KR20040040834A - Titanium oxide-coated material for implanting in living body and method for the preparation thereof - Google Patents

Titanium oxide-coated material for implanting in living body and method for the preparation thereof Download PDF

Info

Publication number
KR20040040834A
KR20040040834A KR1020020069147A KR20020069147A KR20040040834A KR 20040040834 A KR20040040834 A KR 20040040834A KR 1020020069147 A KR1020020069147 A KR 1020020069147A KR 20020069147 A KR20020069147 A KR 20020069147A KR 20040040834 A KR20040040834 A KR 20040040834A
Authority
KR
South Korea
Prior art keywords
titanium
titanium oxide
bio
implant material
coated
Prior art date
Application number
KR1020020069147A
Other languages
Korean (ko)
Other versions
KR100540513B1 (en
Inventor
이규철
김동혁
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020020069147A priority Critical patent/KR100540513B1/en
Publication of KR20040040834A publication Critical patent/KR20040040834A/en
Application granted granted Critical
Publication of KR100540513B1 publication Critical patent/KR100540513B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Ceramic Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PURPOSE: Provided is a method for manufacturing bio-implant material, coated with thin film of titanium dioxide by chemical vapor deposition using a titanium-containing organometal compound, in a large amount by a simple process. CONSTITUTION: The method for manufacturing a bio-implant material comprises: introducing a titanium-containing organometal compound as a titanium precursor and oxygen-containing gas or organic substances into a reactor through a separate line, while contacting them with a substrate for a bio-implant material under a pressure of 10-3 to 1,000 mmHg and a temperature ranged from room temperature to 1,000 deg.C to form titanium dioxide film on the substrate.

Description

산화티타늄 박막이 코팅된 생체 임플란트 소재 및 이의 제조 방법{TITANIUM OXIDE-COATED MATERIAL FOR IMPLANTING IN LIVING BODY AND METHOD FOR THE PREPARATION THEREOF}TITANIUM OXIDE-COATED MATERIAL FOR IMPLANTING IN LIVING BODY AND METHOD FOR THE PREPARATION THEREOF}

본 발명은 산화티타늄 박막이 코팅된 생체 임플란트 소재, 특히 산화티타늄-코팅된 티타늄 임플란트 소재 및 이의 유기금속화학증착법에 의한 제조방법에 관한 것이다.The present invention relates to a bio-implant material coated with a titanium oxide thin film, in particular a titanium oxide-coated titanium implant material and a method of manufacturing by organometallic chemical vapor deposition thereof.

여러 임상결과들을 보면, 오랜 기간 동안 순수 티타늄으로 만든 임플란트 소재가 부분 무치악 또는 무치악 환자에서 성공적으로 사용되고 있다. 티타늄은 원소 주기율표 상에서는 매우 반응성이 높은 금속이지만 생체 내에서 잘 사용되고 있다.Clinical results have shown that implant materials made of pure titanium have been successfully used in patients with partial or edentulous for a long time. Titanium is a very reactive metal on the periodic table of the elements, but titanium is well used in vivo.

티타늄 임플란트 소재가 장기간 좋은 예후를 갖기 위해서는 생체골과의 직접적인 접촉이 필요하다. 골통합(Osseointegration)이란, 임플란트 소재가 생체골과 직접 접촉하고 있는 상태 또는 결합조직의 개재없이 임프란트 소재와 골조직이 접촉하여 외부의 하중을 골조직내로 직접 전달할 수 있는 구조적, 기능적 결합이라고 정의하고 있다. 골통합을 결정하는 요소로는, 재료의 생체 적합성, 표면 구조, 표면 미세구조, 골질의 상태, 임플란트시 수술, 보철시 하중의 상태 등이 있다.Titanium implant material requires direct contact with living bones to have a good prognosis for a long time. Osseointegration is defined as the structural and functional coupling that allows the implant material and bone tissue to be in direct contact with the living bone or to transmit external load directly into the bone tissue without intervening connective tissue. Factors that determine bone integration include biocompatibility of materials, surface structure, surface microstructure, state of bone quality, surgery during implantation, state of prosthetic load, and the like.

티타늄 임플란트 소재가 많이 사용되는 이유는 티타늄이 생체적합성이 높기 때문인데, 부분적으로는 조직 계면에서 세포와 기질이 잘 부착되도록 도와주는 견고하고 안정된 그의 산화막 때문이다. 임플란트 소재 표면의 구성, 순도 뿐만 아니라 표면 산화막의 두께와 구조 또한 임플란트 소재의 생체 적합성에 영향을 미친다. 이 산화막의 특징적인 구성과 구조는 금속표면을 처리하는 기술에 따라 달라질 수 있다.Titanium implant materials are used a lot because of their high biocompatibility, in part because of their robust and stable oxide film that helps cells and substrates adhere well at the tissue interface. The composition and purity of the implant material surface, as well as the thickness and structure of the surface oxide film, affect the biocompatibility of the implant material. The characteristic structure and structure of this oxide film can vary depending on the technique of treating the metal surface.

생체 임플란트 소재의 표면 처리방법으로는 양극산화법, 플라즈마 산화법, 화학기상증착법(CVD), 물리적기상증착법(PVD)등의 방법이 있다. 열이나 전기화학적인 산화법을 사용하게 되면 소재 표면의 산화막의 두께가 증가하게 된다. 임플란트소재의 표면을 가공하는 방법에 따라 표면의 성질에 영향을 주어서 표면에서 일어나는 생체반응에도 영향을 미친다고 알려져 있다. 칼슨(Carlsson)등의 제거 토오크(removal torque)에 의한 가토의 골접합 연구에서는 분사처리에 의해 표면이 거칠게 처리된 임플란트 소재에서 더 좋은 제거 토오크 값을 보여주었다. 쿠르트(Kurt)등의 세포접착 실험에서도 분사처리나 사포로 처리한 거친 면의 소재에서 더 좋은 세포 반응을 보이고 있다. 거친 면의 임플란트 소재는 표면적의 증가, 향상된 세포와의 반응 등의 이유로 매끈한 면의 임플란트 소재에 비해 더 좋은 결과를 얻고 있다.As a surface treatment method of a bio-implant material, there are methods such as anodization, plasma oxidation, chemical vapor deposition (CVD) and physical vapor deposition (PVD). The use of thermal or electrochemical oxidation increases the thickness of the oxide film on the surface of the material. It is known that the method of processing the surface of the implant material affects the properties of the surface and also affects the bioreaction occurring on the surface. Studies on bone bonding by removal torque from Carlsson et al. Showed better removal torque values for implant materials with rough surfaces treated by spraying. Kurt et al.'S cell adhesion experiments also showed better cell responses in coarse-grained materials treated with spraying or sandpaper. Coarse-sided implant materials are getting better results than smooth-faced implant materials due to increased surface area and improved cell response.

특히 인공치아용 임플란트로서, 양극산화 방법(anodization)에 의해 티타늄 나사에 산화티타늄 층을 형성시켜 골과의 결합을 향상시켰다는 보고가 있으며(문헌[Y.-T. Sul et al., Biomaterials Vol. 23, pp. 1809-1817 (2002)] 참조), 열처리에 의해 산화시켜 산화티타늄 층을 형성시키는 방법이 있다. 그러나, 이러한 양극산화처리법이나 열처리산화법은 산화티타늄층의 조성과 두께를 조절하는데 한계가 있다.In particular, as an implant for artificial teeth, it has been reported to form a titanium oxide layer on titanium screws by anodization to improve binding to bone (Y.-T. Sul et al., Biomaterials Vol. 23, pp. 1809-1817 (2002)), which is oxidized by heat treatment to form a titanium oxide layer. However, such anodization or heat treatment oxidation has a limitation in controlling the composition and thickness of the titanium oxide layer.

이에 본 발명자들은 넓은 면적의 증착이 가능하면서 대량생산에 유리하며 두께 조절 및 성분비 조절이 용이하고 저온 증착이 가능하며, 표면의 조도를 조절할 수 있는 유기금속 화학기상증착법(MOCVD)에 의하여 산화티타늄 박막이 코팅된 임플란트 소재를 개발하게 되었다.Accordingly, the present inventors are able to deposit a large area, and are advantageous for mass production, and can easily control the thickness and composition ratio, and can be deposited at a low temperature. The coated implant material was developed.

따라서, 본 발명의 목적은 티타늄-함유 유기금속을 이용한 화학적 증착법에 의해 산화티타늄 박막이 코팅된 생체 임플란트 소재를 간단히 대량으로 제조하는 데 있다.Accordingly, an object of the present invention is to simply manufacture a large amount of a bio-implant material coated with a titanium oxide thin film by chemical vapor deposition using a titanium-containing organometal.

도 1은 본 발명에 사용되는 유기금속 화학기상증착 장치의 개략도이고,1 is a schematic diagram of an organometallic chemical vapor deposition apparatus used in the present invention,

도 2a 및 2b는 각각 본 발명에 따른 실시예로부터 제조된 생체 임플란트용 티타늄 소재 위에 직접 코팅된 산화티타늄 막의 주사전자현미경(SEM) 사진과 에너지 분산형 X선 분석기(Energy dispersive X-ray spectrometer:EDS) 분석 데이타이며,2A and 2B are scanning electron microscopy (SEM) photographs and an energy dispersive X-ray spectrometer (EDS) of a titanium oxide film coated directly on a titanium material for a bio-implant prepared from an embodiment according to the present invention, respectively. ) Analytical data,

도 3은 본 발명에 따른 실시예로부터 제조된 생체 임플란트용 티타늄 소재 위에 직접 코팅된 산화티타늄 박막의 X-선 회절법(XRD) θ-2θ 스캔 결과를 나타내고,Figure 3 shows the X-ray diffraction (XRD) θ-2θ scan results of the titanium oxide thin film directly coated on the titanium material for biological implants prepared from the embodiment according to the present invention,

도 4a 및 4b는 각각 본 발명에 따른 실시예로부터 제조된 생체 임플란트용 티타늄 소재 위에 직접 코팅된 산화티타늄 막의 표면거칠기가 반응가스의 흐름과 관계하여 임플란트 소재의 위치에 따라 변하는 것을 보여주는 주자전자현미경(SEM) 사진이다.4A and 4B are runner electron microscopes showing that the surface roughness of the titanium oxide film coated directly on the titanium material for bio-implants prepared from the examples according to the present invention is changed according to the position of the implant material in relation to the flow of the reaction gas. SEM) photo.

상기 목적을 달성하기 위하여 본 발명에서는, 티타늄 전구체로서의 티타늄-함유 유기금속 및 산소-함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입하면서 10-3내지 1,000 mmHg의 압력 및 상온 내지 1,000℃의 범위의 온도에서 생체 임플란트 소재 기재(substrate)와 접촉시켜 기재 위에 산화티타늄 막을 형성하는 것을 포함하는, 유기금속 화학기상증착법(MOCVD)에 의한 산화티타늄 박막-코팅된 생체 임플란트 소재의 제조방법을 제공한다.In order to achieve the above object, in the present invention, the pressure of 10 -3 to 1,000 mmHg and the range of room temperature to 1,000 ℃ while injecting the titanium-containing organometallic and oxygen-containing gas or organic as a titanium precursor into the reactor through a separate line Provided is a method for producing a titanium oxide thin film-coated bio-implant material by organometallic chemical vapor deposition (MOCVD), comprising contacting a bio-implant material substrate at a temperature of to form a titanium oxide film on the substrate.

또한, 본 발명에서는 상기 방법에 의해 제조된, 산화티타늄 박막 코팅된 생체 임플란트 소재를 제공한다.The present invention also provides a titanium oxide thin film coated bio-implant material prepared by the above method.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 사용될 수 있는 산화티타늄 박막 코팅용 생체 임플란트 소재는 생체 내에서 골통합을 위해 이용되는 통상적인 임플란트 소재가 모두 사용될 수 있으며, 특히 티타늄 재질의 것이 바람직하게 사용될 수 있다.The bio-implant material for coating titanium oxide thin film that can be used in the present invention can be used all of the conventional implant materials used for bone integration in vivo, and particularly preferably those of titanium.

본 발명에 티타늄 전구체로 사용되는 티타늄-함유 유기금속으로는 테트라키스 디에틸아미도 티타늄(Ti[N(C2H5)2]4), 테트라키스 디메틸아미도 티타늄 (Ti[N(CH3)2]4), 티타늄 t-부톡사이드(Ti(OC4H9 t)4), 티타늄(IV)에톡사이드 (Ti(OC2H5)4), 티타늄 이소프로폭사이드(Ti(OC3H7 i)4) 등 유기 티타늄 화합물을 들 수 있다.Titanium-containing organometals used as titanium precursors in the present invention include tetrakis diethylamido titanium (Ti [N (C 2 H 5 ) 2 ] 4 ), tetrakis dimethylamido titanium (Ti [N (CH 3 ) 2 ] 4 ), titanium t-butoxide (Ti (OC 4 H 9 t ) 4 ), titanium (IV) ethoxide (Ti (OC 2 H 5 ) 4 ), titanium isopropoxide (Ti (OC 3 Organic titanium compounds such as H 7 i ) 4 ).

또한, 본 발명에서 티타늄의 산화 박막 형성을 위해 사용되는 산소-함유 기체로는 O2, O3, NO2, 수증기 및 CO2등을 들 수 있으며, 산소-함유 유기물로는 메틸에틸케톤(C2H5COCH3) 및 테트라하이드로퓨란 등을 들 수 있다.In addition, in the present invention, the oxygen-containing gas used for forming the oxide thin film of titanium may include O 2 , O 3 , NO 2 , water vapor, and CO 2 , and the like may include methyl ethyl ketone (C 2 H 5 COCH 3 ), tetrahydrofuran and the like.

본 발명의 방법에서는 10-3내지 1,000 mmHg로 반응기의 압력을 유지하는 것이 적합하며, 반응기 내의 압력이 10-3mmHg보다 낮으면 반응속도가 느려지는 문제점이 있다. 또한, 반응기의 온도는 상온 내지 1,000℃로 유지하는데, 상온 보다 낮은 온도에서는 결정성 막이 형성되지 않으며, 1,000℃보다 높은 온도에서는 기상 전반응이 우세하게 되어 생성되는 막의 질을 떨어뜨린다.In the method of the present invention it is suitable to maintain the pressure of the reactor to 10 -3 to 1,000 mmHg, there is a problem that the reaction rate is slowed if the pressure in the reactor is lower than 10 -3 mmHg. In addition, the temperature of the reactor is maintained at room temperature to 1,000 ℃, the crystalline film is not formed at a temperature lower than the room temperature, the gas phase pre-reaction prevails at a temperature higher than 1,000 ℃ to reduce the quality of the resulting film.

필요에 따라, 본 발명의 MOCVD에 의해 형성된 산화티타늄 박막에 추가로 Ca등의 금속을 통상의 방법으로 첨가하여 형질을 우수하게 만들 수 있다.If necessary, in addition to the titanium oxide thin film formed by the MOCVD of the present invention, a metal such as Ca can be added in a conventional manner to make the trait excellent.

본 발명에 의해 코팅된 산화티타늄계 막은 X-선 회절법(XRD) 스캔 결과로부터 다결정 이산화티타늄(TiO2)과 산소가 부족한 상(TiOx)의 두가지 상이 혼재하고 있는 것으로 확인되었다(도 3 참조).The titanium oxide based film coated by the present invention was found to contain two phases of polycrystalline titanium dioxide (TiO 2 ) and oxygen-deficient phase (TiO x ) from X-ray diffraction (XRD) scan results (see FIG. 3). ).

본 발명에 따른 MOCVD에 의한 산화티타늄 박막-코팅된 임플란트 소재의 제조방법은 표면 조도가 우수하고 두께가 균일한 산화티타늄계 박막을 제공할 수 있어, 인공치아 등의 치과 또는 정형외과용 생체 임플란트소재의 대량 생산에 유리하게 이용할 수 있다.The method for producing a titanium oxide thin film-coated implant material by MOCVD according to the present invention can provide a titanium oxide thin film having excellent surface roughness and uniform thickness, and thus can be used as a dental implant orthopedic bio implant material such as an artificial tooth. It can be advantageously used for mass production of.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are for illustrative purposes of the present invention and are not intended to limit the protection scope defined by the appended claims.

실시예Example

도 1에 도시된 유기금속 화학기상증착 장치를 사용하여 티타늄 임프란트 기재(지름 4mm, 길이 10mm의 나사형) 위에 산화티타늄 박막을 코팅시켰다. 반응물질로서 티타늄 이소프로폭사이드(TIP, Ti(OC3H7 i)4) 및 O2를 사용하였고, 운반기체로서 아르곤을 사용하였다. 분리된 라인들을 통해 TIP 및 O2를 각각 반응기 내로 주입하였다. 이 때 반응기 내의 압력 및 온도를 각각 5 mmHg, 400℃로 일정하게 하고 각 반응물질들의 유량은 각각 아르곤 40 sccm, TIP 20 내지 40 sccm, O220 내지 40sccm 의 범위로 조절하면서 약 3 시간에 걸쳐 티타늄 코팅을 실시하였다.Titanium implant substrate (4 mm diameter, 10 mm long threaded type) using the organometallic chemical vapor deposition apparatus shown in FIG. The titanium oxide thin film was coated on it. Titanium isopropoxide (TIP, Ti (OC)3H7 i)4) And O2Was used, and argon was used as the carrier gas. TIP and O through separate lines2Were each injected into the reactor. At this time, the pressure and temperature in the reactor were constant at 5 mmHg and 400 ° C., respectively, and the flow rates of each reactant were 40 sccm of argon and 20 to 40 sccm of TIP, respectively.2Titanium coating was carried out over about 3 hours with adjustment in the range of 20-40 sccm.

코팅 완료 후 형성된 산화티타늄 막의 두께는 약 1.8 ㎛정도였으며, 코팅층의 표면 형상과 성분 분석을 주사전자현미경(Scanning electron microscopy, SEM)으로 시행하였고, 상의 확인을 위해 X-선 회절법(XRD)으로 θ-2θ 스캔하였다.The thickness of the titanium oxide film formed after the coating was about 1.8 μm, and the surface shape and component analysis of the coating layer were performed by scanning electron microscopy (SEM), and X-ray diffraction (XRD) was used to confirm the image. θ-2θ scan.

1) SEM 결과1) SEM results

티타늄 임프란트 위에 코팅된 산화티타늄 코팅층 표면의 전자현미경 사진은 도 2a에 나타낸 바와 같다. 도 2a는 나사형 티타늄 임프란트의 위쪽 평평한 부분(화살표)을 10,000배로 확대하여 본 사진으로 표면이 매끄럽지 않고 상당히 거친 것을 알 수 있다. 도 2b는 코팅층의 성분분석을 에너지 분산형 X선 분석기(Energy dispersive X-ray spectrometer:EDS)로 측정한 것으로 티타늄과 산소원자 만이 검출되는 것으로 보아 산화티타늄 막이 코팅된 것을 확인할 수 있다.Electron micrographs of the surface of the titanium oxide coating layer coated on the titanium implant is shown in Figure 2a. Figure 2a is an enlarged view of the upper flat portion (arrow) of the threaded titanium implant by 10,000 times, the picture is not smooth and can be seen that the surface is quite rough. Figure 2b is a component analysis of the coating layer was measured by an energy dispersive X-ray spectrometer (EDS), it can be seen that the titanium oxide film is coated because only titanium and oxygen atoms are detected.

도 4a에서 보이는 임프란트 위쪽 옆면의 표면형상은 위쪽의 형상과 별 차이 없게 나타난다. 반면 도 4b에 나타난 옆쪽에서는 특이한 형상이 나타났다. 그림 에서 보는 것처럼 빗살 모양의 표면이 생겼다. 이는 아마도 반응기 내의 반응기체의 흐름에 영향받은 것으로 보이며 이로써 임프란트 표면 조도가 향상되었다고 할 수 있다.The surface shape of the upper side surface of the implant shown in FIG. 4A is shown to be no different from the shape of the upper side. On the other hand, an unusual shape appeared on the side shown in Fig. 4b. As shown in the picture, a comb-like surface is created. This is probably due to the flow of the reactant in the reactor, which can be said to improve the implant surface roughness.

2) XRD 결과2) XRD results

티타늄 임프란트 위에 코팅된 산화티타늄 박막 표면의 X-선 회절법(XRD) 측정결과를 도 3에 나타내었다. 이산화티타늄의 아나타제상이 다결정으로 존재하고있는 것을 알 수 있고, 또한 산소 공공이 빠져나가 산소가 부족한 상인 TiOx(1<x<2)가 형성된 것을 알 수 있다.X-ray diffraction (XRD) measurement results of the titanium oxide thin film surface coated on the titanium implant is shown in FIG. It can be seen that the anatase phase of titanium dioxide exists as a polycrystal, and that the oxygen vacancies escape and TiO x (1 <x <2), which is a phase lacking oxygen, is formed.

또한, 상기와 같이 코팅된 임플란트의 상악구치부의 골과의 결합력을 다음과 같은 동물실험으로써 측정하였다.In addition, the binding force with the bone of the maxillary molar portion of the implant coated as described above was measured by the following animal experiment.

몸무게가 각각 3.5kg 이상인 10마리의 같은 종의 토끼를 사용하였다. 임플란트는 사용전에 에탄올에서 초음파세척과 고온가압멸균을 하였다. 수술은 멸균하에서 시행되었고 전처치를 위한 항생제는 투여하지 않았다. 전신마취는 자일라지르(Xylazire)(롬펀(Rompun)R, 한국의 바이에르화학(Byer Chemical Co.) 제품, 5mg/체중Kg)과 케타민(Ketamine)(케타라(Ketara)R, 한국의 유한양행 제품, 35mg/체중Kg)를 근육주사하여 시행하였다. 수술부위를 면도하고 경골부위에 부분마취를 2% 리도칸(Lidocane)R(한국의 광명화학 제품) 2ml로 시행하였다.Ten identical species of rabbits weighing more than 3.5 kg each were used. The implant was subjected to ultrasonic cleaning and autoclaving in ethanol prior to use. Surgery was performed under sterility and no antibiotics were taken for pretreatment. General anesthesia includes Xylazire (Rompun R , Bayer Chemical Co., Korea, 5mg / kg Kg) and Ketamine (Ketara R , Korea, Yuhan Corporation Product, 35 mg / kg body weight). The surgical site was shaved and partial anesthesia was performed on the tibial area with 2 ml of 2% Lidocane R (Korea's Kwang Myung Chemical).

수술 전에 요오드(iodine)와 70% 알콜 스폰지로 수술부위를 세척하였다. 경골부위를 절개하여 골을 노출시킨 후 브레네막 임프란트 시스템의 통법에 의해 상기 나사형 티타늄 임프란트를 식립하였다. 오른쪽 경골에는 대조군을 식립하였고 왼쪽 경골에는 실험군을 식립하였다. 4-0 흡수성 봉합사로 수술부위를 층별로 봉합하였고 항생제(베이트릴(Baytril)R, 한국의 바이에르화학 제품) 1 ml 와 대사촉진제로서의 카스토살(Castosal)R(한국의 바이에르화학 제품) 1 ml를 피하근육주사하였다. 염증을 방지하고 보호하기 위해 수술부위를 압박하였다.The surgical site was washed with iodine and 70% alcohol sponge before surgery. The tibial section was incised to expose the bone and then the screw-type titanium implant was implanted by the conventional Brenemak implant system. A control group was placed in the right tibia and an experimental group was placed in the left tibia. The surgical site was stitched layer by layer with 4-0 absorbent sutures and 1 ml of antibiotics (Baytril R , Bayer Chemicals, Korea) and 1 ml of Castosal R (Bayer Chemicals, Korea) as metabolic accelerators. Subcutaneous muscle injection. The surgical site was pressed to prevent and protect inflammation.

식립 후 8주째, 토끼를 죽여서 수술부위를 절개하였다. 식립 부위를 노출시켜 나사 위로 자라 올라온 골을 조심스럽게 제거하였고 제거 토오크(removal torque)를 측정하기 위해 나사의 사각-홀을 노출시켰다. 디지털 토오크 게이지(Digital torque gauge) MGT-15(미국 이마다(Imada, Inc.))를 사용하여 제거 토오크를 측정하였고 임프란트와 골의 파절이 이루어질 때의 최고 제거 토오크 값을 기록하였다. 얻어진 제거 토오크 값은, 대조군은 1.66 lbs, 실험군은 3.82 lbs로, 산화티타늄 박막이 성장된 인공치아에서 제거 토오크 값이 커져 골통합 성능이 향상되었음을 알 수 있다.Eight weeks after implantation, the rabbits were killed to dissect the surgical site. The implants were exposed to carefully remove the bones that had risen over the screws and the square-holes of the screws were exposed to measure removal torque. Removal torque was measured using a digital torque gauge MGT-15 (Imada, Inc., USA) and the highest removal torque value was recorded when fracture of the implant and bone was made. The obtained removal torque value was 1.66 lbs in the control group and 3.82 lbs in the experimental group. The removal torque value was increased in the artificial tooth in which the titanium oxide thin film was grown, indicating that the bone integration performance was improved.

본 발명에 따라 유기금속 화학증착법에 의해 생체 임플란트 소재를 산화티타늄 박막으로 코팅하는 방법은 대량생산에 유리하고 도핑 농도 조절이 용이하며 저온증착을 가능하게 하며 표면조도가 우수한 산화티타늄 박막을 수득할 수 있다. 본 발명에 따라 형성된 산화티타늄-코팅된 임플란트 소재는 코팅되지 않은 대조군에 비하여 제거 토오크 값이 두배 이상으로 생체내 골과의 통합력이 증가되었다. 따라서, 본 발명은 인공치아 등의 치과 또는 정형외과용 생체 임플란트(IMPLANT) 소재의 생산에 유리하게 이용할 수 있다.According to the present invention, a method of coating a bio-implant material with a titanium oxide thin film by an organometallic chemical vapor deposition method is advantageous for mass production, easy doping concentration control, low temperature deposition, and a titanium oxide thin film having excellent surface roughness can be obtained. have. The titanium oxide-coated implant material formed in accordance with the present invention increased the integration force with bone in vivo by more than twice the removal torque value compared to the uncoated control. Therefore, the present invention can be advantageously used for the production of a dental or orthopedic biological implant material such as an artificial tooth.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (9)

티타늄 전구체로서의 티타늄-함유 유기금속 및 산소-함유 기체 또는 유기물을 별개의 라인을 통해 반응기에 주입시키면서 10-3내지 1,000 mmHg의 압력 및 상온 내지 1,000℃의 범위의 온도에서 생체 임플란트(implant) 소재 기재(substrate)와 접촉시켜 기재 위에 산화티타늄 막을 형성하는 것을 포함하는, 유기금속 화학기상증착법에 의한 산화티타늄 박막-코팅된 생체 임플란트 소재의 제조방법.Titanium-containing organometallic and oxygen-containing gases or organics as titanium precursors are introduced into the reactor via separate lines while at the pressure of 10 −3 to 1,000 mmHg and at temperatures ranging from room temperature to 1,000 ° C. A method for producing a titanium oxide thin film-coated bio-implant material by organometallic chemical vapor deposition, comprising contacting a substrate to form a titanium oxide film on a substrate. 제 1 항에 있어서,The method of claim 1, 생체 임플란트 소재가 티타늄 또는 티타늄 함유 금속임을 특징으로 하는 방법.Wherein the bio-implant material is titanium or a titanium containing metal. 제 1 항에 있어서,The method of claim 1, 생체 임플란트 소재가 인공치아임을 특징으로 하는 방법.Wherein the bio-implant material is an artificial tooth. 제 1 항에 있어서,The method of claim 1, 티타늄-함유 유기금속이 테트라키스 디에틸아미도 티타늄, 테트라키스 디메틸아미도 티타늄, 티타늄 t-부톡사이드, 티타늄(IV) 에톡사이드 및 티타늄 이소프로폭사이드로 이루어진 군으로부터 선택된 것을 특징으로 하는 방법.The titanium-containing organometal is selected from the group consisting of tetrakis diethylamido titanium, tetrakis dimethylamido titanium, titanium t-butoxide, titanium (IV) ethoxide and titanium isopropoxide. 제 1 항에 있어서,The method of claim 1, 산소-함유 기체가 O2, O3, NO2, 수증기 또는 CO2인 것을 특징으로 하는 방법.And wherein the oxygen-containing gas is O 2 , O 3 , NO 2 , water vapor or CO 2 . 제 1 항에 있어서,The method of claim 1, 산소-함유 유기물이 메틸에틸케톤(C2H5COCH3) 또는 테트라하이드로퓨란인 것을 특징으로 하는 방법.The oxygen-containing organic is methylethylketone (C 2 H 5 COCH 3 ) or tetrahydrofuran. 제 1 항에 있어서,The method of claim 1, 코팅된 산화티타늄 박막의 두께가 10 nm 내지 100 ㎛ 범위임을 특징으로 하는 방법.Characterized in that the thickness of the coated titanium oxide thin film ranges from 10 nm to 100 μm. 제 1 항에 있어서,The method of claim 1, 코팅된 산화티타늄 박막이 1 이상의 산소/티타늄의 비율을 가짐을 특징으로 하는 방법.And wherein the coated titanium oxide thin film has a ratio of at least one oxygen / titanium. 제 1 항 내지 제 8 항 중의 어느 한 항에 따른 방법에 의해 제조된, 산화티타늄 박막이 코팅된 생체 임플란트 소재.A bio-implant material coated with a titanium oxide thin film prepared by the method according to any one of claims 1 to 8.
KR1020020069147A 2002-11-08 2002-11-08 Titanium oxide-coated material for implanting in living body and method for the preparation thereof KR100540513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020069147A KR100540513B1 (en) 2002-11-08 2002-11-08 Titanium oxide-coated material for implanting in living body and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020069147A KR100540513B1 (en) 2002-11-08 2002-11-08 Titanium oxide-coated material for implanting in living body and method for the preparation thereof

Publications (2)

Publication Number Publication Date
KR20040040834A true KR20040040834A (en) 2004-05-13
KR100540513B1 KR100540513B1 (en) 2006-01-11

Family

ID=37338096

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020069147A KR100540513B1 (en) 2002-11-08 2002-11-08 Titanium oxide-coated material for implanting in living body and method for the preparation thereof

Country Status (1)

Country Link
KR (1) KR100540513B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080684A1 (en) * 2004-10-05 2006-08-03 Lg Chem, Ltd. Method for preparation of bioactive ceramic-coated composite
CN100450557C (en) * 2004-08-13 2009-01-14 重庆大学 Medication eluting type blood vessel bracket
KR101046674B1 (en) * 2010-10-15 2011-07-06 연세대학교 산학협력단 Implant & method of preparing thereof
CN113636868A (en) * 2021-08-19 2021-11-12 北京大学口腔医学院 Surface coating method of zirconia ceramic implant material and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101256175B1 (en) * 2011-09-16 2013-04-19 주식회사 덴티스 Method for producing high hydrophilic implant
KR101901980B1 (en) 2012-02-13 2018-09-28 오스템임플란트 주식회사 Porous Surface Having a Triple Structure of at the Macro, Micro and Nanolevel for Improving Osteointegration of Implants and Method for Producing the Same
KR101901981B1 (en) 2012-01-20 2018-09-28 오스템임플란트 주식회사 Porous Surface Having a Triple Structure of at the Macro, Micro and Nanolevel for Improving Osteointegration of Implants and Method for Producing the Same
WO2013109078A1 (en) * 2012-01-20 2013-07-25 오스템임플란트 주식회사 Porous surface for improving the bone-fusing ability of an implant having a macro/micro/nano-scale three-part structure, and production method therefor
KR102078331B1 (en) * 2018-01-11 2020-04-02 강릉원주대학교산학협력단 Method for coating bioceramic on a titanium implant surface and titanium implant prepared by the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693377A (en) * 1996-01-08 1997-12-02 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving titanium organometallic and metal-organic precursor compounds
US6313035B1 (en) * 1996-05-31 2001-11-06 Micron Technology, Inc. Chemical vapor deposition using organometallic precursors
KR100209373B1 (en) * 1996-10-02 1999-07-15 김영환 Device of chemical vapor deposition and method of deposition dielectronic layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450557C (en) * 2004-08-13 2009-01-14 重庆大学 Medication eluting type blood vessel bracket
WO2006080684A1 (en) * 2004-10-05 2006-08-03 Lg Chem, Ltd. Method for preparation of bioactive ceramic-coated composite
KR101046674B1 (en) * 2010-10-15 2011-07-06 연세대학교 산학협력단 Implant & method of preparing thereof
CN113636868A (en) * 2021-08-19 2021-11-12 北京大学口腔医学院 Surface coating method of zirconia ceramic implant material and application thereof
CN113636868B (en) * 2021-08-19 2023-08-04 北京大学口腔医学院 Surface coating method of zirconia ceramic implant material and application thereof

Also Published As

Publication number Publication date
KR100540513B1 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
Pogrebnjak et al. Antibacterial effect of Au implantation in ductile nanocomposite multilayer (TiAlSiY) N/CrN coatings
Narayanan et al. Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications
Tsai et al. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants
Astaneh et al. Atomic layer deposition on dental materials: processing conditions and surface functionalization to improve physical, chemical, and clinical properties-a review
KR100540513B1 (en) Titanium oxide-coated material for implanting in living body and method for the preparation thereof
US10213524B2 (en) Coating comprising strontium for body implants
RU2554819C1 (en) Method for producing bioactive coating on titanium implant implanted into human bone tissue
RU2566060C1 (en) Bioactive coating of titanium implant inserted into individual&#39;s bone tissue
Shahmohammadi et al. Atomic layer deposition of TiO2, ZrO2 and TiO2/ZrO2 mixed oxide nanofilms on PMMA for enhanced biomaterial functionalization
CN102438671A (en) Ion substituted calcium phosphate coatings
Ballo et al. Bone response to physical‐vapour‐deposited titanium dioxide coatings on titanium implants
TW201515668A (en) Surface treatment method for implants
Shahmohammadi et al. Applications of titania atomic layer deposition in the biomedical field and recent updates
CN110042392A (en) Preparation method of composite coating with excellent biocompatibility and antibacterial property on surface of medical implant
Das et al. Fabrication of a cubic zirconia nanocoating on a titanium dental implant with excellent adhesion, hardness and biocompatibility
Zhu et al. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium
Huang et al. Mechanical, antibacterial and cytotoxic characteristics of nanolayered TiNb–Zr–Ta and nitrogen-doped TiNb–Zr–Ta coatings
JP4471257B2 (en) Artificial bone or artificial root implant
KR20040099966A (en) Dental implants coated with fluorhydroxyapatite for biocompatible implants
KR102152378B1 (en) Method for preparation of zirconia implant coated with hydroxyapatite by deep-coating using hydroxyapatite sol
Katsui et al. Bio-ceramic coating of Ca–Ti–O system compound by laser chemical vapor deposition
US20200061242A1 (en) Ta2o5 and ta2o5 - tio2 hybrid surfaces for invasive surgical devices
KR20040099964A (en) The biocompatible implant on which is coated with hydroxyapatite/titania double layer
KR20220133945A (en) White, bacteria-resistant, biocompatible adhesive coatings for integration into hard and soft tissues, especially for implants, screws and plates, and methods of making the same
Szindler et al. Characteristics and electrochemical properties of Al2O3 thin films on surgical scalpel blades

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091222

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee