KR20040033825A - Coating method of piston ring for engine - Google Patents

Coating method of piston ring for engine Download PDF

Info

Publication number
KR20040033825A
KR20040033825A KR1020020063096A KR20020063096A KR20040033825A KR 20040033825 A KR20040033825 A KR 20040033825A KR 1020020063096 A KR1020020063096 A KR 1020020063096A KR 20020063096 A KR20020063096 A KR 20020063096A KR 20040033825 A KR20040033825 A KR 20040033825A
Authority
KR
South Korea
Prior art keywords
piston ring
coating
coating layer
crn
resistance
Prior art date
Application number
KR1020020063096A
Other languages
Korean (ko)
Inventor
안승균
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020020063096A priority Critical patent/KR20040033825A/en
Publication of KR20040033825A publication Critical patent/KR20040033825A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PURPOSE: A coating method of piston ring for engines is provided to obtain piston ring coating layer satisfying sufficient wear resistance and high temperature oxidation resistance and having superior cohesiveness, residual stress and corrosion resistance by alternately and repeatedly coating α-Cr and CrN on the surface of piston ring matrix. CONSTITUTION: In a method for coating the surface of a matrix of piston ring to improve wear resistance, scarfing resistance and high temperature oxidation resistance required in the piston ring, the coating method of piston ring for engines comprises the process of alternately and repeatedly coating α-Cr and CrN on the surface of piston ring matrix in such a way that α-Cr is coated on the surface of the piston ring matrix(10), and CrN is coated on the α-Cr coating layer(12), thereby constructing a structure in which a plurality of layers are laid up, and thickness ratio of finally formed α-Cr coating layer to CrN coating layer(14) is 1:3.

Description

엔진용 피스톤 링 코팅방법{Coating method of piston ring for engine}Coating method of piston ring for engine {Coating method of piston ring for engine}

본 발명은 엔진용 피스톤 링 코팅방법에 관한 것으로서, 더욱 상세하게는 피스톤 링의 모재 표면을 코팅하는 방법에 있어서 피스톤 링의 모재 표면에 α-Cr과 CrN을 두께비 1:3이 되도록 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅함으로써, 피스톤 링에서 요구되는 충분한 내마모성 및 고온 내산화성을 만족하면서도 밀착력, 잔류응력 및 내부식성이 우수한 피스톤 링 코팅층을 얻을 수 있도록 개선시킨 엔진용 피스톤 링 코팅방법에 관한 것이다.The present invention relates to a piston ring coating method for an engine, and more particularly, in the method of coating the base material surface of a piston ring, repeatedly coating α-Cr and CrN alternately so as to have a thickness ratio of 1: 3 on the base material surface of the piston ring. By coating a structure in which a plurality of layers are laminated, the piston ring coating method for the engine is improved to obtain a piston ring coating layer excellent in adhesion, residual stress and corrosion resistance while satisfying sufficient abrasion resistance and high temperature oxidation resistance required in the piston ring. It is about.

일반적으로 자동차용 엔진은 공기와 연료를 연소실 내로 유입시켜 연소시킴으로써 동력을 얻는 대표적인 내연기관이다.In general, an automotive engine is a representative internal combustion engine that obtains power by injecting air and fuel into a combustion chamber and burning it.

이러한 자동차용 엔진의 실린더 내에는 고속으로 왕복운동을 하는 피스톤이 설치되며, 이 피스톤은 연소실에서 발생한 고온, 고압의 연소가스압을 받아 커넥팅 로드를 통해 크랭크 축을 회전시키는 일을 한다.A piston that reciprocates at a high speed is installed in a cylinder of such an engine of an automobile, and the piston receives a high temperature and high pressure combustion gas pressure generated in a combustion chamber to rotate a crank shaft through a connecting rod.

즉, 상기 피스톤은 고온의 연소가스에 피스톤 헤드가 노출되고 고압을 충격적으로 받으며 실린더 내에서의 고속 왕복운동으로 큰 마찰이 생기는 등 가혹한 조건하에서 구동되고 있는 것이다.That is, the piston is driven under severe conditions such that the piston head is exposed to high-temperature combustion gas, receives a high pressure shock, and a large friction is generated by a high-speed reciprocating motion in the cylinder.

따라서, 상기 피스톤은 위의 가혹한 조건하에서도 그 기능을 충분히 발휘할 수 있도록 구비되어야 하며, 가벼우면서 견고할 뿐만 아니라 열전도성 및 내열성이 좋은 재질로 제조되어야 한다.Therefore, the piston should be provided so as to fully exhibit its function even under the above harsh conditions, and should be made of a material that is light and durable, and has good thermal conductivity and heat resistance.

한편, 상기 피스톤의 상부 외주면 상에는 다수의 피스톤 링이 설치되며, 이 피스톤 링은 상측으로 통상 2개가 설치되는 압축링과, 그 하측으로 설치되는 1개의 오일링으로 구분되어진다.On the other hand, a plurality of piston rings are provided on the upper outer circumferential surface of the piston, the piston ring is divided into a compression ring, which is usually provided two upwards, and one oil ring provided to the lower side.

여기서, 상측의 압축링은 연소실의 기밀을 유지하기 위하여, 하측의 오일링은 실린더 벽에 뿌려진 오일을 긁어내려 최소한의 유막을 만들고 이를 통해 실린더 내벽과 피스톤 사이의 마모를 방지하면서 피스톤의 부드러운 왕복운동을 유도하기위하여 설치된다.Here, the upper compression ring in order to maintain the air tightness of the combustion chamber, the lower oil ring scrapes the oil sprayed on the cylinder wall to create a minimum oil film, thereby preventing the wear between the cylinder inner wall and the piston to smooth the reciprocating motion of the piston It is installed to induce.

상기 피스톤 링의 재질로는 스테인리스 스틸(예, SUS430)이 주로 사용되며, 내마모성, 내스커핑성 및 고온 내산화성을 위하여 상기 피스톤 링의 모재 표면에는 크롬성분이 함유된 코팅층을 적층시키는 것이 일반적이다.Stainless steel (eg, SUS430) is mainly used as the material of the piston ring, and a coating layer containing chromium is laminated on the base material surface of the piston ring for wear resistance, scuffing resistance, and high temperature oxidation resistance.

상기 피스톤 링의 코팅방법으로서, 종래에는 물리증착(PVD: Physical Vapor Deposition) 방식의 마그네트론 스퍼터링(sputtering) 장비를 이용하여 피스톤 링의 모재 표면에 α-Cr 단일 코팅층과 CrN 단일 코팅층을 차례로 적층시키는 방법이 이용되었다.As a coating method of the piston ring, conventionally, a method of sequentially stacking an α-Cr single coating layer and a CrN single coating layer on the surface of the base material of the piston ring using a physical vapor deposition (PVD) magnetron sputtering device This was used.

즉, 종래에는, 첨부한 도 7에 도시한 바와 같이, 피스톤 링의 코팅층이 모재(10) 표면 위에 연질의 α-Cr 단일 코팅층(12)과 경질의 CrN 단일 코팅층(14)으로 이루어진 이중층 코팅구조로 되어 있는 것이다.That is, in the related art, as shown in the accompanying FIG. 7, a double layer coating structure in which the coating layer of the piston ring is composed of a soft α-Cr single coating layer 12 and a hard CrN single coating layer 14 on the surface of the base material 10. It is supposed to be.

그러나, 상기와 같이 α-Cr 코팅층(12)과 CrN 코팅층(14)으로 이루어진 피스톤 링의 이중층 코팅구조에서는 피스톤 링과 실린더 보어와의 습동부에서 비정상적인 힘이 작용할 경우 코팅층 전체에 쉽게 크랙이 발생하여 본래의 코팅층 특성을 발휘하기가 어려웠고, 크랙에 따른 코팅층의 박리시 밀착력 및 내부식성이 떨어지는 등 내구성이 저하되는 단점이 있었다.However, in the double layer coating structure of the piston ring consisting of the α-Cr coating layer 12 and the CrN coating layer 14 as described above, if an abnormal force is applied in the sliding portion between the piston ring and the cylinder bore, cracks are easily generated throughout the coating layer. It was difficult to exhibit the original coating layer properties, there was a disadvantage that the durability is reduced, such as poor adhesion and corrosion resistance when peeling the coating layer due to cracks.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 피스톤 링의 모재 표면을 코팅하는 방법에 있어서 피스톤 링의 모재 표면에 α-Cr과 CrN을 두께비 1:3이 되도록 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅함으로써, 피스톤 링에서 요구되는 충분한 내마모성 및 고온 내산화성을 만족하면서도 밀착력, 잔류응력 및 내부식성이 우수한 피스톤 링 코팅층을 얻을 수 있도록 개선시킨 엔진용 피스톤 링 코팅방법을 제공하는데 그 목적이 있다.Therefore, the present invention has been invented to solve the above problems, in the method for coating the base material surface of the piston ring by repeatedly coating α-Cr and CrN alternately so that the thickness ratio 1: 3 to the base material surface of the piston ring By coating a structure in which a plurality of layers are laminated, the piston ring coating method for the engine is improved to obtain a piston ring coating layer having excellent adhesion, residual stress and corrosion resistance while satisfying sufficient abrasion resistance and high temperature oxidation resistance required in the piston ring. The purpose is to provide.

도 1은 본 발명의 코팅방법에 따른 피스톤 링 코팅층의 적층상태도이고,1 is a laminated state diagram of the piston ring coating layer according to the coating method of the present invention,

도 2 ∼ 도 6은 본 발명에 따른 실시예의 코팅층과 종래방법에 따른 비교예의 코팅층에 대하여 각각 밀착력, 잔류응력, 내마모성, 내부식성 및 고온 산화성의 측정결과를 비교하여 나타낸 그래프이며,2 to 6 are graphs showing the measurement results of adhesion, residual stress, abrasion resistance, corrosion resistance and high temperature oxidative resistance with respect to the coating layer of the Example according to the present invention and the coating layer of the Comparative Example according to the conventional method.

도 7은 종래의 코팅방법에 따른 피스톤 링 코팅층의 적층상태도이다.7 is a laminated state diagram of a piston ring coating layer according to a conventional coating method.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 피스톤 링 모재12 : α-Cr 코팅층10: piston ring base material 12: α-Cr coating layer

14 : CrN 코팅층14: CrN coating layer

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 피스톤 링에서 요구되는 내마모성, 내스커핑성 및 고온 내산화성의 향상을 위하여 피스톤 링의 모재(10) 표면을 코팅하는 방법에 있어서,The present invention provides a method for coating the surface of the base material 10 of the piston ring in order to improve the wear resistance, scuffing resistance and high temperature oxidation resistance required in the piston ring,

상기 피스톤 링의 모재 표면에 α-Cr을 먼저 코팅하고 이 α-Cr 코팅층 위에 CrN을 코팅하는 방식으로 상기 α-Cr과 CrN을 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅하되, 최종 형성되는 α-Cr 코팅층과 CrN 코팅층의 두께비가 1:3이 되도록 코팅하는 것을 특징으로 한다.Α-Cr is first coated on the surface of the base material of the piston ring, and the α-Cr and CrN are alternately repeatedly coated in such a manner as to coat CrN on the α-Cr coating layer, thereby forming a structure in which a plurality of layers are laminated. Characterized by coating so that the thickness ratio of the α-Cr coating layer and the CrN coating layer is 1: 3.

이하, 첨부한 도면을 참조하여 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

첨부한 도 1은 본 발명의 코팅방법에 따른 피스톤 링 코팅층의 적층상태도이다.1 is a laminated state diagram of the piston ring coating layer according to the coating method of the present invention.

이에 도시한 바와 같이, 본 발명에서는 피스톤 링에서 요구되는 내마모성, 내스커핑성 및 고온 내산화성의 향상을 위하여 피스톤 링의 모재 표면을 α-Cr과 CrN을 사용하여 코팅하되, α-Cr과 CrN을 번갈아 코팅한다.As shown in the drawing, in the present invention, in order to improve the wear resistance, scuffing resistance and high temperature oxidation resistance required in the piston ring, the base material surface of the piston ring is coated with α-Cr and CrN, but α-Cr and CrN are coated. Coat alternately.

즉, 피스톤 링의 모재(10) 표면에 α-Cr을 먼저 코팅하고 이로 인해 형성된 α-Cr 코팅층(12) 위에 CrN을 코팅하는 방식으로 α-Cr과 CrN을 번갈아 반복적으로 코팅하는 것이다.In other words, α-Cr is first coated on the surface of the base material 10 of the piston ring, and the α-Cr and CrN are repeatedly coated alternately by coating CrN on the α-Cr coating layer 12 formed thereby.

상기와 같이 피스톤 링의 모재(10) 표면을 코팅할 때 α-Cr 코팅층(12)과 CrN 코팅층(14)의 두께비는 1:3이 되도록 코팅하며, 완성된 피스톤 링의 겉 표면이 되는 최상층이 종래와 마찬가지로 경질의 CrN 코팅층(14)이 될 수 있도록 CrN 코팅으로 마감하는 것이 바람직하다.When the surface of the base ring 10 of the piston ring is coated as described above, the thickness ratio of the α-Cr coating layer 12 and the CrN coating layer 14 is 1: 3, and the top layer serving as the outer surface of the completed piston ring is coated. As in the prior art, it is preferable to finish with CrN coating so as to be a hard CrN coating layer 14.

결국, 본 발명에 의한 피스톤 링의 코팅구조는, 도 1에 도시한 바와 같이, 연질의 α-Cr 코팅층(12)과 경질의 CrN 코팅층(14)이 반복적으로 번갈아 적층되어진 다층 구조가 된다.As a result, the coating structure of the piston ring according to the present invention has a multilayer structure in which the soft α-Cr coating layer 12 and the hard CrN coating layer 14 are repeatedly alternately stacked as shown in FIG. 1.

상기와 같이 연질의 α-Cr 코팅층(12)과 경질의 CrN 코팅층(14)으로 이루어진 피스톤 링의 다층 코팅구조에서는 피스톤 링과 실린더 보어와의 습동부에서 비정상적인 힘이 작용할 경우 다수의 α-Cr 연질층(12)이 완충작용을 하게 되므로 크랙 발생이 감소함은 물론, 크랙이 발생하더라도, 종래방법에 의한 이중층 코팅구조에서와 같이 코팅층 전체의 크랙이 아닌, 최상층에서의 크랙만이 발생하게 된다.In the multi-layer coating structure of the piston ring composed of the soft α-Cr coating layer 12 and the hard CrN coating layer 14 as described above, a plurality of α-Cr soft particles are applied when abnormal force is applied in the sliding portion between the piston ring and the cylinder bore. Since the layer 12 is buffered, crack generation is reduced, and even if cracks are generated, only cracks at the uppermost layer are generated, not cracks of the entire coating layer as in the double layer coating structure according to the conventional method.

즉, 본 발명에 따른 다층 코팅구조에서는 최상층이 크랙으로 박리되더라도 바로 아래의 코팅층이 받치고 있으므로 밀착력이 향상되는 장점이 있는 것이다.That is, in the multilayer coating structure according to the present invention, even if the top layer is peeled off by the crack, the coating layer directly underneath has the advantage of improving adhesion.

또한, 내부식성은 코팅층의 밀착력과 상관관계가 있는 것으로서, 본 발명에 따른 다층 코팅구조에서는 기존의 이중층 코팅구조에 비해 내부식성이 향상될 수 있는 장점이 있다.In addition, the corrosion resistance is correlated with the adhesion of the coating layer, the multilayer coating structure according to the present invention has the advantage that the corrosion resistance can be improved compared to the conventional double layer coating structure.

이하, 다음의 실시예에 의거 본 발명을 더욱 상세히 설명하는 바, 본 발명이 다음의 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

실시예Example

엔진용 피스톤 링의 재질로 사용되고 있는 SUS430 시편의 표면에 본 발명에 의거 α-Cr과 CrN을 번갈아 반복 코팅하여 적층시켰으며, α-Cr 코팅층과 CrN 코팅층의 두께비를 1:3으로 하여 총 두께가 30㎛인 다층의 코팅층을 형성시켰다(도 1 참조).According to the present invention, α-Cr and CrN were alternately coated on the surface of the SUS430 specimen used as the material of the engine piston ring, and the total thickness was increased by setting the thickness ratio of α-Cr coating layer and CrN coating layer to 1: 3. A multilayer coating layer of 30 μm was formed (see FIG. 1).

비교예Comparative example

엔진용 피스톤 링의 재질로 사용되고 있는 SUS430 시편의 표면에 종래방법에 의거 α-Cr과 CrN을 각각 단일층으로 코팅하였으며, 총 두께가 상기 실시예와 동일한 이중층의 코팅층을 형성시켰다(도 7 참조).On the surface of the SUS430 specimen used as the material of the engine piston ring, α-Cr and CrN were coated in a single layer, respectively, according to the conventional method, and a total thickness of the same double layer as in the above example was formed (see FIG. 7). .

시험예Test Example

비교예와 실시예에서 얻어진 두 시편을 사용하여 코팅층의 밀착력, 잔류응력, 내마모성, 내부식성 및 고온 산화성을 각각 측정하였으며, 그 결과를 도 2 ∼ 6에 각각 나타내었다.Two specimens obtained in Comparative Examples and Examples were used to measure adhesion, residual stress, abrasion resistance, corrosion resistance, and high temperature oxidation resistance of the coating layer, respectively, and the results are shown in FIGS. 2 to 6, respectively.

먼저, 두 시편에 대한 밀착력 시험 결과를 도 2의 그래프에 나타내었다.First, the adhesion test results for the two specimens are shown in the graph of FIG.

상기 밀착력 시험의 결과로서, 다층 코팅구조를 갖는 실시예의 시편에서는임계하중 70N을, 이중층 코팅구조를 갖는 비교예의 시편에서는 임계하중 56N을 나타내어, 종래방법에 의한 코팅층에 비해 본 발명에 의한 코팅층에서 밀착력이 약 25% 정도 증가함을 알 수 있었다.As a result of the adhesion test, the critical load of 70N in the specimen of the embodiment having a multi-layer coating structure, the critical load of 56N in the specimen of the comparative example having a double-layer coating structure, the adhesion in the coating layer according to the present invention compared to the coating layer according to the conventional method This increased about 25%.

다음으로, 두 시편에 대한 코팅층 잔류응력 시험 결과를 도 3의 그래프에 나타내었다.Next, the coating layer residual stress test results for the two specimens are shown in the graph of FIG. 3.

상기 잔류응력 시험의 결과로서, 이중층 코팅구조를 갖는 비교예의 시편에 비해 다층 코팅구조를 갖는 실시예의 시편에서 잔류응력이 약 60% 정도 저감됨을 알 수 있었고, 이는 외부 환경에 대하여 본 발명에 의한 코팅층이 종래방법에 의한 코팅층보다 안정됨을 나타내는 것이다.As a result of the residual stress test, it was found that the residual stress was reduced by about 60% in the specimen of the example having the multilayer coating structure compared to the specimen of the comparative example having the double layer coating structure, which is a coating layer according to the present invention with respect to the external environment. This shows that the coating layer is more stable than the conventional method.

다음으로, 두 시편에 대한 코팅층 내마모성 시험은 볼 크레이터 방식으로 실시하였다.Next, the coating layer wear resistance test for the two specimens was carried out by a ball crater method.

여기서, 상대재는 직경 15mm의 스틸볼이었고, 볼 회전속도는 300rpm으로 90분 동안 실시하였으며, 이때 크기 1㎛의 다이아몬드 페이스트를 연마제로 사용하였다.Here, the counterpart was a steel ball having a diameter of 15 mm, and the ball rotation speed was carried out at 300 rpm for 90 minutes, in which a diamond paste having a size of 1 μm was used as an abrasive.

시험 후 마모 흔적의 직경을 측정하여 마모량을 계산하였으며, 그 결과를 도 4의 그래프에 나타내었다.After the test, the wear amount was calculated by measuring the diameter of the wear trace, and the result is shown in the graph of FIG. 4.

상기 코팅층 내마모성 시험의 결과로서, 다층 코팅구조를 갖는 실시예의 시편에서는 마모체적 0.006㎣를, 이중층 코팅구조를 갖는 비교예의 시편에서는 마모체적 0.003㎣를 나타내어, 종래방법에 의한 코팅층에 비해 본 발명에 의한 코팅층에서 마모체적이 오히려 크게 나타났으나, 이는 매우 미미한 증가로 두 시편의 내마모성이 거의 동등한 수준임을 나타낸다.As a result of the coating layer abrasion resistance test, a wear volume of 0.006 mm 3 was shown in a specimen of an example having a multilayer coating structure, and a wear volume of 0.003 mm 3 was shown in a specimen of a comparative example having a double layer coating structure. The wear volume was rather large in the coating layer, but this was a very slight increase, indicating that the abrasion resistance of the two specimens was nearly equal.

다음으로, 두 시편에 대한 내부식성 시험으로 동전위 분극시험(Potentiodynamic polarization test)을 실시하였고, 이때 용액으로는 3.5wt% NaCl 수용액을, 상대전극으로는 고순도 탄소봉을, 측정전극으로는 포화감홍전극(Saturated calomel electrode)을 사용하였으며, 분극전위는 부식전위(Corrosion potential)로부터 -250㎷부터 1000mV까지 주사속도(scan rate) 0.166㎷/s로 인가하여 상온에서 측정하도록 하였다.Next, a potentiodynamic polarization test was conducted to test the corrosion resistance of the two specimens. At this time, a 3.5 wt% NaCl aqueous solution was used as the solution, a high-purity carbon rod as the counter electrode, and a saturation-based electrode as the measurement electrode. (Saturated calomel electrode) was used, and the polarization potential was measured at room temperature by applying a scan rate of 0.166㎷ / s from -250㎷ to 1000mV from the corrosion potential.

동전위 분극시험 결과는 도 5의 그래프에 나타내었다.Coin polarization test results are shown in the graph of FIG.

상기 내부식성 시험의 결과로서, 두 결과곡선을 비교하여 볼 때 다층 코팅구조를 갖는 실시예 시편의 전류밀도 값이 이중층 코팅구조를 갖는 전류밀도 값보다 작음을 알 수 있으며 이것은 본 발명의 실시예 시편이 종래의 비교예 시편 시편보다 더 큰 내부식성을 갖음을 나타낸다.As a result of the corrosion resistance test, comparing the two result curves, it can be seen that the current density value of the example specimen having the multilayer coating structure is smaller than the current density value having the double-layer coating structure, which is an example specimen of the present invention. It exhibits greater corrosion resistance than this conventional comparative specimen.

다음으로, 고온 산화성 시험은 TGA를 이용하여 700℃의 대기 분위기 하에서 20시간 유지 후 무게변화로 산화량을 측정하였으며, 그 결과를 도 6의 그래프에 나타내었다.Next, the high temperature oxidative test measured the amount of oxidation by weight change after maintaining for 20 hours in an air atmosphere of 700 ℃ using TGA, the results are shown in the graph of FIG.

도 6에 나타낸 바와 같이, 본 발명에 의한 코팅층과 종래방법에 의한 코팅층에서 고온 산화성은 그 차이를 알 수 없을 정도로 거의 동등한 수준임을 알 수 있었다.As shown in Figure 6, the high temperature oxidative properties of the coating layer according to the present invention and the coating layer according to the conventional method was found to be almost the same level so as not to know the difference.

결국, 비교예와 실시예에서 얻어진 두 시편을 사용하여 코팅층의 밀착력, 잔류응력, 내마모성, 내부식성 및 고온 산화성을 각각 측정한 결과를 요약하면, 이중층 코팅구조를 갖는 종래의 비교예 시편에 비해 다층 코팅구조를 갖는 본 발명의 실시예 시편에서 동등한 수준의 내마모성 및 고온 내산화성의 결과를 나타내면서 밀착력, 잔류응력 및 내부식성이 보다 우수한 결과를 나타내었다.In conclusion, the results of measuring adhesion, residual stress, abrasion resistance, corrosion resistance, and high temperature oxidation resistance of the coating layer using the two specimens obtained in Comparative Examples and Examples are summarized as compared with those of the conventional Comparative Example specimens having a double layer coating structure. In the example specimens of the present invention having a coating structure, the adhesion, residual stress, and corrosion resistance were more excellent while showing the same level of wear resistance and high temperature oxidation resistance.

이와 같이 하여, 본 발명에 따른 피스톤 링 코팅방법에서는 피스톤 링의 모재 표면에 α-Cr과 CrN을 두께비 1:3이 되도록 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅함으로써, 피스톤 링에서 요구되는 충분한 내마모성 및 고온 내산화성을 만족하면서 밀착력, 잔류응력 및 내부식성이 우수한 피스톤 링 코팅층을 얻을 수 있게 된다.In this way, in the piston ring coating method according to the present invention by repeatedly coating alternately coating α-Cr and CrN on the surface of the base material of the piston ring to have a thickness ratio of 1: 3, by coating a structure in which a plurality of layers are laminated, required in the piston ring It is possible to obtain a piston ring coating layer excellent in adhesion, residual stress and corrosion resistance while satisfying sufficient abrasion resistance and high temperature oxidation resistance.

이상에서 살펴본 바와 같이, 본 발명에 따른 엔진용 피스톤 코팅방법에 의하면, 피스톤 링의 모재 표면을 코팅하는 방법에 있어 피스톤 링의 모재 표면에 α-Cr과 CrN을 두께비 1:3이 되도록 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅함으로써, 피스톤 링에서 요구되는 충분한 내마모성 및 고온 내산화성을 만족하면서도 밀착력, 잔류응력 및 내부식성이 우수한 피스톤 링 코팅층을 얻을 수 있는 효과가 있다.As described above, according to the piston coating method for the engine according to the present invention, in the method of coating the base material surface of the piston ring, repeated coating alternately α-Cr and CrN on the base material surface of the piston ring so that the thickness ratio is 1: 3. By coating a structure in which a plurality of layers are laminated, a piston ring coating layer having excellent adhesion, residual stress, and corrosion resistance while satisfying sufficient abrasion resistance and high temperature oxidation resistance required in a piston ring is obtained.

또한, 본 발명의 코팅방법을 적용하면 피스톤 링의 내구성을 향상시킬 수 있으므로 본 발명의 코팅방법이 적용된 피스톤 링을 엔진 연소 폭발압이 큰 승용 디젤 차량이나 상용차 엔진의 피스톤에 장착하면 엔진의 전체적인 내구성을 향상시키는 효과가 기대된다.In addition, since the durability of the piston ring can be improved by applying the coating method of the present invention, when the piston ring to which the coating method of the present invention is applied is mounted on the piston of a passenger diesel vehicle or a commercial vehicle engine having a large engine combustion explosion pressure, the overall durability of the engine is increased. The effect of improving this is expected.

Claims (1)

피스톤 링에서 요구되는 내마모성, 내스커핑성 및 고온 내산화성의 향상을 위하여 피스톤 링의 모재 표면을 코팅하는 방법에 있어서,In the method of coating the base material surface of the piston ring in order to improve the wear resistance, scuffing resistance and high temperature oxidation resistance required in the piston ring, 상기 피스톤 링의 모재 표면에 α-Cr을 먼저 코팅하고 이 α-Cr 코팅층 위에 CrN을 코팅하는 방식으로 상기 α-Cr과 CrN을 번갈아 반복 코팅하여 다수의 층이 적층된 구조로 코팅하되, 최종 형성되는 α-Cr 코팅층과 CrN 코팅층의 두께비가 1:3이 되도록 코팅하는 것을 특징으로 하는 피스톤 링 코팅방법.Α-Cr is first coated on the surface of the base material of the piston ring, and the α-Cr and CrN are alternately repeatedly coated in such a manner as to coat CrN on the α-Cr coating layer, thereby forming a structure in which a plurality of layers are laminated. Piston ring coating method characterized in that the coating so that the thickness ratio of the α-Cr coating layer and the CrN coating layer is 1: 3.
KR1020020063096A 2002-10-16 2002-10-16 Coating method of piston ring for engine KR20040033825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020063096A KR20040033825A (en) 2002-10-16 2002-10-16 Coating method of piston ring for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020063096A KR20040033825A (en) 2002-10-16 2002-10-16 Coating method of piston ring for engine

Publications (1)

Publication Number Publication Date
KR20040033825A true KR20040033825A (en) 2004-04-28

Family

ID=37333221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020063096A KR20040033825A (en) 2002-10-16 2002-10-16 Coating method of piston ring for engine

Country Status (1)

Country Link
KR (1) KR20040033825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754425A (en) * 2018-06-06 2018-11-06 西安交通大学 A kind of new waterproof erosion composite coating structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231543A (en) * 1992-02-18 1993-09-07 Hino Motors Ltd Piston ring
KR980009510A (en) * 1996-07-10 1998-04-30 김종진 Method of forming hard film on various metal surfaces
KR100187878B1 (en) * 1996-08-06 1999-06-01 오구찌 구니히코 Sliding member and method of manufacturing the same
JPH11189860A (en) * 1997-12-24 1999-07-13 Teikoku Piston Ring Co Ltd Sliding member
KR20000007560A (en) * 1998-07-04 2000-02-07 한전건 High speed vacuum coating method
KR100347422B1 (en) * 2000-01-24 2002-08-03 한전건 WC-TiN SUPERLATTICE COATING LAYER, APPARATUS AND METHOD FOR FABRICATING THE SAME
KR20030042104A (en) * 2001-11-21 2003-05-28 한전건 Superhard WC-CrN superlattice coating, apparatus and method for fabricating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231543A (en) * 1992-02-18 1993-09-07 Hino Motors Ltd Piston ring
KR980009510A (en) * 1996-07-10 1998-04-30 김종진 Method of forming hard film on various metal surfaces
KR100187878B1 (en) * 1996-08-06 1999-06-01 오구찌 구니히코 Sliding member and method of manufacturing the same
JPH11189860A (en) * 1997-12-24 1999-07-13 Teikoku Piston Ring Co Ltd Sliding member
KR20000007560A (en) * 1998-07-04 2000-02-07 한전건 High speed vacuum coating method
KR100347422B1 (en) * 2000-01-24 2002-08-03 한전건 WC-TiN SUPERLATTICE COATING LAYER, APPARATUS AND METHOD FOR FABRICATING THE SAME
KR20030042104A (en) * 2001-11-21 2003-05-28 한전건 Superhard WC-CrN superlattice coating, apparatus and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Paper 200.12-Journal of the Korean Institute of Surface Engineering-Vol.33.No.6.Dec.2000- p428~p436 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754425A (en) * 2018-06-06 2018-11-06 西安交通大学 A kind of new waterproof erosion composite coating structure

Similar Documents

Publication Publication Date Title
US4852542A (en) Thin thermal barrier coating for engines
US4612256A (en) Wear-resistant coating
US9657682B2 (en) Cylinder liner assembly having a thermal barrier coating
Jalaludin et al. Experimental study of ceramic coated piston crown for compressed natural gas direct injection engines
US20130200572A1 (en) Vehicle piston ring having a nano multi-layer coating
JP2008286354A (en) Sliding member
KR102267392B1 (en) Tribological system of internal combustion engine including coating layer
Yoshida et al. Effects of surface treatments on piston ring friction force and wear
US9181870B2 (en) Element provided with at least one slide surface for use on an internal combustion engine
KR20040033825A (en) Coating method of piston ring for engine
JP5132281B2 (en) Sliding member
JPH0554594B2 (en)
JP2019052597A (en) Component for internal combustion engine and method for manufacturing component for internal combustion engine
Igartua et al. Tribological tests to simulate wear on piston rings
KR100543675B1 (en) Coated sliding parts for internal combustion engine
Urtekin et al. Investigation of the wear characteristics of thermal barrier coating in a biodiesel engine
BR102016017735B1 (en) sliding element for internal combustion engines
Hwang et al. Tribological behavior of plasma spray coatings for marine diesel engine piston ring and cylinder liner
Sivakumar et al. Investigation on effect of H-DLC and TiN coated inlet and exhaust valve on performance, emission and combustion characteristics of a diesel engine
Sivaganesan et al. The Influence of Thermal Barrier Coating on the Combustion and Exhaust Emission in Turpentine Oil Powered DI Diesel Engine
Quazi et al. Effect of thermal bearing coating on performance and emission of off road vehicle
Diaz Efficiency of Nano Ceramic Coated and Turbocharged Internal Combustion Engine-A Review
JPH01159449A (en) Piston ring with compound nitriding layer
JP6889692B2 (en) Alcohol fuel piston
JPH01142246A (en) Combustion-chamber component of internal combustion engine on which heat-insulating coating is executed

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application