡선
83 : 홀르그램판84 : 홀로그램 격자
상기와 같은 목적을 달성하기 위한 본 발명에 따른 광 마이크로폰의 특징은,
평탄한 베이스와,
상기 베이스의 일측 상부에 설치되어있고, 상부로 광을 방사시키는 반도체 레이저 광원과,
상기 베이스의 타측 상부에 설치되어있고 상부로부터 반사되는 광을 전기신호로 변화시켜 음성에 의한 광량변화를 전기신호로 발생시키는 적어도 두 개의 수광소자들과,
상기 베이스의 외곽에 설치되어 상기 광원과 수광소자를 내부에 포함하는 틀체 형상의 케이스와,
상기 케이스의 상부에 설치되어 광원에서 방사되는 광을 하부면에서 반사시키며, 외부 음성 압력에 변형되는 진동판과,
상기 베이스와 진동판의 사이에 설치되고, 투명판에 형성된 홀로그램 격자를가지며, 하부의 광원에서 방사되는 광을 격자에 의해 진동판에 일정 각도로 입사시키고, 상기 진동판에서 반사된 광을 하부의 수광소자들에 일정각도로 입사시키는 홀로그램판을 구비함에 있다.
또한 본 발명에 따른 광마이크로폰의 다른 특징은,
상기 광원의 파장이 0.3~1.5㎛ 범위이고, 상기 광원과 진동판의 높이 차가 0.1㎜ ~ 10㎝ 이고, 상기 수광소자와 진동판의 높이차도 0.1㎜ ~ 10㎝ 이며, 상기 수광소자가 어레이 광 다이오드 소자이고, 상기 어레이 소자와 동일 반도체 기판 상에 각 수광소자의 신호 차이를 증폭할 수 있는 증폭단 및 연산회로를 집적시킬 수도 있으며, 상기 수광소자들간의 간격(d)이 1㎛ ~ 5㎝ 이고, 상기 진동판의 두께는 0.0001~100㎛ 이며, 상기 홀로그램 투명판의 두께는 0.001~100㎜ 이며, 홀로그램 렌즈 평판 및 케이스에 음향홀을 배치한다.
또한 본 발명에 따른 광마이크로폰의 또 다른 특징은,
베이스의 일측에 경사각을 가지고 설치되어, 상부로 일정 각도로 광을 방사시키는 반도체 레이저 광원과,
상기 베이스의 타측 상부에 경사각을 가지고 설치되어, 상부에서 일정각도로 반사되는 광을 전기신호로 변화시켜 음성에 의한 광량변화를 전기신호로 검출하는 적어도 두 개의 수광소자들과,
상기 베이스의 외곽에 설치되어 상기 광원과 수광소자를 내부에 포함하는 틀체 형상의 케이스와,
상기 케이스의 상부에 설치되어 광원에서 방사되는 광을 하부면에서 수광소자로 반사시키며, 외부 음성 압력에 변형되는 진동판을 구비함에 있다.
또한 상기 광원과 수광소자의 각도가 30∼90인 것을 특징으로 한다.
이하, 본 발명에 따른 광 마이크로폰에 관하여 첨부도면을 참조하여 상세히 설명한다.
본 발명을 설명하기 위하여 기본적인 동작 원리를 간단한 사전 도식도를 이용하여 설명하고자 한다.
먼저, 도 5a 내지 도 5c는 본 발명에 따른 광 마이크로폰의 구성 및 원리를 설명하기 위한 개략도로서, 도 5a는 본 발명의 일실시에에 따른 광마이크로폰의 단면도이며, 도 5b는 도 5a의 광마이크로폰의 동작원리를 설명하기 위한 개략도이고, 도 5c는 도 5a에서의 수광 소자를 설명하기 위한 개략도이다.
도 5a에서 볼수 있는 바와 같이, 베이스(50)상에 광원과 수광소자가 소정의 각도를 갖도록 고정시키기 위하여 두 개의 경사블럭(51)이 경사면을 마주보도록 설치되어있으며, 일측의 경사블럭(51)상에 반도체레이져 광원(52)이 부착되어 있으며, 타측 경사블럭 상에는 적어도 두개 이상, 예를 들어 4개의 어레이 광다이오드 수광소자들(56-1, 56-2, 56-3, 56-4)로된 수광소자(56)가 부착되어 있고, 상기 베이스(50)의 외곽에 틀체 형상의 케이스(58)가 설치되어 있고, 상기 케이스(58) 상부의 지지대(59)에는 하부면이 반사성을 가지는 진동판(52)이 고정되어 있으며, 음향학적 설계에 의해 외부 압력에 따른 내부 공기의 저항을 조절할 수 있는 음향홀(57)들이 케이스(58) 측면 또는 밑면에 형성되어있다.
상기의 광 마이크로폰은 도 5b에소 볼수 있는 바와 같이, 배면에 반사율을갖는 진동판(52)의 하부에, 일정한 방사각을 가지는 집광성 광을 상기 진동판(52)에 입사시키는 반도체 광원(54)과 상기 반사광을 수광하는 수광소자들(56-1, 56-2, 56-3, 56-4)로 구성된다. 여기서 상기 광원(54)은 수직 방출 표면 발광 레이저(Vertical Cavity Surface Emitting Laser; 이하 VCSEL이라 칭함)과 같은 레이저가 적합하다. 특히 광원은 동작 전류가 적어야 전체 소자의 전력 소모를 줄일 수 있기 때문에 동작 전류가 20㎃이하인 것이 바람직하다.
또한 상기 진동판(52)은 매우 얇아서 외부의 미세한 소리 압력에도 변형이 될 수 있어야 하며, 그 두께에서도 빛에 대한 반사율이 우수한 것이 좋다. 이런 진동판은 금(gold), Ni, Ti, Al과 같은 반사성이 우수하면서 외부 음성 신호에 민감한 금속이거나, 두 개 이상의 금속 화합물이 적합하다.
상기 수광소자(56)는 동작 원리에 해당하는 설계에 따라 여러 가지 변형이 가능하지만, 도 5c에서 볼 수 있는 바와 같이, 일정한 간격(d)으로 배열된 4개의 수광소자, 제1수광소자(56-1), 제2수광소자(56-2), 제3수광소자(56-3), 제4수광소자(56-4)로 구성된다.
따라서 상기 광원(54)에서 방출된 광은 진동판(52)에서 반사되어 수광소자(56) 위에 입사하게 된다. 반도체 광원의 경우 포인트 소스(point source)에 근접하기 때문에, 광원으로부터 멀어짐에 따라 빛이 퍼지는 특성이 있다. 보통 이를 전체 광세기(intensity)의 50%가 되는 각도를 정의하여 방사각(??)으로 표현한다. 이런 방사각이 0도가 아니면 진행 거리에 따라 광이 분포 면적은 넓어지게 된다. 즉 진동판(52)에 반사되어 수광소자 위에 입사되는 방사각에 해당하는 광의분포는 광원(54)의 방사각, 광원(54)으로부터 진동판(52), 진동판(52)으로부터 수광소자까지의 광의 경로에 의해 결정된다.
이 경우의 반사 경로 및 기타 광학적 설계를 외부의 신호가 없을 경우 (진동판(52)의 위치 변형이 없을 경우) 수광소자 위에 입사된 광이 가능한 중심부에 위치하여 내부 두개의 수광소자 (56-2) 및 (56-3)의 균형비가 동일하고 외부 두개의 수광소자 (56-1) 및 (56-4) 가 동일하게 분포하도록 설계한다.
여기서 상기 광원(54)은 파장이 0.3 ~ 1.5㎛ 정도 범위의 것이며, 광원(54)과 진동판(52)의 높이 차는 0.1㎜ ~ 10㎝ 정도이고, 수광소자(56)와 진동판(52)의 높이차도 0.1㎜ ~ 10㎝ 정도로하며, 수광소자(56)는 동일한 특성을 가지는 것이 바람직하므로 동일 반도체 기판 위에 제작된 어레이 수광소자가 적합하다.
또한 수광소자는 적어도 두개이상으로 하며, 각 수광소자들간의 간격(d)는 1㎛ ~ 5㎝ 정도로하고, 상기 진동판(52)의 두께는 0.001 ~ 100㎛ 정도로하고, 상기 광원(54)과 수광소자(56)의 각도 θ1은 30∼90??정도로 하고, 상기 수광소자는 증폭기에 연결되어 신호차를 증폭시키며, 어레이 소자의 경우에는 동일 기판상에 두 개의 수광소자의 신호 차이를 증폭할 수 있는 증폭단을 집적시킬 수도 있다.
본 발명의 동작원리를 살펴보면 다음과 같다.
먼저, 도 6에서와 같이, 외부에서 음성 신호와 같이 미세한 압력이 진동판(52)에 인가되면, 진동판(52)은 미세하여 위치가 변형되어 광의 경로 차이를 유발시킨다. 이때 상기 진동판(52)을 고정하는 지지대(53)는 변형되지 않으므로 진동판(52)의 중심에서 대칭으로 변형이 일어나고, 이것을 좀 확대 과장해서 그리면 도 6의 점선 같이 근사 시킬 수 있다. 상기 진동판(52)의 직경(D')이 광이 입사하는 부분인 중심부(D) 보다 최소 50배 이상 매우 크기 때문에 매우 선형적인 위치 변형을 근사할 수 있어서 선형적인 신호 추출이 가능하다.
즉 도 7a와 같이, 외부의 신호에 의해 진동판(52)이 h1 만큼 하부로 변형되어 새로운 변형면을 구성할 경우, 수광소자(56-1, 56-2, 56-3, 56-4)에 입사된 빛의 분포는 광 경로 차이에 의해 변형전 보다 제1, 2 수광소자(56-1, 56-2)에 더욱 많은 광이 분포하게되며, 상대적으로 제3, 4수광소자(56-3, 56-4)에는 적은 광량이 입사하게된다. 즉 외부 신호에 따른 진동판의 변형(h1)은 광의 경로 차이를 발생시키고, 이것은 수광소자에 입사되는 광 분포를 변형시키고, 이것은 각 수광 소자의 입사 광량의 차이를 발생시켜 신호를 발생하게 된다. 제 2 및 제 3의 수광 소자의 광량 차이는 미세하고, 제1 및 제 4의 수광소자 위의 광 분포는 비교적 큰 신호를 만들기 때문에 제 1수광소자와 제4 수광소자의 차이를 제 2 수광 소자와 제 3 수광 소자의 차이로 나누면 매우 미세한 신호를 극단적으로 유추해 낼 수 있다.
따라서 진동판의 변형에 따른 신호는
으로 나타낼 수 있으며, 이와 반대의 경우는 도 7b와 같이, 외부 신호에 의해 진동판(52)이 상부 방향으로 h2 만큼 변형을 일으키면, 앞에서 설명한 원리에 의해 수광소자(56)에 입사하는 광의 분포는 반대로 제3,4 수광소자(56-3,-4)에 더욱 많은 양이 입사하게 되고, 이에 해당하는 신호는
와 같이 얻어질 수 있다.
따라서, 외부 음성으로 인한 진동판의 변형에 따른 신호를 어레이(array) 수광소자, 즉 제1수광소자(56-1), 제2수광소자(56-2), 제3수광소자(56-3), 제4수광소자(56-4)에서 측정되는 전류의 차이로 신호를 검출할 수 있게 된다. 이런 신호 차이는 두 수광소자의 거리(d)를 조절함으로써, 매우 정밀하게 조절할 수 있다.
이런 원리에 의해 도 8과 같이 수광소자에 입사된 광량의 차이에 의한 수광 소자에 검출된 전류의 차이를 신호로 사용하면
로서 외부 음성으로 인한 진동판(52)의 변형을 전기적 신호출력으로 추출할 수 있다.
이 경우 미세한 차이를 효과적으로 추출하기 위해서는 제1, 제2, 제3 및 제4수광소자(56-1, 56-2, 56-3, 56-4)의 성능이 거의 동일해야 하기 때문에 동일 기판 위에 동일 공정으로 제작된 어레이 구조의 수광소자가 바람직하다. 즉 외부 신호의 변형의 크기에 따라, 진동판의 위치 변형의 크기가 변하고, 이에 해당하는 광 경로 차이가 변하여, 광 분포 변화가 생기는데, 이런 변화를 선형성이 보장되는 범위에서 전기적인 신호로 변환하여 추출할 수 있게 된다. 특히, 각 수광소자 신호의 차이를 수광소자에 바로 인접하여 증폭할 수 있게, 저잡음 증폭기 ( 예를 들면 transistor 혹은 amplifier) 회로 및 연산회로를 수광소자와 동일한 반도체 기판에 집적하면, 수광소자에서 검출되는 순수한 신호 변화를 잡음 환경에 노출시키기 전에 증폭시킬 수 있다.
이런 출력 신호를 음성신호와 함께 그리면 도 9에서와 같이 선형에 가까운 특성 곡선(60)을 얻을 수 있다. 그리고 두 신호 차이가 선형적인 조건을 갖기 위해서, 초기 광량 분포를 가능한 대칭으로 하는 것이 바람직하다. 그러나 이런 광소자 제조하는 과정에서 미세한 오차로 초기 광량 분포가 비대칭이면, 수광 소자와 집적된 출력단에서, 혹은 그 이후에 옵셋(off-set)을 조절할 수 있는 기능을 첨가하면 선형적인 특성을 얻을 수 있다. 비 대칭일 경우도 최종 출력단에 캐패시터를 달아 통과시키면 offset에 해당하는 DC 신호가 배제된 순수한 AC 음성 신호를 추출할 수 있다.
그러나, 이런 기본적인 구성은 광 마이크폰을 동작시킬 수 있으나, 이는 반도체 레이저 및 어레이 수광소자를 45도 각도로 위치시키고 정렬시켜야 하므로 조립 과정이 복잡해 질수 있다.
도 10은 본 발명의 다른 실시예에 따른 광 마이크로폰의 단면도로서, 동작 원리는 도 5에서 설명한 이론에 근거하며, 조립을 용이하게 하기 위하여 레이저와 수광소자를 베이스 표면에 거의 수평으로 부착시킨 예이다. 도 10와 같이 베이스(80)의 일측에 VCSEL로 된 광원(82)이 부착되어 있으며, 상기 베이스(80)의 타측에 어레이 수광소자(81)가 부착되어있고, 수광소자(81)들의 신호를 검출하는 검출회로(도시되지 않음)가 구비되어있다.
또한 상부에 지지대(86)를 가지는 틀체 형상의 케이스(88)가 베이스(80)의 외곽에 설치되어있으며, 상기 지지대(86)에 배면에 반사성을 가지는 진동판(85)이 설치되고 있고, 상기 광원과 진동판(85)의 사이에 홀로그램 격자(grating, 84)를 갖는 투명판, 즉 홀로그램판(83)이 0.001∼100㎜의 두깨로 설치되어 있다.
상기 광원(82)의 레이저 빔의 특성상 일정한 홀로그램 그래팅을 통과하면서 레이저 빔이 각도(α)로 일정하게 회절되어 레이저 빔의 방사각을 조절할 수 있게 되므로 레이저 빔을 진동판에 일정한 각도로 입사하고, 여기서 다시 반사하여 홀로그램을 다시 통과하게 되면서 다시 각도가 회절하게 된다. 이 각도를 조절하면 어레이 수광 소자(81)를 VCSEL 광원과 수평하게 베이스에 부착하여도 대칭적인 광 분포를 갖는 광학계를 구성할 수 있다.
상기 홀로그램판(83)의 홀로그램 그래팅 설계는, 베이스(80)의 평면상에 VCSEL과 같은 레이저 빔의 파장과 광 경로의 거리를 고려하여 설계하는데, 홀로그램의 격자는 레이저 빔이 격자를 통과한 후 수광소자 위의 입사되도록 위치를 설정하여 설계한다. 또한 홀로그램 영역은 빔이 통과되는 영역보다 충분히 넓게하여 조립성에 용이하도록 한다. 상기에서 광원(82)과 진동판(85) 및 수광소자(81)는 도 5에서와 같은 방법으로 형성할 수 있다.
또한 홀로그램판(83) 및 케이스(88)에 음향홀(87)을 배치하여 압력변화에 유연하도록한다.
이상에서 설명한 바와 같이, 본 발명에 따른 광 마이크로폰은 반도체 레이저와 홀로그램을 이용하여 진동판에 방사각을 가지고 입사시켜 소리에 의해 진동판이 변형되는 정도를 측정하되, 진동판에서 반사되는 광을 다수개의 수광소자에서의 전류 변화로 측정하는 구조로 형성하였으므로, 미세한 진동판 변형을 어레이 수광 소자의 발생전류 차이에 따른 신호 처리로 소리를 구성하여, 검출 감도가 매우 우수하고, VCSEL 광원과 array 수광소자가 동일 평면에 부착되기 때문에 조립성이 우수하여 상용화가 가능하게 된다. 또한 간단한 광학적 설계에 의해 신호 검출이 광에 의해 이루어지므로 신뢰성이 향상되고, 고주파나 전자기장등과 같은 주변 신호와의 간섭에 의한 잡음 문제가 배제되며, 모든 구성이 반도체로 구성되고 이를 접착하는 과정이 고온의 솔더링 공정을 이용할 수 있기 때문에, 마이크로폰 전체가 고온에서 견딜 수 있어 광 마이크로폰을 전자제품 속에 고온 상태에서 PCB에 조립할 수 있는 이점이 있다. 이는 종래 콘덴서 마이크로폰은 일렉트렉트가 유기박막이어서 고온 특성이 불안하여, 모든 전자 부품을 조립한 후 나중에 부착해야하는 단점으로 제품의 외형 디자인에 큰 지장을 주기 때문에 본 발명에 의한 광 마이크로폰은 고감도의 성능 뿐 아니라 외형 디자인에 매우 유용하다.

Claims (1)

  1. 평탄한 베이스와,
    상기 베이스의 일측에 경사각을 가지고 설치되어, 상부로 일정 각도로 광을 방사시키는 반도체 레이저 광원과,
    상기 베이스의 타측 상부에 경사각을 가지고 설치되어, 상부에서 일정각도로 반사되는 광을 전기신호로 변화시켜 음성에 의한 광량변화를 전기신호로 검출하는 적어도 두 개의 수광소자들과,
    상기 베이스의 외곽에 설치되어 상기 광원과 수광소자를 내부에 포함하는 틀체 형상의 케이스와,
    상기 케이스의 상부에 설치되어 광원에서 방사되는 광을 하부면에서 수광소자로 반사시키며, 외부 음성 압력에 변형되는 진동판을 구비하는 광마이크로폰.
KR1020040029481A 2004-04-28 2004-04-28 광 마이크로 폰 KR20040043150A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040029481A KR20040043150A (ko) 2004-04-28 2004-04-28 광 마이크로 폰

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040029481A KR20040043150A (ko) 2004-04-28 2004-04-28 광 마이크로 폰

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0077396A Division KR100437142B1 (ko) 2001-12-07 2001-12-07 광 마이크로 폰

Publications (1)

Publication Number Publication Date
KR20040043150A true KR20040043150A (ko) 2004-05-22

Family

ID=37339697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040029481A KR20040043150A (ko) 2004-04-28 2004-04-28 광 마이크로 폰

Country Status (1)

Country Link
KR (1) KR20040043150A (ko)

Similar Documents

Publication Publication Date Title
KR100437142B1 (ko) 광 마이크로 폰
CN112470493B (zh) 光学麦克风组件
KR101295941B1 (ko) 음향 신호를 전기 신호로 변환하는 방법, 장치 및 컴퓨터 판독가능한 저장 매체
US11533569B1 (en) Optical microphone with a dual light source
US20220167096A1 (en) Optical microphone assembly
US11510012B2 (en) Integrated optical transducer and method for fabricating an integrated optical transducer
KR20040043150A (ko) 광 마이크로 폰
US20230164470A1 (en) Microphone component and method of manufacture
CN114175683A (zh) 用于测量位移的光学换能器及方法
US20240147172A1 (en) Electro-acoustic transducer
EP3628990B1 (en) Integrated optical transducer and method for detecting dynamic pressure changes
US20240069195A1 (en) Displacement detector, array of displacement detectors and method of manufacturing a displacement detector
US20240101410A1 (en) Mems optical microphone
CN213880171U (zh) 光学传感器
WO2024108867A1 (zh) 光学传声器
CN118057850A (zh) Mems声学传感器、电子设备及mems声学传感器的制备方法
JP2001231100A (ja) 音響電気変換装置
JPH0440199A (ja) スピーカ装置
JP2001169396A (ja) 音響電気変換装置
Fismen et al. High performance low cost microphones utilising micro-optical technology

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination