KR20040026043A - Method for refining the molten steel for ultra low carbon steel - Google Patents

Method for refining the molten steel for ultra low carbon steel Download PDF

Info

Publication number
KR20040026043A
KR20040026043A KR1020020056553A KR20020056553A KR20040026043A KR 20040026043 A KR20040026043 A KR 20040026043A KR 1020020056553 A KR1020020056553 A KR 1020020056553A KR 20020056553 A KR20020056553 A KR 20020056553A KR 20040026043 A KR20040026043 A KR 20040026043A
Authority
KR
South Korea
Prior art keywords
molten steel
decarburization
vacuum
flow rate
reflux
Prior art date
Application number
KR1020020056553A
Other languages
Korean (ko)
Inventor
민원기
김태호
박종주
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020056553A priority Critical patent/KR20040026043A/en
Publication of KR20040026043A publication Critical patent/KR20040026043A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material
    • F27D2027/002Gas stirring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: A method for refining molten steel is provided which is capable of stably controlling concentration of carbon in molten steel to 15 ppm or less by optimizing reflux gas blowing patterns so as to improve decarburizing control capacity in vacuum facility. CONSTITUTION: In a method for refining molten steel for ultra low carbon steel using a vacuum degassing facility, the method comprises the steps of controlling reflux gas flow rate to 1.5 to 2.0 Nm¬3/min until an internal degree of vacuum of the vacuum degassing facility reaches 2 torr or less during the initial stage of decarburizing; controlling the flux gas flow rate to 1.5 to 3.0 Nm¬3/min until CO content in flue gas exhausted from the facility reaches 2% or less; and controlling the flux gas flow rate to 3.5 Nm¬3/min or more by decarburizing completion time point.

Description

극저탄소강용 용강의 정련방법{Method for refining the molten steel for ultra low carbon steel}Method for refining the molten steel for ultra low carbon steel}

본 발명은 소재에서 고용강화를 일으켜 가공성을 저해할 수 있는 용강중의 탄소성분 함량을 15ppm 이하까지 안정적으로 제거할 수 있는 진공탈가스 설비를 이용한 용강 정련방법에 관한 것으로, 보다 상세하게는, 탈탄조압중 환류패턴을 최적으로 제어함으로써 효과적으로 용강중 탄소를 제거하여 가공성이 매우 우수한 초심가공성 강제조용 용강을 마련할 수 있는 극저탄소강용 용강 정련방법에 관한 것이다.The present invention relates to a molten steel refining method using a vacuum degassing equipment that can stably remove the carbon content in molten steel up to 15 ppm or less, which may cause solid solution strengthening in the material. The present invention relates to a method for refining molten steel for ultra low carbon steel, which can effectively remove carbon in molten steel by optimally controlling a medium reflux pattern to provide a super workability forging steel with excellent machinability.

일반적으로 강중에 탄소, 질소 등의 원소가 함유될 때 도 1과 같이 Fe 격자변형이 초래되며, 이에 따라 내부응력이 증가할 뿐만 아니라 전위이동이 방해되어 소재의 강도를 상승시키게 되고, 가공성을 저해하게 된다. 따라서 심가공 소재에서는 용강내 존재하는 탄소 및 질소를 제거하는 것이 매우 중요하다.In general, when lattice contains elements such as carbon and nitrogen, Fe lattice deformation is caused as shown in FIG. 1, which not only increases the internal stress but also prevents dislocation movement, thereby increasing the strength of the material and inhibiting workability. Done. Therefore, it is very important to remove carbon and nitrogen present in the molten steel in the deep working material.

강중의 질소 함량은 통상 전로정련 조업후 20ppm 이하로 낮게 유지될 수 있으나, 탄소함량의 경우는 용선단계에서 약 4.0~4.5중량%로 높아 별도의 탈탄공정을 거치지 않으면 안된다. 용강중 탈탄반응은 하기 반응식 1과 같이 강중에 있는 탄소가 잉여 산소와 반응하여 일어남이 일반적이다. 그러나 통상 대기압하에서 이루어지는 전로정련중에는 지속적으로 산소공급을 하더라도 탄소함량이 0.03중량% 이하의 낮은 탄소농도에서는 하기 반응식 1 보다는 반응식 2에 의한 반응이 우선적으로 일어나 탄소함량을 0.01중량% 이하로 제어하기가 곤란하다는 문제가 있다.Nitrogen content in the steel can be maintained as low as 20ppm or less normally after the converter refining operation, but the carbon content in the molten iron phase is about 4.0 ~ 4.5% by weight must go through a separate decarburization process. The decarburization reaction in molten steel is generally caused by the reaction of carbon in the steel with excess oxygen, as shown in Scheme 1 below. However, during the converter refining process under atmospheric pressure, even if the oxygen is continuously supplied, it is preferable to control the carbon content to 0.01% by weight or less at the low carbon concentration of 0.03% or less by the reaction of Equation 2 rather than the following Equation 1. There is a problem that is difficult.

따라서 용강중 탄소함량을 0.01중량% 이하로 제어하기 위해서는 별도의 탈탄공정을 거치지 않으면 안된다.Therefore, in order to control the carbon content in the molten steel to 0.01% by weight or less, a separate decarburization process must be performed.

2C + O2→2CO2C + O 2 → 2CO

2Fe + O2→ 2Fe02Fe + O 2 → 2Fe0

일반적으로 감압하에서는 물질의 이동속도가 증가하므로 용강내부의 탄소와 산소의 이동속도가 증가한다. 따라서 상기 반응식1의 CO 반응을 촉진하게 되어 별도의 산소공급 없이 추가적인 탈탄반응이 일어나 [C] 을 0.01중량% 이하로 낮게 제어할 수 있다. 그러므로 용강중 [C]함량을 0.01% 이하로 낮게 제어할 것이 요구되는 극저탄소강 제조을 위해서는, 전로정련을 통해 [C]을 0.03~0.04중량% 수준까지 제거한후, 진공설비를 이용하여 수 Torr 까지 감압한 상태에서 용강을 처리하는 것 통상적인 조업방법이다.In general, under reduced pressure, the moving speed of the material increases, so that the moving speed of carbon and oxygen in the molten steel increases. Therefore, the CO reaction of Scheme 1 may be promoted so that an additional decarburization reaction occurs without a separate oxygen supply, thereby controlling [C] to be lower than 0.01 wt%. Therefore, for the production of ultra low carbon steel, which requires to control the [C] content in molten steel as low as 0.01% or less, remove [C] to 0.03 ~ 0.04 wt% level through converter refining, and then decompress it to several Torr using vacuum equipment. Treatment of molten steel in one condition is a common operation method.

도 2는 종래의 진공탈가스 설비에서의 용강 탈탄방법을 나타내는 그래프이다. 도 2에 나타난 바와 같이, 종래의 탈탄방법은 그 탈탄처리완료시 까지 별도의 환류가스 취입 패턴 변경없이 동일한 환류유량을 이용하였는데, 이 방법은 탈탄종료시점의 진공도와 배가스 농도를 기준으로 한 탈탄시간 조정에 의해 탄소의 농도를 제어하는 것이었다. 그러나 이 방법은 용강중 용존탄소량을 수 ppm이하로 안정적으로 얻을 수 없다는 한계가 있었다.2 is a graph showing a molten steel decarburization method in a conventional vacuum degassing plant. As shown in Figure 2, the conventional decarburization method used the same reflux flow rate without changing the reflux gas blowing pattern until the completion of the decarburization treatment, this method decarburization time based on the vacuum and exhaust gas concentration at the end of decarburization The concentration of carbon was controlled by the adjustment. However, this method has a limitation in that the amount of dissolved carbon in molten steel cannot be stably obtained below several ppm.

따라서 이러한 종래기술의 한계를 극복하기 위하여, 진공설비에서 추가적인 탈탄조업 기술이 개발되어 적용되고 있는데, 그 일예로써 대한민국 특허출원 1998-37185호에 게시된 발명을 들 수 있다. 구체적으로 상기 특허출원에서는 용철 또는 용강에 수소와 아르곤의 혼합가스를 혼합비 1:1 ∼ 4:1의 범위로 취입시킴으로서, 상기 용철 및 용강중에 함유된 탄소 및 질소를 동시에 탈탄([C]을 30ppm 이하 제어) 및 탈질하는 것을 특징으로 하는 수소계 가스 취입에 의한 동시 탈탄 및 탈질방법을 제시하고 있다.Therefore, in order to overcome the limitations of the prior art, an additional decarburization operation technology has been developed and applied in a vacuum installation, for example, the invention disclosed in Korean Patent Application No. 1998-37185. Specifically, the patent application blows a mixed gas of hydrogen and argon into molten iron or molten steel in a mixing ratio of 1: 1 to 4: 1, thereby simultaneously decarburizing carbon and nitrogen contained in the molten iron and molten steel ([C] by 30 ppm). The following describes a simultaneous decarburization and denitrification method by hydrogen gas blowing, characterized in that the control) and denitrification.

또다른 예로서 대한민국 특허출원 출원번호 1999-41267호에 개시된 발명을 들 수 있는데, 이 출원에서는 진공도와 배가스 농도 분석을 통해 용강중 [C]를 20ppm 이하로 제어함을 제시하고 있다.Another example is the invention disclosed in the Republic of Korea Patent Application No. 1999-41267, this application proposes to control the molten steel [C] to 20ppm or less through the analysis of vacuum and exhaust gas concentration.

그러나 상기 기술들은 별도의 탈탄, 탈질 동시 제어기술, 진공처리중인 용강의 상태를 확인하여 목표제어를 위한 탈탄종료시점 판단등을 통한 극저탄소강 제조기술로서 근본적인 탈탄능력 개선을 통한 [C] 제어한계를 낮추는 기술은 아니다.However, these technologies are ultra-low carbon steel manufacturing techniques through separate decarburization, simultaneous denitrification control technology, and determination of the state of molten steel under vacuum treatment to determine the end point of decarburization for target control. [C] control limit through fundamental decarburization capacity improvement It is not a technique to lower.

따라서 본 발명은 상술한 종래기술의 한계를 극복하기 위한 것으로, 진공설비에서 탈탄제어능력을 개선하기 위하여 환류가스 취입패턴을 최적화함으로써 용강내 탄소의 농도를 15ppm 이하까지 안정적으로 제어할 수 있는 용강 정련방법을 제공함을 그 목적으로 한다.Therefore, the present invention is to overcome the above-mentioned limitations of the prior art, the molten steel refinery that can stably control the concentration of carbon in the molten steel to 15ppm or less by optimizing the reflux gas blowing pattern in order to improve the decarburization control ability in the vacuum installation Its purpose is to provide a method.

도 1은 고용원소에 의한 재료의 강화기구를 나타내는 설명도1 is an explanatory diagram showing a mechanism for reinforcing a material by an employment element

도 2는 종래의 진공탈가스 설비에서의 용강 탈탄방법을 나타내는 그래프Figure 2 is a graph showing the molten steel decarburization method in a conventional vacuum degassing facility

도 3은 본 발명의 환류패턴제어를 통한 용강 탈탄방법을 나타내는 그래프Figure 3 is a graph showing the molten steel decarburization method through the reflux pattern control of the present invention

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

진공탈가스 설비를 이용하여 극저탄소강용 용강을 정련함에 있어서, 탈탄초기, 그 내부진공도가 2Torr이하에 이를때 까지 환류가스유량을 1.5~2.0Nm3/min로 제어하고, 이어, 상기 설비로부터 배출되는 배가스중 CO함량이 2%이하가 될때까지 환류가스유량을 1.5~3.0Nm3/min로 제어하며, 그리고 그 탈탄완료시점까지 3.5Nm3/min 이상으로 환류가스유량을 제어하는 것을 특징으로 하는 용강 정련방법에 관한 것이다.In refining molten steel for ultra low carbon steel using a vacuum degassing facility, the reflux gas flow rate is controlled to 1.5 to 2.0 Nm 3 / min until the initial decarburization and the internal vacuum reaches 2 Torr or less, and then discharged from the facility. controlling a reflux flow rate of gas until it is below the 2% CO content in the exhaust gas to 1.5 ~ 3.0Nm 3 / min and, and the decarburization to its completion point, characterized in that for controlling the reflux flow rate of gas to more than 3.5Nm 3 / min It is about molten steel refining method.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

일반적으로 진공탈가스 설비내의 진공감압하에서 탈탄반응이 일어나는 과정은 크게 3단계로 나뉘어진다.In general, the process of decarburization under vacuum decompression in vacuum degassing equipment is largely divided into three stages.

상세하게 설명하면, 1단계는 용강내 함유된 탄소[C]가 용강중의 산소[O2]와 만나 용강내부에서 서로 반응하여 탈탄이 일어나는 내부탈탄 단계로 탈탄초기에 주로 일어난다. 그리고상기 2단계는 탄소의 농도가 낮아져 1단계 내부탈탄이 정체기에 이를 때, 용강내 공급되는 환류가스의 기포를 반응 Site로 하여 탈탄이 이루어지는 기포탈탄 단계를 말하며, 3단계는 상기 기포탈탄후 용강표면 및 설비와의 접촉면에서 주로 일어나는 표면탈탄 단계를 말한다.In detail, the first step is an internal decarburization step in which carbon [C] contained in molten steel meets oxygen [O 2 ] in the molten steel and reacts with each other in the molten steel. And the second step refers to a bubble decarburization step in which decarburization is performed by using a bubble of reflux gas supplied in the molten steel as a reaction site when the first step of internal decarburization reaches a stagnation phase, and the third step refers to a bubble after decarburization It refers to the surface decarburization step that occurs mainly on the surface and in contact with the installation.

한편, 용강내 함유된 [C]과 [O2]가 용강내부에서 직접 이동하여 반응하는 내부탈탄의 경우에는 그 탈탄반응이 [C]과 [O2]의 이동속도와 밀접한 관련이 있으므로 이동속도를 촉진하기 위해 최대한 빨리 고진공상태를 확보하는 것이 탈탄에 중요하다. 그리고 후속하는 환류 가스의 표면에서 일어나는 기포탈탄은 발생되는 기포의 양에 의존하게 되므로 환류가스 유량이 클수록 유리하며, 마지막으로 표면탈탄을 증대시키기 위해서는 용강의 흐름을 최대한 난류화하여 표면적을 넓혀주는 것이 중요하다.On the other hand, in the case of internal decarburization in which [C] and [O 2 ] contained in molten steel move directly in the molten steel and react, the decarburization reaction is closely related to the movement speed of [C] and [O 2 ]. It is important for decarburization to ensure a high vacuum as soon as possible to facilitate the In addition, since the bubble decarburization occurring on the surface of the reflux gas depends on the amount of bubbles generated, the larger the reflux gas flow rate is, the more advantageous. Finally, in order to increase surface decarburization, it is necessary to increase the surface area by turbulent flow of molten steel as much as possible. It is important.

즉, 본 발명은 상기의 점을 고려하여 마련된 것으로서, 상기 진공감압하에서의 일어나는 탈탄반응을 효과적으로 이용하고, 극대화 시키기 위하여 각 탈탄반응 단계별로 그 Ar등과 같은 불활성 환류가스 취입패턴을 최적으로 제어함을 특징으로한다. 다시 말하면, 본 발명에서는 진공탈가스 설비를 이용하여 진공감압하에서 용강탈탄을 진행함에 있어서, 각 처리단계별로 적정하게 불활성가스 환류 패턴을 조정함으로써 보다 효과적인 탈탄반응을 기대할수 있으며, 탄소의 제어한계를 높일수 있는 것이다.That is, the present invention has been prepared in consideration of the above points, and in order to effectively utilize and maximize the decarburization reaction occurring under the vacuum pressure, the inert reflux gas blowing pattern such as Ar is optimally controlled at each decarburization step. Should be. In other words, in the present invention, when the molten steel decarburization is carried out under vacuum decompression using a vacuum degassing facility, more effective decarburization reaction can be expected by adjusting the inert gas reflux pattern appropriately for each treatment step, and the control limit of carbon It can be increased.

이러한 본 발명의 환류패턴제어를 통한 용강 정련방법이 도 3에 나타나 있다. 도 3에 나타난 바와 같이, 먼저, 본 발명에서는 탈탄초기 내부탈탄반응을 이용하는 제 1단계에서는 그 진공조내 내부진공도가 2Torr가 될때까지는 진공조내로 취입되는 환류가스 유량을 통상적으로 진공탈가스설비에서 2차정련되는 용강 250~350ton에 대하여 1.5~2.0Nm3/min으로 제한한다. 즉, 탈탄초기에 일어나는 내부탈탄을 촉진시키기 위하여 최초 진공탈가스 처리시 공급되는 환류가스 유량을 용강의 원활한 환류가 가능한 최소유량인 1.5~2.0Nm3/min으로 제한하는 것이다. 만일 그 환류가스유량이 1.50Nm3/min미만이면 용강의 환류가 진행되지 않으며, 2.00Nm3/min을 초과하면 내부 진공도가 2Torr 이하의 고진공 도달이 지연되기 때문이다The molten steel refining method through the reflux pattern control of the present invention is shown in FIG. As shown in FIG. 3, first, in the present invention, in the first step using the initial decarburization reaction, the flow rate of the reflux gas blown into the vacuum chamber is generally reduced to 2 Torr in the vacuum degassing facility. It is limited to 1.5 ~ 2.0Nm 3 / min for molten steel to be refined. That is, in order to promote internal decarburization occurring in the initial stage of decarburization, the reflux gas flow rate supplied during the initial vacuum degassing treatment is limited to 1.5 to 2.0 Nm 3 / min, which is the minimum flow rate for smooth reflux of molten steel. If the reflux gas flow rate is less than 1.50 Nm 3 / min, reflux of the molten steel does not proceed, and if it exceeds 2.00 Nm 3 / min, the internal vacuum is delayed to reach a high vacuum of 2 Torr or less.

본 발명에서는 이러한 저유량의 환류가스를 이용하여 진공조의 내부진공도를 2Torr이하까지 빠르게 진행시킬 수 있으며, 이에 따라, 최소의 환류가스량으로도 효과적으로 내부탈탄을 꾀할 수 있다.In the present invention, it is possible to rapidly advance the internal vacuum degree of the vacuum chamber to 2 Torr or less by using such a low flow reflux gas, thereby effectively internal decarburization with a minimum amount of reflux gas.

다음으로, 본 발명에서는 상기 1 단계 탈탄반응이 거의 완료되는 시점이후, 그 진공탈가스장치로부터 배출되는 배가스중 CO함량이 2%이하가 될때까지 환류가스유량을 2.5~3.0Nm3/min 까지 증가시켜, 내부탈탄은 유지하면서 환류가스의 Bubble에 의한 기포탈탄을 극대화시키는 2단계 탈탄을 실시한다. 이때, 만일 환류가스량이 2.50Nm3/min 미만이면 공급되는 기스기포의 부족으로 기포탈탄의 효과를 기대하기 어려우며, 3.00Nm3/min을 초과하면 진공설비내에 공급되는 환류가스량이 설비의 진공배기능력 대비 커지게 되어 1 단계에서 확보한 고진공상태를 유지하지 못하게 되어 내부탈탄이 불가능해지기 때문이다.Next, in the present invention, after the first stage decarburization reaction is almost completed, the reflux gas flow rate is increased to 2.5 to 3.0 Nm 3 / min until the CO content of the exhaust gas discharged from the vacuum degassing apparatus is 2% or less. In order to maintain the internal decarburization, two-step decarburization is performed to maximize bubble decarburization by bubbles of reflux gas. At this time, if the amount of reflux gas is less than 2.50Nm 3 / min, it is difficult to expect the effect of bubble decarburization due to the lack of gas bubbles, and if the amount of reflux gas is exceeded 3.00Nm 3 / min, the amount of reflux gas supplied into the vacuum equipment is the vacuum exhaust capacity of the equipment. This is because the internal decarburization becomes impossible due to the increase in contrast and the inability to maintain the high vacuum obtained in step 1.

한편, 상기 진공설비로부터 배출되는 배가스중 CO 가스함량이 2% 이하가 되면, 용강중의 탄소함량은 최대 30ppm 이하 수준으로 낮아져, 내부탈탄은 기대하기 어려운 상태가 된다.On the other hand, when the CO gas content in the exhaust gas discharged from the vacuum equipment is 2% or less, the carbon content in the molten steel is lowered to a level of 30 ppm or less at the maximum, the internal decarburization is difficult to expect.

따라서 본 발명에서는 이를 고려하여, 기포탈탄과 표면탈탄을 극대화하기 위해 환류가스의 유량을 3.5Nm3/min 이상의 최대로 하면서 탈탄말기까지 유지하는 3 단계 탈탄을 실시한다.Therefore, in consideration of this, in order to maximize bubble decarburization and surface decarburization, a three-step decarburization is performed to maintain the end of decarburization while maintaining a maximum flow rate of reflux gas of 3.5 Nm 3 / min or more.

본 발명에서는 이와 같이 진공탈가스 설비를 이용한 3단계 탈탄공정에서 그 취입되는 환류가스의 유량을 최적화함으로써 용강중의 탄소함량을 최종 15ppm 이하까지 안정하게 제어할수 있다.In the present invention, it is possible to stably control the carbon content in the molten steel to the final 15 ppm or less by optimizing the flow rate of the reflux gas blown in the three-stage decarburization process using the vacuum degassing equipment.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

전로로부터 공급된 극저탄소강 제조용 용강 300톤을 RH-TOB (TOB OXYZEN BLOWING) 설비에 장입한후, 그 하부로부터 Ar 환류가스를 취입하면서 2차탈탄정련을 실시하였다.300 tons of molten steel for production of ultra low carbon steel supplied from the converter was charged to a RH-TOB (TOB OXYZEN BLOWING) facility, and secondary decarburization was carried out while blowing Ar reflux gas from the bottom thereof.

이때, 탈탄초기, 진공조의 내부진공도 확보에 미치는 환류가스 유량을 영향을 알아보기 위하여, 하기 표 1과 같이 진공탈가스 설비에 취입되는 환류가스의 유량을 달리하면서 그 진공조의 내부진공도가 2Torr에 도달하는데 요하는 시간을 측정하였으며, 그 결과를 또한 표 1에 나타내었다.At this time, in order to determine the influence of the reflux gas flow in the initial decarburization, to ensure the internal vacuum degree of the vacuum chamber, the internal vacuum degree of the vacuum chamber reaches 2 Torr while changing the flow rate of the reflux gas blown into the vacuum degassing equipment as shown in Table 1 below The time required to measure was measured and the results are also shown in Table 1.

환류가스 유량 (Nm3/min)Reflux Gas Flow Rate (Nm 3 / min) 2Torr 도달시간 (분)2Torr Reach Time (min) 1.01.0 환류불량Reflux 1.51.5 5.55.5 2.02.0 5.85.8 2.52.5 6.36.3 3.03.0 6.56.5

상기 표 1에 나타난 바와 같이, 탈탄초기, 약 5분 정도의 환류가스 취입으로 진공탈가스 설비내 진공도를 2Torr이하로 하기 위해서는 그 환류가스취입량이 1.5~2.0Nm3/min의 범위에 있어야 함을 알 수 있다.As shown in Table 1, in order to reduce the degree of vacuum in the vacuum degassing facility to 2 Torr or less by the initial decarburization and reflux gas injection for about 5 minutes, the reflux gas injection amount should be in the range of 1.5 to 2.0 Nm 3 / min. Able to know.

한편, 극저탄소강용 용강의 탈탄정련공정에서 각 탈탄단계에서의 환류가스 취입량이 탈탄후 용강중 탄소함량에 미치는 영향을 알아보기 위하여, 하기 표 2와 같이 각 탈탄단계별로 환류가스취입량을 달리하여 용강을 탈탄처리하였으며, 이에따른 용강중 탄소함량을 측정하여 또한 하기 표 2에 나타내었다. 한편, 이때 탈탄시간은 모두 20분으로 하였다.On the other hand, in order to find out the effect of the reflux gas injection in each decarburization step on the carbon content in the molten steel after decarburization in the decarburization refining process of the ultra-low carbon steel molten steel, molten steel by varying the reflux gas injection for each decarburization step as shown in Table 2 below Was decarburized, and the carbon content in the molten steel was also measured, and is also shown in Table 2. In addition, the decarburization time was made into 20 minutes at this time.

구분division 각 단계별 환류개스 유량(Nm3/min)Reflux Gas Flow Rate for Each Step (Nm 3 / min) 탈탄시간Decarburization time 처리후탄소함량Carbon content after treatment 1단계Stage 1 2단계Tier 2 3단계Tier 3 진공도 2Torr 까지Vacuum up to 2Torr 배가스중 CO% ≤2.0%CO% ≤2.0% in flue gas ~탈탄완료Decarburization completed 종래예Conventional example 2.02.0 2.02.0 2.02.0 20분20 minutes 23 ppm23 ppm 비교예 1Comparative Example 1 2.52.5 3.03.0 3.53.5 20분20 minutes 21 ppm21 ppm 비교예 2Comparative Example 2 1.51.5 2.02.0 3.53.5 20분20 minutes 18 ppm18 ppm 비교예 3Comparative Example 3 1.51.5 3.53.5 2.52.5 20분20 minutes 17 ppm17 ppm 비교예 4Comparative Example 4 1.51.5 2.52.5 2.52.5 20분20 minutes 17 ppm17 ppm 비교예 5Comparative Example 5 1.51.5 1.51.5 4.04.0 20분20 minutes 18 ppm18 ppm 발명예 1Inventive Example 1 2.02.0 3.03.0 3.53.5 20분20 minutes 14 ppm14 ppm 발명예 2Inventive Example 2 2.02.0 3.03.0 4.04.0 20분20 minutes 14 ppm14 ppm 발명예 3Inventive Example 3 1.51.5 2.52.5 3.53.5 20분20 minutes 12 ppm12 ppm 발명예 4Inventive Example 4 1.51.5 2.52.5 4.04.0 20분20 minutes 10 ppm10 ppm

상기 표 2에 나타난 바와 같이, 각 단계별 환류가스 취입량이 최적으로 제어된 본 발명예(1~4)는 20분동안의 탈탄으로 용강중 탄소함량이 모두 14ppm이하로 됨을 알 수 있다.As shown in Table 2, Examples 1 to 4 of the present invention in which the reflux gas blowing amount for each step are optimally controlled can be seen that the carbon content in molten steel is all 14 ppm or less by decarburization for 20 minutes.

이에 대하여, 각 단계별로 환류가스 취입량이 본 발명의 범위를 벗어난 비교예(1~5)의 경우에는 그 탈탄처리후 용강중 탄소량이 모두 17ppm이상으로 좋지 않았다. 또한 탈탄전체공정에 걸쳐서 환류가스 취입량을 2.0Nm3/min으로 제어한 종래예(1)은 그 탈탄후 용강중 탄소함량이 23ppm으로 그 결과가 좋지 않았다.On the other hand, in the case of Comparative Examples (1 to 5) in which the reflux gas blowing amount in each step was out of the range of the present invention, the carbon content in the molten steel after the decarburization was not good as 17 ppm or more. In addition, in the conventional example (1) in which the reflux gas blowing amount was controlled to 2.0 Nm 3 / min over the entire decarburization process, the carbon content in the molten steel after decarburization was 23 ppm, and the result was not good.

상술한 바와 같이, 본 발명은 극저탄소강용 용강을 탈탄정련함에 있어서 그환류가스 취입패턴을 최적화함으로써 탈탄처리후 용강내 탄소함량을 효과적으로 14ppm이하로 제어할 수 있다. 따라서 본 발명으로 정련된 용강을 이용함으로써 탄소함량 20ppm 이하의 초심가공용 강소재를 안정적으로 생산할수 있으며, 이에 따라 높은 수익성을 보장할 수 있다.As described above, the present invention can effectively control the carbon content in molten steel after the decarburization treatment to 14 ppm or less by optimizing the reflux gas blowing pattern in the decarburization and refining of the ultra low carbon steel molten steel. Therefore, by using the molten steel refined by the present invention it is possible to stably produce a steel material for ultra-deep processing of less than 20ppm carbon content, thereby ensuring a high profitability.

Claims (1)

진공탈가스 설비를 이용하여 극저탄소강용 용강을 정련함에 있어서,In refining molten steel for ultra low carbon steel using vacuum degassing equipment, 탈탄초기, 그 내부진공도가 2Torr이하에 이를때 까지 환류가스유량을 1.5~2.0Nm3/min로 제어하고, 이어, 상기 설비로부터 배출되는 배가스중 CO함량이 2%이하가 될때까지 환류가스유량을 1.5~3.0Nm3/min로 제어하며, 그리고 그 탈탄완료시점까지 3.5Nm3/min 이상으로 환류가스유량을 제어하는 것을 특징으로 하는 용강 정련방법In the initial stage of decarburization, the reflux gas flow rate is controlled to 1.5 ~ 2.0 Nm 3 / min until the internal vacuum reaches 2 Torr or less, and then the reflux gas flow rate is reduced until the CO content of the exhaust gas discharged from the facility becomes 2% or less. 1.5 ~ 3.0Nm and controlled to 3 / min, and the decarburized molten steel refining method, characterized in that for controlling the reflux flow rate of gas to more than 3.5Nm 3 / min completed and the time
KR1020020056553A 2002-09-17 2002-09-17 Method for refining the molten steel for ultra low carbon steel KR20040026043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020056553A KR20040026043A (en) 2002-09-17 2002-09-17 Method for refining the molten steel for ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020056553A KR20040026043A (en) 2002-09-17 2002-09-17 Method for refining the molten steel for ultra low carbon steel

Publications (1)

Publication Number Publication Date
KR20040026043A true KR20040026043A (en) 2004-03-27

Family

ID=37328620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020056553A KR20040026043A (en) 2002-09-17 2002-09-17 Method for refining the molten steel for ultra low carbon steel

Country Status (1)

Country Link
KR (1) KR20040026043A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005385B1 (en) * 1994-12-30 1997-04-15 포항종합제철 주식회사 Control method of carbon concentration with low carbon steel
JPH09202913A (en) * 1996-01-24 1997-08-05 Nkk Corp Method for controlling carbon concentration at end point in rh vacuum degassing apparatus and device for controlling carbon concentration
JPH10310817A (en) * 1997-05-07 1998-11-24 Nippon Steel Corp Decarburizing method in vacuum degassing apparatus
KR100270125B1 (en) * 1996-12-24 2000-10-16 이구택 The refining method of molten metal with low carbon steel making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970005385B1 (en) * 1994-12-30 1997-04-15 포항종합제철 주식회사 Control method of carbon concentration with low carbon steel
JPH09202913A (en) * 1996-01-24 1997-08-05 Nkk Corp Method for controlling carbon concentration at end point in rh vacuum degassing apparatus and device for controlling carbon concentration
KR100270125B1 (en) * 1996-12-24 2000-10-16 이구택 The refining method of molten metal with low carbon steel making
JPH10310817A (en) * 1997-05-07 1998-11-24 Nippon Steel Corp Decarburizing method in vacuum degassing apparatus

Similar Documents

Publication Publication Date Title
KR20100035825A (en) Refining method of the molten steel for manufacturing ultra low carbon steel
KR20040026043A (en) Method for refining the molten steel for ultra low carbon steel
KR101400652B1 (en) High speed decarburization method for austenite stainless steel
KR101320319B1 (en) Refining method for stainless steel
KR20000038788A (en) Method of decarburizing low carbon stainless steel
US20170175212A1 (en) Argon oxygen decarburization refining method for molten austenitic stainless steel
JP4844552B2 (en) Melting method of low carbon high manganese steel
KR100428583B1 (en) A method for manufacturing high chromium stainless steel using exhausted gas analysis
KR100391908B1 (en) Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality
KR100925598B1 (en) Method for Refining Return Molten Steel
KR100868431B1 (en) Method for refining the molten steel by using decarburization propellant
KR100491007B1 (en) A method for refining a molten steel in use for the manufacture of a stainles steel having low carbon
JP2005015890A (en) Method for producing low-carbon high-manganese steel
KR100879740B1 (en) Method for refining hot metal
KR101400498B1 (en) High speed decarburization method for high purity stainless steel
CN116005070B (en) Production method of non-quenched and tempered steel with nitrogen content adjusted after vacuum
KR100921500B1 (en) Method for Desulfurizing extra low carbon steel
KR100922058B1 (en) Method for refining the ferrit stainless hot metal having high Cr
JP2000119730A (en) Method for refining molten steel under reduced pressure
KR20040042540A (en) A method for manufacturing of low carbon steel having high cleaness and low phosphorous
KR100325715B1 (en) Refining method of low carbon stainless steel
KR100406434B1 (en) Method for deoxidizing in the low carbon metal with Fe-Si
KR100402005B1 (en) A METHOD FOR REFINING ULTRA LOW CARBON Al-KILLED STEEL OF HIGH CLEANINESS
KR100340574B1 (en) Method for refining non-oriented electrical steel containing phosphorus
KR20020040022A (en) A method for manufacturing high chromium stainless steel using molybdenium oxides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application