KR20040038381A - Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces - Google Patents

Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces Download PDF

Info

Publication number
KR20040038381A
KR20040038381A KR1020020067282A KR20020067282A KR20040038381A KR 20040038381 A KR20040038381 A KR 20040038381A KR 1020020067282 A KR1020020067282 A KR 1020020067282A KR 20020067282 A KR20020067282 A KR 20020067282A KR 20040038381 A KR20040038381 A KR 20040038381A
Authority
KR
South Korea
Prior art keywords
post
nitriding
furnace
oxidation
steel part
Prior art date
Application number
KR1020020067282A
Other languages
Korean (ko)
Other versions
KR100504131B1 (en
Inventor
김영희
Original Assignee
김영희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영희 filed Critical 김영희
Priority to KR10-2002-0067282A priority Critical patent/KR100504131B1/en
Publication of KR20040038381A publication Critical patent/KR20040038381A/en
Application granted granted Critical
Publication of KR100504131B1 publication Critical patent/KR100504131B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Abstract

PURPOSE: A surface modification method for manufacturing high corrosion resistance steel by using two furnaces is provided to increase productivity, greatly reduce purging gas and improve corrosion resistance and aesthetic characteristics by performing post oxidation treatment promptly and effectively using nitriding and post oxidation furnaces. CONSTITUTION: The surface modification method comprises a step of nitriding the ε-iron nitride or ε-iron carbonitride using N2 gas or purging nitrocarburizing gas onto the ε-iron nitride or ε-iron carbonitride after forming ε-iron nitride or ε-iron carbonitride on the surface of the steel part by nitriding or nitrocarburizing a steel part in first furnace; a step of controlled cooling in the air after taking out the steel part from the furnace; and a step of cooling the post oxidized steel part before using the cooled steel part or black finish treating the cooled steel part after post oxidizing the steel part in the second furnace by charging the controlled cooled steel part into second furnace that is set to the post oxidation conditions in advance to carry out post oxidation.

Description

2기의 노를 사용한 고내식강 제조를 위한 표면개질방법{Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces}Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces}

본 발명은 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법에 관한 것으로, 특히 질화 또는 질화침탄 처리공정과 후산화 처리공정을 각각 전용의 질화로와 후산화로를 사용하여 처리함에 의해 질화 처리온도에서 후산화 처리온도까지의 냉각시간을 크게 단축할 수 있어, 신속한 냉각에 따라 질화처리공정에서 형성된 표면 질화물층의 상변화를 방지할 수 있고, 강부품의 균일한 냉각과 적정의 후산화 온도에서 후산화 처리가 가능하여 표면에 견고하고 치밀하며 균일한 흑색 철산화물 피막을 형성하여 우수한 내식성을 갖는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법에 관한 것이다.The present invention relates to a surface modification method for producing a high corrosion resistant steel using two furnaces, in particular nitriding by treating the nitriding or nitrification process and the post-oxidation process using a dedicated nitriding furnace and a post oxidation furnace, respectively. The cooling time from the processing temperature to the post-oxidation temperature can be greatly shortened, so that the phase change of the surface nitride layer formed in the nitriding process can be prevented by rapid cooling, and the uniform cooling of the steel parts and the post-oxidation of appropriate The present invention relates to a surface modification method for manufacturing a high corrosion resistant steel using two furnaces having excellent corrosion resistance by forming a solid, dense and uniform black iron oxide film on the surface by post-oxidation treatment at a temperature.

유압 및 공압용 피스톤 로드, 자동차용 쇼크업소바용 로드 및 댐퍼 로드 등은 내식성, 내마모성, 균일하고 치밀한 피막의 표면코팅을 위해 크롬 도금 또는 표면처리를 실시하고 있다.Hydraulic and pneumatic piston rods, automotive shock absorber rods and damper rods are chromium plated or surface treated for corrosion resistance, abrasion resistance, and uniform and dense surface coating.

특히, 물 및 염수 등의 염소이온(Cl)에 의한 부식이 심한 환경에서 우수한 내식 특성을 갖도록 하기 위해서 종래에는 질화 또는 질화침탄 처리공정과 후산화 처리공정을 단일 노(furnace)에서 질화 처리와 후산화 처리를 실시하였다.In particular, in order to have excellent corrosion resistance in an environment where corrosion by chlorine ions (Cl) such as water and brine are severe, conventionally, after nitriding or nitriding and post-oxidation treatment are carried out after nitriding treatment in a single furnace. Oxidation treatment was performed.

이와 같이 질화 또는 질화침탄처리하면 도 1에 도시된 바와 같이 화합물층내에 처리방법에 따라 ε-Fe2-3(N,C)상만 생성되거나 경우에 따라서는 ε-Fe2-3(N,C)상과 γ'-Fe4N상의 혼합상 또는 γ'-Fe4N상만이 형성될 수 있다. 그런데 이들 두상은 염수 등에 대하여 내식성이 거의 없다.When nitriding or nitriding is carried out as described above, only the ε-Fe 2-3 (N, C) phase is generated in the compound layer according to the treatment method as shown in FIG. 1 or in some cases, the ε-Fe 2-3 (N, C) Only a mixed phase and a γ'-Fe 4 N phase or a γ'-Fe 4 N phase may be formed. However, these two phases have little corrosion resistance to salt water and the like.

따라서, 내식성을 부여하기 위하여는 후산화를 실시하는 것이 필요하며, 후산화처리를 실시하면 산소가 ε-Fe2-3(N,C)상 내에만 함유되며, 이 경우 γ'-Fe4N상은 후산화 후에도 내식성이 거의 없게 된다.Therefore, in order to impart corrosion resistance, post-oxidation is necessary. When post-oxidation is performed, oxygen is contained only in the ε-Fe 2-3 (N, C) phase, in which case γ'-Fe 4 N The phase is almost corrosion resistant even after post-oxidation.

일반적으로 질화 또는 질화침탄처리하면 ε-Fe2-3(N,C)상과 γ'-Fe4N상의 혼합상이 얻어지나 처리 중에 가스와 온도를 제어하면 화합물층의 최표면에 ε-Fe2-3(N,C)상만이 형성되게 할 수 있다. 이 경우 화합물층은 최표면에 ε-Fe2-3(N,C)상이 형성되고, 그 아래에 ε-Fe2-3(N,C)상과 γ'-Fe4N상이 공존하게 되므로 ε-Fe2-3(N,C)상과 γ'-Fe4N상의 혼합상에 대해서도 후산화 처리를 실시하면 내식성을 갖게 된다.In general if the nitriding treatment or a carbo-nitride, ε-Fe 2-3 (N, C ) phase and the γ'-Fe 4 when passing on the mixed phase obtained N gas and temperature control during the treatment on the outermost surface of the compound layer, ε-Fe 2- Only three (N, C) phases can be formed. In this case, ε-Fe 2-3 (N, C) phase is formed on the outermost surface, and ε-Fe 2-3 (N, C) phase and γ'-Fe 4 N phase coexist below it. The post oxidation treatment is also performed on the mixed phases of the Fe 2-3 (N, C) phase and the γ'-Fe 4 N phase to have corrosion resistance.

따라서, 질화 또는 질화침탄처리에 의해 형성된 ε-Fe2-3(N,C)상 또는 ε-Fe2-3(N,C)상과 γ'-Fe4N상의 혼합상 어느 것도 염수에 대한 내식성은 거의 없게 된다.Therefore, neither the ε-Fe 2-3 (N, C) phase or the mixed phase of the ε-Fe 2-3 (N, C) and γ'-Fe 4 N phases formed by nitriding or nitriding carburization is applied to the brine. There is little corrosion resistance.

그러나, 특히 ε-Fe2-3(N,C)상에 (ε-Fe2-3(N,C)상에만 기공이 형성되며 이 기공을 통해 산소가 주로 침입하여 ε-Fe2-3(N,C)상 내에 산소가 함유되고 기공층은 산화물로 메꾸어지게 된다.) 산소가 함유되면 내식성이 크게 향상되며, 또한 이 화합물층 위에 Fe2O4 산화물층이 형성되어 내식성이 부가적으로 더욱 향상된다.However, in particular ε-Fe 2-3 (N, C ) on the (ε-Fe 2-3 (N, C ) only a pore is formed ε-Fe 2-3 to oxygen is mainly breaking through the pores ( Oxygen is contained in the N, C) phase and the pore layer is filled with an oxide.) When oxygen is contained, the corrosion resistance is greatly improved, and the Fe 2 O 4 oxide layer is formed on the compound layer to further improve the corrosion resistance.

도 1에서 화합물층을 구성하는 물질은 ε-Fe2-3(N,C)상과 γ'-Fe4N상이며, γ'-Fe4N상을 제외한 모든 영역은 ε-Fe2-3(N,C)상으로 되어 있다.In FIG. 1, the materials constituting the compound layer are ε-Fe 2-3 (N, C) phase and γ'-Fe 4 N phase, and all regions except γ'-Fe 4 N phase are ε-Fe 2-3 ( N, C) phase.

종래에는 570~580℃의 온도에서 강부품 표면에 ε-철질화물(epsilon iron nitride) 또는 ε-철탄질화물(epsilon iron carbonitride)(ε-Fe2-3(N,C))로 표면층을 형성시킨 후 흑색 철산화물(Fe3O4) 피막을 형성시키기 위한 후산화(post oxidation)공정을 연속하여 진행할 때, 단일의 질화로 내에서 먼저 강부품의 표면을 질화(nitriding) 또는 질화침탄(nitrocarburising) 처리후 N2가스로 노내의 질화 또는 질화침탄 분위기를 퍼징(purging)하면서 부품의 온도를 후산화 온도까지 노속에서 냉각한 후 동일 노내에서 후산화를 실시한다. 이러한 질화 또는 질화침탄 공정과 후산화공정은 단일 노에서 연속적으로 처리되므로 질화처리후 후산화에 적합한 온도로 냉각시키는 것이 필요하다.Conventionally, the surface layer is formed of epsilon iron nitride or epsilon iron carbonitride (ε-Fe 2-3 (N, C)) on the surface of steel parts at a temperature of 570 to 580 ° C. After continuous post oxidation process to form black iron oxide (Fe 3 O 4 ) film, the surface of steel parts is first nitrided or nitrocarburising in a single nitriding furnace. After purging the nitriding or nitrification atmosphere in the furnace with N 2 gas, the temperature of the components is cooled in the furnace to the post-oxidation temperature and then post-oxidation is performed in the same furnace. Since the nitriding or nitrification process and the post-oxidation process are processed continuously in a single furnace, it is necessary to cool to a temperature suitable for post-oxidation after nitriding.

그러나, 종래의 단일 노를 사용한 처리방법에 있어서는 동일로에서 연속적으로 질화 또는 질화침탄 처리, N2가스 퍼징, 온도 냉각 및 후산화 처리를 실시하는 방법은 대량생산을 위해 대형 노를 이용할 때 다음과 같은 심각한 문제를 야기하게 된다.However, in the conventional treatment method using a single furnace, the method of continuously nitriding or nitriding carburizing, N 2 gas purging, temperature cooling, and post-oxidation treatment in the same furnace is described as follows when using a large furnace for mass production. It causes the same serious problem.

즉, 처리될 강부품을 약 2톤 정도 장입한 현장 생산용 노(1200mmφ×2200mmH)에서 40℃ 낮추는데 소요되는 시간은 약 1시간 30분 이상 소요되므로, 적정 후산화 온도인 400~540℃까지 냉각하는데 최소 3시간의 냉각시간이 소요된다. 이 경우 N2퍼징가스가 10㎥/hr 이상 소비되기 때문에 다량의 퍼징가스가 소모되는 문제가 있다.In other words, the time required to lower 40 ° C in the field production furnace (1200mmφ × 2200mmH) with about 2 tons of steel parts to be treated takes about 1 hour and 30 minutes or more, so it is cooled to the appropriate post-oxidation temperature of 400 to 540 ° C. It takes a minimum of three hours to cool down. In this case, since N 2 purging gas is consumed 10 m 3 / hr or more, a large amount of purging gas is consumed.

또한, 상기와 같이 노냉시간이 길어지면 강부품의 표면에 형성된 화합물층 내의 질소 및 탄소가 탈질 및 탈탄되어 화합물층 내의 ε-철질화물 또는 ε-철탄질화물의 화학조성이 변화하여 오히려 내식성이 감소한다. 즉, 질화 또는 질화침탄처리에 의해 형성된 ε-Fe2-3(N,C)상은 질화 또는 질화침탄 분위기가 아닌 질소분위기에서 500℃ 이상의 온도에서 장시간 동안 유지될 때 최표면층의 ε-Fe2-3(N,C)상에 존재하는 C와 N이 N2가스 분위기로 빠져 나와 ε-Fe2-3(N,C)상이 γ'-Fe4N상으로 변하게 된다. 이 경우, γ'-Fe4N상은 후산화를 실시하여도 산소가 함유되지 않으므로 내식성이 부여되지 못하여 화학조성이 변하면 오히려 내식성이 감소하는 문제가 있다.In addition, as described above, when the furnace cooling time is extended, nitrogen and carbon in the compound layer formed on the surface of the steel part are denitrated and decarburized, thereby changing the chemical composition of the ε-iron nitride or ε-iron carbonitride in the compound layer, thereby reducing the corrosion resistance. That is, the nitride formed by nitriding or carburizing ε-Fe 2-3 (N, C ) phase of the top layer when kept for a long period of time at least 500 ℃ temperature in a nitrogen atmosphere, not a nitride or carbo-nitriding atmosphere ε-Fe 2- C and N present in the 3 (N, C) phase escape into the N 2 gas atmosphere, and the ε-Fe 2-3 (N, C) phase is changed into a γ'-Fe 4 N phase. In this case, the γ'-Fe 4 N phase does not contain oxygen even after post-oxidation, so corrosion resistance is not imparted. Therefore, when the chemical composition is changed, the corrosion resistance is rather reduced.

또한, 540℃ 이상에서 수증기에 의한 후산화시 철산화물은 Fe3O4가 생성되어야 하나 Fe2O3도 소량씩 생성되어 내식성에 나쁜 영향을 미치게 된다.In addition, the iron oxide when the post-oxidation by steam at 540 ℃ or more should be produced Fe 3 O 4 Fe 2 O 3 is also produced in small amounts will adversely affect the corrosion resistance.

더욱이, 종래방법에서는 강부품이 노냉될 때 강부품의 노내 위치에 따라 강부품의 냉각이 균일하게 진행되지 못하여 노냉시간이 길어지거나 또는 후산화시에 균일하지 못한 흑색 철산화물 피막이 얻어지게 되어 이 또한 내식성에 나쁜 영향을 미치게 된다.Furthermore, in the conventional method, when steel parts are cold-cooled, cooling of the steel parts does not proceed uniformly according to the furnace position of the steel parts, resulting in a long furnace cooling time or an uneven black iron oxide film at the time of post-oxidation. It will adversely affect the corrosion resistance.

따라서, 종래의 질화법에 의한 내식강의 표면처리방법은 낮은 생산성과 내식성 및 제품의 온도 불균일로 인한 균일하지 못하고 미려하지 못한 후산화층 형성 등이 해결하여야 할 문제점으로 남아 있다.Therefore, the surface treatment method of the corrosion resistant steel by the conventional nitriding method remains a problem to be solved, such as the formation of a non-uniform and not beautiful post-oxidation layer due to low productivity, corrosion resistance and temperature unevenness of the product.

따라서 본 발명은 이러한 종래기술의 문제점을 감안하여 안출된 것으로, 그 목적은 질화 또는 질화침탄 처리공정과 후산화 처리공정을 각각 전용의 질화로와 후산화로를 사용하여 처리함에 의해 질화 처리온도에서 후산화 처리온도까지의 냉각시간을 2 내지 40배 단축할 수 있어, 신속한 냉각에 따라 전공정에서 형성된 표면 질화물층의 상변화를 방지할 수 있고, 강부품의 균일한 냉각과 적정의 후산화 온도에서 후산화 처리가 가능하여 표면에 견고하고 치밀하며 균일한 흑색 철산화물 피막을 형성하여 우수한 내식성을 갖는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법을 제공하는 데 있다.Therefore, the present invention has been devised in view of the problems of the prior art, and its object is to carry out a nitriding or nitriding carburizing process and a post-oxidation process by using a dedicated nitriding furnace and a post-oxidation furnace, respectively. The cooling time to the oxidation treatment temperature can be shortened by 2 to 40 times, preventing rapid phase change of the surface nitride layer formed in the previous process by rapid cooling, and uniform cooling of steel parts and proper post-oxidation temperature. It is possible to provide a surface modification method for producing a high corrosion resistant steel using two furnaces having excellent corrosion resistance by forming a solid, dense and uniform black iron oxide film on the surface by post oxidation treatment.

본 발명의 다른 목적은 대량 생산시 단일 노에서 질화 또는 질화침탄 처리공정에 후속하여 후산화 처리공정을 갖는 경우 후산화 처리공정을 별도의 후산화로에서 실시함에 따라 질화 또는 질화침탄 처리공정후 퍼징가스로 퍼징한 후 바로 질화로에서 꺼내어 후산화로를 사용하므로 N2퍼징가스를 크게 절약할 수 있는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법을 제공하는 데 있다.It is another object of the present invention to purge after nitriding or nitriding and carburizing by carrying out the post-oxidation process in a separate post-oxidation furnace in the case of having a post-oxidation process subsequent to nitriding or nitrification process in a single furnace in mass production. It is to provide a surface modification method for manufacturing high corrosion-resistant steel using two furnaces that can greatly reduce the N 2 purging gas because the after-oxidation furnace is used to take out from the nitriding furnace immediately after purging with gas.

도 1은 강부품을 질화 또는 질화침탄 처리하는 경우 강부품의 표면 구조를 보여주기 위한 모식 단면도이다.1 is a schematic cross-sectional view showing the surface structure of a steel part when the steel part is nitrided or nitrided.

상기한 목적을 달성하기 위하여, 본 발명은 2기의 노를 사용하여 제1노에서 550~600℃에서 강부품을 질화 또는 질화침탄처리를 실시한 후 N2가스로 질화 또는 질화침탄가스를 퍼징한 다음, 강부품을 노에서 꺼내어 공기 중에서 30초~1시간 동안 제어냉각한 후 미리 후산화처리 조건으로 설정된 400~540℃의 후산화를 위한 제2로에서 제어냉각된 강부품을 장입하여 1분~5시간 동안 후산화를 실시한 후 공냉 또는 수냉을 실시하는 것을 특징으로 하는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법을 제공한다.In order to achieve the above object, the present invention, after the nitriding or nitriding carburizing treatment of the steel parts at 550 ~ 600 ℃ in the first furnace using two furnaces and purged with nitriding or nitrocarburizing gas with N 2 gas Next, the steel parts were removed from the furnace, controlled cooling in air for 30 seconds to 1 hour, and then charged into the second furnace for post-oxidation at 400 to 540 ° C., which was set to the post-oxidation condition in advance, for 1 minute. It provides a surface modification method for the production of high corrosion-resistant steel using two furnaces, characterized in that the post-oxidation is carried out for ~ 5 hours, followed by air cooling or water cooling.

후산화처리는 ε-Fe2-3(N,C)상의 화합물에 산소를 함유시키고 나아가 최표면층에 Fe3O4산화물을 형성시켜 내식성을 향상시키고 또한 흑색의 미려한 표면을 얻기 위한 것이다. 후산화 처리온도가 낮을수록 Fe3O4층이 얇고 ε-Fe2-3(N,C)상에 들어가는 산소양도 적게 된다. 따라서, 400~540℃의 온도범위에서 1분~5시간 후산화처리하면 Fe3O4산화물층 두께는 0.1~2㎛ 정도밖에 되지 않는다.The post-oxidation treatment is to contain oxygen in the compound of the ε-Fe 2-3 (N, C) phase and further form Fe 3 O 4 oxide in the outermost surface layer to improve corrosion resistance and to obtain a beautiful black surface. The lower the post-oxidation temperature, the thinner the Fe 3 O 4 layer and the smaller the amount of oxygen entering the ε-Fe 2-3 (N, C) phase. Therefore, if the post-oxidation treatment for 1 minute to 5 hours in the temperature range of 400 ~ 540 ℃ Fe 3 O 4 oxide layer thickness is only about 0.1 ~ 2㎛.

만약, 540℃에서 5시간 이상 후산화를 실시하면 후산화에 의한 Fe3O4산화물층의 두께가 두껍게 되며, 이 경우는 후산화 처리후 흑색마무리처리를 하지 않고도 고내식성을 요구하는 강부품에는 적합하다. 즉, Fe3O4산화물층의 두께가 두껍게 되면 흑색마무리처리 중에 산화물층이 박리되어 떨어져 나가며 또한 마무리 조도가 나빠지는 문제가 있다.If post-oxidation is performed at 540 ° C. for more than 5 hours, the thickness of the Fe 3 O 4 oxide layer is increased by post-oxidation. In this case, steel parts requiring high corrosion resistance without black finishing after post-oxidation are applied. Suitable. That is, when the thickness of the Fe 3 O 4 oxide layer becomes thick, there is a problem in that the oxide layer is peeled off during the black finishing process, and the finish roughness deteriorates.

또한, 후산화처리가 400℃, 1분 이하인 경우는 Fe3O4산화물층의 두께가 너무 얇고, ε-Fe2-3(N,C)상에 들어가는 산소양도 적게 되어 내식성이 떨어지는 문제가 있다. 따라서, 바람직하게는 Fe3O4산화물층의 두께가 1㎛ 미만으로 형성하여 흑색마무리처리를 실시하는 것이 좋게 된다.In addition, in the case where the post-oxidation treatment is 400 ° C. for 1 minute or less, the thickness of the Fe 3 O 4 oxide layer is too thin, and the amount of oxygen entering the ε-Fe 2-3 (N, C) phase is also low, resulting in poor corrosion resistance. . Therefore, it is preferable to form the thickness of the Fe 3 O 4 oxide layer to be less than 1 μm to perform black finishing.

또한, 상기 제어냉각에 소요되는 시간을 30초~1시간으로 정하였으나, 이는 후산화 처리될 강부품의 크기(두께, 직경, 중량 등)을 고려하여 적정한 냉각시간이 설정되는 것이 바람직하다. 예를들어, 0.8mm 두께로 이루어진 판재는 약 30초 정도면 후산화 온도까지 냉각이 이루어지며, 100mmφ×2000mmH 봉은 약 1시간 정도 냉각시간이 소요되기 때문이다.In addition, although the time required for the control cooling is set to 30 seconds to 1 hour, it is preferable that an appropriate cooling time is set in consideration of the size (thickness, diameter, weight, etc.) of the steel component to be post-oxidized. For example, a plate made of 0.8 mm thick is cooled to post oxidation temperature in about 30 seconds, and 100 mmφ × 2000 mm H rod takes about 1 hour to cool down.

본 발명의 등온 후산화법은 제1로에서 가스법, 플라즈마법(이온법), 유동상법 및 플라즈마-가스 복합처리법 등에 의한 질화 또는 질화침탄을 실시하는 분위기 등에 적용되며, 이 경우 먼저 제1질화로에서는 ε-철질화물 또는 ε-철탄질화물로 구성된 화합물층을 형성시키며, 이 층에 산소를 함유시키고, 화합물층 위에 Fe3O4철산화물층을 형성시키기 위해 제2후산화로에서 등온 후산화를 실시한다.The isothermal post-oxidation method of the present invention is applied to an atmosphere in which nitriding or nitriding is carried out by a gas method, a plasma method (ion method), a fluidized bed method, a plasma-gas combined treatment method, or the like in the first furnace. A compound layer composed of ε-iron nitride or ε-iron carbonitride is formed, and oxygen is contained in this layer, and isothermal post-oxidation is performed in a second post oxidation furnace to form a Fe 3 O 4 iron oxide layer on the compound layer.

이때 강부품의 주된 냉각은 제1질화로에서 제2후산화로로 이동하는 공기중에서 일어나며, 피처리 강부품이 적재된 치구를 고속 냉각팬장치 위에 얹고 이를 작동시켜 송풍시키면 치구대의 중간부분에 적재된 강부품이 쉽게 냉각되어 후산화 처리온도에 도달하면서 표면은 Fe3O4산화물층이 형성된다.At this time, the main cooling of the steel parts takes place in the air moving from the first nitriding furnace to the second post oxidation furnace, and when the jig loaded with the steel parts to be processed is placed on the high speed cooling fan device and operated and blown, it is loaded on the middle part of the jig. As the steel parts are easily cooled and reach the post-oxidation temperature, a Fe 3 O 4 oxide layer is formed on the surface.

특히 적정 후산화 처리온도가 400~540℃이기 때문에 이 후산화 온도영역에서 형성된 흑색의 철산화물은 Fe3O4이며 540℃ 이상에서 형성된 철산화물 보다 치밀하고 견고하게 부착되어 있어 버핑(buffing), 래핑(lapping), 폴리싱(polishing), 또는 기계연마 등의 마무리처리를 거치면 흑색의 미려한 표면을 얻는다.Particularly, since the appropriate post-oxidation temperature is 400 ~ 540 ° C, the black iron oxide formed in this post-oxidation temperature range is Fe 3 O 4 and is more dense and firmly attached than the iron oxide formed at 540 ° C. or higher. Finishing such as lapping, polishing, or mechanical polishing yields a beautiful black surface.

상기한 2기의 노를 이용한 등온 후산화법은 질화온도에서 후산화 처리온도까지 냉각시간을 2배 내지 40배 단축할 수 있고, N2퍼징가스의 절감은 물론 신속한 냉각에 의한 화합물층의 상변화가 거의 없으며, 강부품의 균일 냉각이 이루어지며, 적정한 후산화 온도에서 후산화를 실시함으로써 견고하고 치밀하며 균일한 흑색 철산화물 피막을 얻을 수 있어 우수한 내식성을 갖게 된다.The isothermal post-oxidation method using the above two furnaces can shorten the cooling time from nitriding temperature to post-oxidation temperature by 2 to 40 times, and the phase change of the compound layer due to rapid cooling as well as the reduction of N 2 purging gas. There is almost no uniform cooling of the steel parts, and by performing post-oxidation at an appropriate post-oxidation temperature, it is possible to obtain a solid, dense and uniform black iron oxide film, thereby having excellent corrosion resistance.

상기와 같은 처리를 거친 본 발명의 강부품은 최표면에 부착된 Fe3O4피막이 치밀하고 견고하여 염수의 흡수가 거의 없고 또한 Fe2O3가 형성되지 않기 때문에 5% NaCl 염수분무 시험시 400시간 이상의 우수한 내식성을 나타낸다.Steel parts of the present invention subjected to the above treatment is dense and solid Fe 3 O 4 film attached to the outermost surface has almost no absorption of saline, and Fe 2 O 3 is not formed 400 when tested with 5% NaCl salt spray Excellent corrosion resistance over time.

이하에 상기한 본 발명을 바람직한 실시예를 참고하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

(실시예)(Example)

SM45C로 기계가공 연마된 직경(10mmφ)×길이(190.5mmL)인 가스스프링 로드를 직경 1200mmφ, 높이 2200mmH인 핏트형 노에서 10,000개 장입 후 580℃에서 3시간 가스 질화침탄 처리 후 N2가스로 10분간 퍼징한 다음 공기중에 꺼내어 3분간 제어냉각한 후 450℃로 유지된 수증기 분위기의 제2후산화로에 장입하여 1시간 동안 후산화를 실시한 다음 수냉하였다.Machined by grinding SM45C diameter (10mmφ) × length (190.5mmL) of the gas spring rod diameter 1200mmφ, height 2200mmH-in pit-type furnace after 10,000 charged at 580 ℃ 3 hours after the gas carburizing and nitriding treatment with N 2 gas for 10 After purging for 10 minutes, the resultant was cooled in air for 3 minutes, charged in a second post oxidation furnace in a steam atmosphere maintained at 450 ° C., and subjected to post-oxidation for 1 hour, followed by water cooling.

상기 처리가 완료된 로드를 흑색 마무리 처리한 후 로드에 대한 내식성을 조사하기 위하여 5% NaCl 염수분무 시험한 결과 480시간 동안 발청이 일어나지 않았다.After the black finish of the treated rod was subjected to a 5% NaCl salt spray test to investigate the corrosion resistance of the rod, no rust occurred for 480 hours.

상기 실시예에서 10,000개의 로드 중 소재 자체의 결함, 취급부주의, 버핑불량 등의 로드를 제외하면 약 99.9%의 로드는 상기한 내식성을 만족하는 것으로 나타났다.In the above example, the load of about 99.9% was found to satisfy the above corrosion resistance except for loads such as defects in material itself, careless handling, and poor buffing among 10,000 rods.

또한, 종래의 1기의 노를 이용하여 질화처리와 후산화 처리를 연속적으로 실시하는 경우 48~120시간 동안 발청이 일어나지 않았다. 따라서, 종래방법에서는 내식성이 본원발명에 비하여 크게 떨어지며 또한 피처리 부품의 내식성 편차가 큰 문제가 있다.In addition, when the nitriding treatment and the post-oxidation treatment were carried out continuously using a conventional furnace, no rust occurred for 48 to 120 hours. Therefore, in the conventional method, the corrosion resistance is significantly lower than that of the present invention, and the corrosion resistance variation of the component to be processed has a large problem.

상기한 바와 같이 본 발명에서는 질화로와 후산화로 등의 2기의 노를 이용함에 따라 신속하고 효과적인 후산화 처리를 실시할 수 있어, 생산성이 높고, 퍼징가스를 크게 절약하며, 내식성과 미적 특성이 향상된 강부품의 표면처리가 이루어진다.As described above, according to the present invention, the use of two furnaces such as a nitriding furnace and a post-oxidation furnace enables rapid and effective post-oxidation treatment, resulting in high productivity, large saving of purging gas, corrosion resistance and aesthetic characteristics. Improved surface treatment of steel parts is achieved.

이상에서는 본 발명을 특정의 바람직한 실시예를 예를들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.

Claims (4)

제1로에서 강부품을 질화 또는 질화침탄 처리를 실시하여 강부품의 표면에 ε-철질화물 또는 ε-철탄질화물을 형성한 후 N2가스로 질화 또는 질화침탄가스를 퍼징하는 단계와,Performing nitriding or nitriding on the steel part in the first furnace to form ε-iron nitride or ε-iron carbonitride on the surface of the steel part, and then purging the nitriding or nitrocarburizing gas with N 2 gas; 상기 강부품을 노에서 꺼내어 공기 중에서 제어냉각하는 단계와,Removing the steel part from the furnace and controlling cooling in air; 미리 후산화처리 조건으로 설정된 후산화를 위한 제2로에 제어냉각된 강부품을 장입하여 후산화를 실시한 다음 냉각하여 사용하거나 냉각된 강부품을 흑색마무리처리하는 단계로 구성되는 것을 특징으로 하는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법.After the post-oxidation by charging the control-cooled steel parts in the second furnace for the post-oxidation set in the pre-oxidation conditions set in advance, the second stage comprising the step of cooling or using black finish processing the cooled steel parts Surface modification method for manufacturing high corrosion resistant steel using furnace. 제1항에 있어서, 상기 질화 또는 질화침탄은 가스법, 플라즈마법(이온법), 유동상법 및 플라즈마-가스 복합처리법 중 어느 하나의 방법으로 실시되는 것을 특징으로 하는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법.The high corrosion resistance according to claim 1, wherein the nitriding or nitriding is carried out by any one of a gas method, a plasma method (ion method), a fluidized bed method, and a plasma-gas combined treatment method. Surface modification method for steel production. 제1항에 있어서, 상기 후산화 처리는 400~540℃에서 1분~5시간 동안 실시하는 것을 특징으로 하는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법.The method of claim 1, wherein the post-oxidation treatment is performed at 400 to 540 ° C. for 1 minute to 5 hours. 제1항에 있어서, 상기 흑색마무리처리단계는 기계연마, 버핑, 폴리싱 및 래핑 중 어느 하나의 방법으로 이루어지는 것을 특징으로 하는 2기의 노를 사용한 고내식강 제조를 위한 표면개질방법.The method of claim 1, wherein the black finishing process is performed by any one of mechanical polishing, buffing, polishing, and lapping.
KR10-2002-0067282A 2002-10-31 2002-10-31 Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces KR100504131B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0067282A KR100504131B1 (en) 2002-10-31 2002-10-31 Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0067282A KR100504131B1 (en) 2002-10-31 2002-10-31 Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces

Publications (2)

Publication Number Publication Date
KR20040038381A true KR20040038381A (en) 2004-05-08
KR100504131B1 KR100504131B1 (en) 2005-07-27

Family

ID=37336598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0067282A KR100504131B1 (en) 2002-10-31 2002-10-31 Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces

Country Status (1)

Country Link
KR (1) KR100504131B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921747A (en) * 2022-05-31 2022-08-19 青岛丰东热处理有限公司 Treatment process for blackening surface of steel part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254181A (en) * 1989-06-10 1993-10-19 Daidousanso Co., Ltd. Method of nitriding steel utilizing fluoriding
JP3465112B2 (en) * 1991-10-08 2003-11-10 同和鉱業株式会社 Steel surface hardening method
JPH11269631A (en) * 1998-03-23 1999-10-05 Tokico Ltd Surface treating method for parts made of steel
JPH11269630A (en) * 1998-03-23 1999-10-05 Tokico Ltd Surface treated steel member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921747A (en) * 2022-05-31 2022-08-19 青岛丰东热处理有限公司 Treatment process for blackening surface of steel part
CN114921747B (en) * 2022-05-31 2024-01-26 青岛丰东热处理有限公司 Steel part surface blackening treatment process

Also Published As

Publication number Publication date
KR100504131B1 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
US3885995A (en) Process for carburizing high alloy steels
KR100761903B1 (en) Method for manufacturing high corrosion-resistant color steel materials
US5399207A (en) Process for surface hardening of refractory metal workpieces
KR20110104631A (en) Colored austenitic stainless steel article and manufacturing method of the same with excellent corrosion resistance and high surface hardness
US4881983A (en) Manufacture of corrosion resistant components
JP6194057B2 (en) Surface treatment agent for steel and surface treatment method for steel
US3117041A (en) Heat treated steel article
KR102004723B1 (en) Method for prediction of physical property data of plasma ion nitriding
US5324009A (en) Apparatus for surface hardening of refractory metal workpieces
KR100504131B1 (en) Surface Modification Method for Manufacturing High Corrosion Resistance Steel Using Two Furnaces
KR100899578B1 (en) Method for surface hardening by high temperature nitriding in vacuum
JPH09184058A (en) Steel with corrosion resistance and wear resistance and its production
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
RU2291227C1 (en) Construction-steel parts surface hardening method
CA2673897A1 (en) Case hardening titanium and its alloys
JPH11269631A (en) Surface treating method for parts made of steel
JPS5540843A (en) Spinning ring
KR100862217B1 (en) Method for manufacturing high corrosion-resistant and high wear- resistant steel materials by 2 step gas nitriding or gas nitrocarburizing
KR100333199B1 (en) Carburizing Treatment Method
KR100317730B1 (en) Oxidation film of fomation method
KR100998103B1 (en) Manufacturing Method of High Corrosion Resistant and High Contamination Resistant Iron and Steel Materials
KR100578155B1 (en) Surface treating method of mechanical member
JPH11269630A (en) Surface treated steel member
JP2005060760A (en) Quenching method by gas cooling
JPH0138870B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110523

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee