KR20040025266A - Multilayered lc filter - Google Patents

Multilayered lc filter Download PDF

Info

Publication number
KR20040025266A
KR20040025266A KR1020020057147A KR20020057147A KR20040025266A KR 20040025266 A KR20040025266 A KR 20040025266A KR 1020020057147 A KR1020020057147 A KR 1020020057147A KR 20020057147 A KR20020057147 A KR 20020057147A KR 20040025266 A KR20040025266 A KR 20040025266A
Authority
KR
South Korea
Prior art keywords
layer
filter
stacked
magnetic layer
dielectric layer
Prior art date
Application number
KR1020020057147A
Other languages
Korean (ko)
Other versions
KR100471151B1 (en
Inventor
박문수
장병규
이대형
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR10-2002-0057147A priority Critical patent/KR100471151B1/en
Publication of KR20040025266A publication Critical patent/KR20040025266A/en
Application granted granted Critical
Publication of KR100471151B1 publication Critical patent/KR100471151B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1775Parallel LC in shunt or branch path

Abstract

PURPOSE: A multilayer LC filter is provided to prevent a cambering phenomenon and a blistering phenomenon due to the stress between a dielectric layer and a magnetic layer by using a buffer layer including Ba-Nd-Ti-based material, Ni-Zn-Cu-Fe-based material, and Bi-based glass material of 5 to 10 weight percent. CONSTITUTION: A multilayer LC filter includes a stacked body, which is formed with one or more dielectric layers(30b,30c) and one or more magnetic layers(30a,30d). The dielectric layers(30b,30c) and the magnetic layers(30a,30d) include predetermined conductive patterns for forming capacitor elements and inductor elements. The dielectric layers(30b,30c) are formed with Ba-Nd-Ti-based materials. The magnetic layers(30a,30d) are formed with Ni-Zn-Cu-Fe-based materials. A buffer layer including Ba-Nd-Ti-based material, Ni-Zn-Cu-Fe-based material, and Bi-based glass material of 5 to 10 weight percent is formed between the dielectric layers(30b,30c) and the magnetic layers(30a,30d).

Description

적층형 LC 필터{MULTILAYERED LC FILTER}Stacked LC Filters {MULTILAYERED LC FILTER}

본 발명은 적층형 LC 필터에 관한 것으로, 특히 유전체층과 자성체층를 이용한 LC 필터에서, 동시소성공정으로 인해 발생되는 응력발생 및 상호확산에 의한 소자불량문제를 방지하기 위해, 유전체층과 자성체층 사이에 Bi계 글래스를 포함한 버퍼층을 개재한 적층형 LC 필터에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked LC filter. In particular, in an LC filter using a dielectric layer and a magnetic layer, a Bi-based layer is formed between the dielectric layer and the magnetic layer in order to prevent device defects caused by stress generation and interdiffusion caused by a co-firing process. The present invention relates to a stacked LC filter via a buffer layer containing glass.

최근에는, 전자기기의 경박단소화와 고기능화 추세에 따라, 그 전자기기에 사용되는 전자부품이 고밀도 실장이 가능하도록, 각 부품은 소형화된 표면실장형 소자(SMD)로 개발되고 있다. 대표적인 예로, 적층 캐패시터와 적층 인덕터를 이용한 적층형 LC필터가 있다. 적층형 LC필터는 서로 다른 물질로 이루어진 유전체층과 자성체층 상에 도전패턴을 인쇄하여 캐패시터요소와 인덕터요소를 구현한 복합 전자부품으로서, SMD화에 의한 전자기기의 소형화가 가능할 뿐만 아니라, 다른 LC필터제품과 비교하여 동일한 용량에서 높은 삽입손실을 갖게 하여 노이즈 제거 성능을 향상시킬 수 있다는 장점이 있다.In recent years, in accordance with the trend of lighter and shorter and more functionalized electronic devices, each component has been developed as a miniaturized surface mount element (SMD) so that electronic components used in the electronic device can be mounted at high density. As a representative example, there is a stacked LC filter using a stacked capacitor and a stacked inductor. Multi-layer LC filter is a composite electronic component that implements capacitor element and inductor element by printing conductive pattern on dielectric layer and magnetic layer made of different materials, and it is possible to miniaturize electronic devices by SMD and other LC filter products. Compared with that, it has the advantage of improving noise rejection performance by having high insertion loss at the same capacity.

도1a는 통상적인 적층형 LC 필터의 분해사시도이다. 도1a에 도시된 적층형 LC 필터는 일반적인 인덕터-캐패시터-인덕터(L-C-L)의 3단구조를 갖는 형태이다. 상기 3단 적층형 LC필터는 2개의 자성체층(10a,10d)과 2개의 유전체층(10b,10c)을 포함하며, 상기 2개의 자성체층(10a,10d)에는 각각 인덕터 요소를 구현하는 도전패턴(14)이 형성되고, 상기 2개의 유전체층(10b,10c)에는 각각 접지패턴(12)과, 캐패시터 요소를 구현하는 도전패턴(13)이 형성된다. 또한, 상기 상부 자성체층(10a)에 형성된 도전패턴(11)과 하부 자성체층(10d)에 형성된 도전패턴(14)은 비아홀(h)을 통해 각각 캐패시터를 구현한 도전패턴(13)에 연결된다.1A is an exploded perspective view of a conventional stacked LC filter. The stacked LC filter illustrated in FIG. 1A has a three-stage structure of a general inductor-capacitor-inductor (L-C-L). The three-stage stacked LC filter includes two magnetic layers 10a and 10d and two dielectric layers 10b and 10c, and each of the two conductive layers 10a and 10d has a conductive pattern 14 for implementing an inductor element. ) And a ground pattern 12 and a conductive pattern 13 implementing a capacitor element are formed in the two dielectric layers 10b and 10c, respectively. In addition, the conductive pattern 11 formed on the upper magnetic layer 10a and the conductive pattern 14 formed on the lower magnetic layer 10d are connected to conductive patterns 13 implementing capacitors, respectively, via via holes h. .

이와 같이 구성된 적층형 LC필터는 도1b의 등가회로로 나타낼 수 있다. 최종적으로, 도1a의 각 층은 최상부에 배치되는 커버층(미도시)과 함께 적층되어 동시 소성한 후에, 외부전극을 인쇄함으로써 도1c와 같은 최종 적층형 LC필터(10)를 완성할 수 있다. 도1c를 참조하면, 상기 외부전극은 상부 자성체층(10a)의 도전패턴(11)에 연결된 입력전극(IN)과, 하부 자성체층(10d)의 도전패턴(14)에 연결된 출력전극(OUT) 및, 접지패턴(12)과 연결된 접지전극(GND)으로 구성된다.The stacked LC filter configured as described above may be represented by the equivalent circuit of FIG. 1B. Finally, each layer of FIG. 1A is laminated together with a cover layer (not shown) disposed at the top and co-fired, and then the final stacked LC filter 10 as shown in FIG. 1C may be completed by printing external electrodes. Referring to FIG. 1C, the external electrode includes an input electrode IN connected to the conductive pattern 11 of the upper magnetic layer 10a and an output electrode OUT connected to the conductive pattern 14 of the lower magnetic layer 10d. And a ground electrode GND connected to the ground pattern 12.

상기한 바와 같은 적층형 LC필터에서는, 서로 다른 물질로 구성되는 유전체층과 자성체층에 소정의 패턴을 형성한 후에 적층하여 동시 소성하게 된다. 하지만, 이러한 동시소성과정에서 유전체층과 자성체층은 서로 계면간에 반응하여 각 층의 특성에 부정적인 영향을 주거나, 열팽창율 및 수축율의 차이로 인해 내부응력이 발생될 수 있으며, 이러한 응력은 적층체의 뒤틀림과 같은 캠버(camber)현상이나, 접착력이 낮은 경우에는 박리현상까지도 야기할 수 있는 문제가 있다.In the stacked LC filter as described above, a predetermined pattern is formed on the dielectric layer and the magnetic layer composed of different materials, and then laminated and co-fired. However, in this co-firing process, the dielectric layer and the magnetic layer react with each other at the interface and negatively affect the characteristics of each layer, or internal stress may be generated due to the difference in thermal expansion rate and shrinkage rate. If the camber phenomenon such as, or if the adhesive strength is low, there is a problem that can cause even peeling phenomenon.

이러한 문제를 개선하기 위해, 종래에는 층간에 비정질 글래스물질로 이루어진 버퍼층을 사용하기도 하였으나, 유전체층과 자성체층의 유리성분이 상기 버퍼층에 함유된 경우에는, 액상소결과정에서 유전체층과 자성체층의 유리성분이 상호확산하여, 그 중간층을 통과함으로써 다른 층의 특성을 저해하는 문제가 있다.In order to solve this problem, conventionally, a buffer layer made of an amorphous glass material was used between layers, but when the glass component of the dielectric layer and the magnetic layer is contained in the buffer layer, the glass component of the dielectric layer and the magnetic layer in the liquid crystal resultant There is a problem of interdiffusion and impeding the properties of other layers by passing through the intermediate layer.

이와 같이, 당 기술분야에서는 이종물질로 구성된 자성체층과 유전체층의 동시 소성과정에서 발생되는 내부응력을 완화할 뿐만 아니라, 상호 확산에 의한 각 층의 특성을 유지할 수 있는 적층형 LC필터가 요구되어 왔다.As such, there has been a demand in the art for a stacked LC filter that not only alleviates the internal stress generated during the simultaneous firing process of the magnetic layer and the dielectric layer composed of heterogeneous materials, but also maintains the characteristics of each layer by mutual diffusion.

본 발명은 상기한 문제를 해결하기 위해서 안출된 것으로, 그 목적은 적층형 LC필터에서, 유전체층과 자성체층 사이에 적정량의 글래스물질을 선택하여 상기 유전체층과 자성체층의 혼합물질을 첨가시킴으로써, 상기 유전체층과 자성체층을 구성하는 물질 간의 상호확산으로 인한 특성저하를 방지하면서, 유전체층과 자성체층의 내부응력을 완화할 수 있는 버퍼층을 갖는 새로운 적층형 LC필터를 제공하는데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to select an appropriate amount of glass material between a dielectric layer and a magnetic layer in a stacked LC filter, and to add a mixture of the dielectric layer and the magnetic layer to the dielectric layer and the magnetic layer. The present invention provides a novel stacked LC filter having a buffer layer that can mitigate the internal stress of the dielectric layer and the magnetic layer, while preventing the deterioration of properties due to the interdiffusion between the materials constituting the magnetic layer.

도1a는 통상의 적층형 LC필터를 나타내는 분해사시도이다.1A is an exploded perspective view showing a conventional stacked LC filter.

도1b는 도1a의 적층형 LC필터에 구현된 패턴에 의한 등가회로도이다.FIG. 1B is an equivalent circuit diagram of a pattern implemented in the stacked LC filter of FIG. 1A.

도1c는 도1a의 적층형 LC필터를 나타내는 개략사시도이다.Fig. 1C is a schematic perspective view showing the stacked LC filter of Fig. 1A.

도2는 본 발명에 따른 버퍼층을 채용한 적층형 LC필터의 단면도이다.2 is a cross-sectional view of a stacked LC filter employing a buffer layer according to the present invention.

도3a는 본 발명의 일실시형태에 따른 적층형 LC필터의 분해사시도이다.3A is an exploded perspective view of a stacked LC filter according to an embodiment of the present invention.

도3b는 도3a의 적층형 LC필터를 나타내는 개략사시도이다.Fig. 3B is a schematic perspective view showing the stacked LC filter of Fig. 3A.

<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>

30a,30d: 자성체층30b,30c: 유전체층30a, 30d: magnetic layer 30b, 30c: dielectric layer

35a,35b: 버퍼층31,34: 인덕터 패턴35a, 35b: buffer layer 31, 34: inductor pattern

32: 접지패턴33: 캐패시터 패턴32: ground pattern 33: capacitor pattern

30: 필터용 적층체30: laminated body for filters

상기 기술적 과제를 달성하기 위해서, 본 발명은, 적어도 하나의 유전체층과 자성체층으로 이루어진 적층체를 포함하며, 그 유전체층과 자성체층 각각에는 캐패시터요소와 인덕터요소를 구성하는 소정의 도전패턴이 형성된 적층형 LC 필터에 있어서, 상기 유전체층은 Ba-Nd-Ti계 물질로 이루어지고, 상기 자성체층은 Ni-Zn-Cu-Fe계 물질로 이루어지며, 상기 유전체층과 상기 자성체층 사이에는, Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질을 포함하는 버퍼층을 포함하는 적층형 LC 필터를 제공한다.In order to achieve the above technical problem, the present invention includes a laminate comprising at least one dielectric layer and a magnetic layer, each of the dielectric layer and the magnetic layer is a laminated LC having a predetermined conductive pattern constituting a capacitor element and an inductor element In the filter, the dielectric layer is made of a Ba-Nd-Ti-based material, the magnetic layer is made of Ni-Zn-Cu-Fe-based material, between the dielectric layer and the magnetic layer, Ba-Nd-Ti-based Provided is a stacked LC filter comprising a material, a Ni-Zn-Cu-Fe-based material, and a buffer layer comprising 5-10 wt% Bi-based glass material.

또한, 본 발명의 바람직한 실시형태에서는, 상기 버퍼층에 포함된 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질의 중량비를 3:7∼7:3범위로, 보다 바람직하게는 두 물질의 중량을 거의 동일한 비율로 구성할 수 있다.In a preferred embodiment of the present invention, the weight ratio of the Ba-Nd-Ti-based material and the Ni-Zn-Cu-Fe-based material included in the buffer layer is in the range of 3: 7 to 7: 3, more preferably, The weight of the material can be made up in approximately equal proportions.

나아가, 본 발명에 따른 적층형 LC필터는, 상기 버퍼층을 채용함으로써 적층구조물의 측면이 실질적으로 평탄한 면을 유지할 수 있으므로, 비어홀을 형성하지 않고, 그 적층구조물의 측면에 외부전극을 추가적으로 형성하여 서로 다른 층에 형성된 도전패턴을 연결할 수 있다.Furthermore, in the stacked LC filter according to the present invention, since the side surface of the laminated structure can be substantially flat by employing the buffer layer, an external electrode is additionally formed on the side surface of the laminated structure to form different via holes. The conductive pattern formed in the layer can be connected.

이하, 도면을 참조하여, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.

도2는 본 발명에 따른 LC필터의 적층구조물을 개략적으로 나타내는 단면도이다. 도2를 참조하면, 상기 적층형 LC필터는 자성체층으로 이루어진 2개의 인덕터부(L1,L2)와 유전체층으로 이루어진 캐패시터부(C)를 포함하며, 상기 캐패시터부(C)는 2개의 인덕터부(L1,L2) 사이에 형성된다. 일반적으로, 상기 유전체층과 상기 자성체층은 각각 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질로 구성될 수 있다.2 is a cross-sectional view schematically showing a laminated structure of an LC filter according to the present invention. Referring to FIG. 2, the stacked LC filter includes two inductor parts L1 and L2 made of a magnetic layer and a capacitor part C made of a dielectric layer, and the capacitor part C includes two inductor parts L1. , L2). In general, the dielectric layer and the magnetic layer may be formed of a Ba-Nd-Ti-based material and a Ni-Zn-Cu-Fe-based material, respectively.

또한, 본 발명에서는 상기 캐패시터부(C)와 2개의 인덕터부(L1,L2)의 사이에, 즉 유전체층과 자성체층 사이에 새로운 조성을 갖는 버퍼층(25a,25b)이 형성된다. 본 발명에 따른 버퍼층은 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질이 혼합된 세라믹물질로 이루어진다.In the present invention, buffer layers 25a and 25b having a new composition are formed between the capacitor portion C and the two inductor portions L1 and L2, that is, between the dielectric layer and the magnetic layer. The buffer layer according to the present invention is made of a ceramic material in which a Ba-Nd-Ti-based material, a Ni-Zn-Cu-Fe-based material, and a 5-10 wt% Bi-based glass material are mixed.

앞서 설명한 바와 같이, 일반적으로 버퍼층에는 유전체층과 자성체층의 두층을 구성하는 물질을 혼합하여 사용하였으나, 이러한 경우에는 접착력이 약해 내부응력의 차이에 의해 쉽게 박리되는 문제가 있었다. 또한, 접착력을 향상시키기 위해, Zn계 글래스나 Pb계 글래스 등의 통상의 글래스물질을 버퍼층에 첨가하는 경우에는, 계면에서 액상이 집결하여 유전체층과 자성체층 사이에 상호확산이 일어나서 각 층의 특성을 손상시키는 문제가 있었다.As described above, in general, the buffer layer was used by mixing a material constituting the two layers of the dielectric layer and the magnetic layer, but in this case there is a problem that the adhesive strength is weak and easily peeled off due to the difference in the internal stress. In addition, in order to improve adhesion, when a conventional glass material such as Zn-based glass or Pb-based glass is added to the buffer layer, liquid phases are collected at the interface, and interdiffusion occurs between the dielectric layer and the magnetic layer, thereby improving the characteristics of each layer. There was a problem of damage.

도2에서는 버퍼층의 기능을 설명하기 위해서 2개의 버퍼층을 채용하는 3단식 L-C-L필터의 예로서 설명하였으나, 본 발명에 따른 버퍼층은 유전체층과 자성체층의 계면에 모두 채용되어야 하므로, 다른 필터의 형태에서는 그 계면의 수에 따라 도2와 달리, 1개 또는 3개이상의 버퍼층이 채용될 수 있다는 것은 당업자에게는 자명한 사실이다.2 illustrates an example of a three-stage LCL filter employing two buffer layers in order to explain the function of the buffer layer. However, since the buffer layer according to the present invention must be employed at both the interface between the dielectric layer and the magnetic layer, the other filter forms It is apparent to those skilled in the art that one, three or more buffer layers may be employed, unlike FIG. 2, depending on the number of interfaces.

이에 본 발명자는 반복적인 실험을 통해서, Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질이 혼합된 버퍼층을 제공함으로써 종래 기술의 문제를 해결할 수 있었다. 즉, 상기 조성에 따른 버퍼층은 유전체층과 자성체층 사이에 내부응력을 완화하고 강한 접착강도를 가지면서도, 일반적인 글래스물질이 갖는 문제인 두 물질간의 상호확산작용을 억제하여 유전체층과 자성체층의 특성을 보장할 수 있었다.Accordingly, the inventors have repeatedly conducted experiments to provide a buffer layer in which Ba-Nd-Ti-based materials, Ni-Zn-Cu-Fe-based materials, and 5-10 wt% Bi-based glass materials are mixed. I could solve it. In other words, the buffer layer according to the composition may reduce the internal stress between the dielectric layer and the magnetic layer and have a strong adhesive strength, while suppressing the interdiffusion between two materials, which is a problem of general glass materials, to ensure the characteristics of the dielectric layer and the magnetic layer. Could.

본 발명에 따른 버퍼층은 Bi계 글래스물질을 5 내지 10wt%로 포함한다. Bi계 글래스가 5wt%미만일 경우에는, 글래스물질에 의한 접착효과가 미흡하므로 계면강도가 낮아져 박리현상이 발생되는 문제가 있으며, Bi 글래스가 10w%를 초과하면,계면에 액상이 집결하여 두 층 물질의 상호확산작용이 발생되어, 각 층의 특성을 손상시키는 문제가 있다.The buffer layer according to the present invention contains a Bi-based glass material of 5 to 10wt%. If the Bi-based glass is less than 5wt%, the adhesion effect by the glass material is insufficient, there is a problem that the interfacial strength is lowered, the peeling phenomenon occurs. If the Bi glass exceeds 10w%, the liquid layer is concentrated on the interface to the two-layer material There is a problem that the interdiffusion action of, occurs, impairing the properties of each layer.

이하, 본 발명에 따른 실시예를, 종래 기술에 따른 버퍼층을 이용한 적층형 LC필터에 대비하여 상세히 설명하기로 한다.Hereinafter, an embodiment according to the present invention will be described in detail compared to a stacked LC filter using a buffer layer according to the prior art.

(실시예)(Example)

본 발명에 따른 버퍼층 물질을 얻기 위해서, 본 발명자는 유전체층으로 Ba-Nd-Ti계 물질인 ULS60(본 출원인 삼성전기주식회사의 제품명)과, 자성체층으로는 Ni-Zn-Cu-Fe계 물질인 LSF50(미국 PPT사의 제품명)을 사용하여 그린시트를 제조하였다. 상기 그린시트에는 소정의 도전패턴을 형성하여, 캐패시터부와 인덕터부를 형성하였고, 이어 상기 두 물질을 1:1 비율로 혼합한 후에 아래 표1과 같이 다른 종류의 글래스물질을 양을 달리하여 첨가함으로써 상기 유전체층과 자성체층 사이에 버퍼층을 형성하였다. 이렇게 적층된 상기 결과물을 동시소성한 후에 완성된 적층형 LC필터에 대해 캠버(camber)현상과 박리현상유무를 관찰하였다. 아래 표1은 이러한 실험결과를 나타낸다.In order to obtain the buffer layer material according to the present invention, the present inventors use a dielectric material layer, BaS-Nd-Ti-based material ULS60 (product name of the present Samsung Electro-Mechanics Co., Ltd.), and magnetic material layer LSF50 is Ni-Zn-Cu-Fe-based material A green sheet was manufactured using (product name of US PPT). A predetermined conductive pattern was formed on the green sheet to form a capacitor part and an inductor part. Then, after mixing the two materials in a 1: 1 ratio, by adding different kinds of glass materials in different amounts as shown in Table 1 below. A buffer layer was formed between the dielectric layer and the magnetic layer. After co-firing the resultant thus laminated, the camber phenomenon and the presence of peeling phenomenon were observed for the laminated LC filter. Table 1 below shows the results of these experiments.

버퍼층에 첨가된 글래스물질Glass material added to the buffer layer 캠버현상Camber phenomenon 박리현상Peeling phenomenon 종류Kinds 첨가량(wt%)Addition amount (wt%) 비교예1Comparative Example 1 없음none XX OO 비교예2Comparative Example 2 Bi2O3 Bi 2 O 3 22 XX OO 실시예1Example 1 Bi2O3 Bi 2 O 3 55 XX XX 실시예2Example 2 Bi2O3 Bi 2 O 3 1010 XX XX 비교예3Comparative Example 3 Bi2O3 Bi 2 O 3 1212 XX XX 비교예4Comparative Example 4 Zn계 글래스Zn Glass 55 XX OO 비교예5Comparative Example 5 Pb계 글래스Pb glass 55 XX OO

상기 표1에 나타난 바와 같이, 비교예1과 같이 어떠한 글래스물질도 첨가하지 않은 경우에는 계면의 접착강도가 약해 박리현상이 발생되었다. 또한, 비교예2,4 및 5와 같이, Bi계 글래스인 Bi2O3물질을 2wt%로 첨가하거나, Zn계 글래스 및 Pb계 글래스에서도 마찬가지로 박리현상이 발생되었으며, 특히 Zn계 글래스 및 Pb계 글래스에서는 계면에 거대입자가 성장하는 현상도 발생하였다.As shown in Table 1 above, when no glass material was added as in Comparative Example 1, the adhesive strength of the interface was weak and peeling occurred. In addition, as in Comparative Examples 2, 4 and 5, Bi 2 O 3 material of Bi-based glass was added at 2wt%, or peeling phenomenon was also generated in Zn-based glass and Pb-based glass, in particular, Zn-based glass and Pb-based glass. In glass, the growth of macroparticles also occurred at the interface.

또한, 비교예3과 같이, Bi계 글래스물질을 12wt%로 첨가한 경우에는 캠버나 박리현상은 발생되지 않았으나, 계면에 액상이 집결하여 유전체층과 자성체층에 상호 확산작용이 심하게 발생되어, 각 층의 특성을 저하시키는 문제가 있었다. 특히, 이러한 특성저하는 자성체층에서 심하게 발생되었다.In addition, as in Comparative Example 3, when the Bi-based glass material was added at 12wt%, no camber or peeling phenomenon occurred, but the liquid phase was concentrated at the interface, so that the mutual diffusion between the dielectric layer and the magnetic layer occurred severely. There was a problem of deteriorating the characteristics. In particular, this deterioration occurred severely in the magnetic layer.

반면에, 실시예1과 2에서는, 상기 표1의 결과와 같이 캠버현상이나 박리현상이 발생되지 않고, 계면의 접착강도도 우수할 뿐만 아니라, 비교예3과 같이 층간의 상호확산이 일어나지 않아 각 층의 특성을 신뢰성있게 유지할 수 있었다.On the other hand, in Examples 1 and 2, the camber phenomenon and the peeling phenomenon did not occur as shown in the above Table 1, the adhesive strength of the interface was excellent, and the interdiffusion between layers did not occur as in Comparative Example 3. The properties of the layers could be maintained reliably.

또한, 본 발명의 버퍼층에서, 유전체층을 구성하는 Ba-Nd-Ti계 물질과 자성체층을 구성하는 Ni-Zn-Cu-Fe계 물질의 중량비는 첨가되는 Bi계 글래스물질에 비해 큰 영향을 미치지 않으나, 두층간의 내부응력완화의 역할을 고려하여 바람직하게는 3:7∼7:3의 비율로, 보다 바람직하게는 약 1:1의 비율로 혼합하여 사용하는 것이 바람직한다.In addition, in the buffer layer of the present invention, the weight ratio of the Ba-Nd-Ti-based material constituting the dielectric layer and the Ni-Zn-Cu-Fe-based material constituting the magnetic layer does not have a greater effect than the added Bi-based glass material. In consideration of the role of the internal stress relaxation between the two layers, it is preferable to use the mixture in the ratio of 3: 7-7: 3, more preferably in the ratio of about 1: 1.

이러한 본 발명에 따른 적층형 LC필터에서는 추가적인 종래의 기술적 문제가 해결될 수 있다. 종래의 적층형 LC필터는 도1a에 도시된 바와 같이, 서로 다른 층의 도전패턴을 연결하기 위해서, 비아홀을 사용하여 왔으며, 이러한 비아홀을 형성하기 위해, 각 층에 펀칭공정으로 홀을 형성한 후에 적층하는 방식을 사용하였다. 하지만, 이러한 방식은 공정을 복잡하게 할 뿐만 아니라, 정렬불량 등으로 인한 상하연결이 불량해지고, 균열이 발생하는 문제가 있었다. 이를 해결하기 위해서, 측면에 외부전극을 인쇄하는 과정을 이용하여 도전성 비아홀을 대체하는 추가적인 측면패턴을 형성하는 방법을 제안될 수 있으나, 상기 유전체층과 자성체층의 응력으로 인한 캠버현상이나 층간들뜸현상으로 인해 실제 적용되기 곤란하였다.In the stacked LC filter according to the present invention, an additional conventional technical problem may be solved. Conventional stacked LC filters have used via holes to connect conductive patterns of different layers, as shown in FIG. 1A. To form such via holes, a stacked LC filter is formed after a hole is formed by a punching process. The method was used. However, this method not only complicates the process but also has a problem in that vertical connection is poor due to misalignment and the like, and cracks are generated. In order to solve this problem, a method of forming an additional side pattern to replace the conductive via hole using a process of printing an external electrode on the side may be proposed, but the camber phenomenon or the interlayer excitation due to the stress of the dielectric layer and the magnetic layer may be proposed. It was difficult to apply practically.

하지만, 본 발명에 따른 적층형 LC필터는 동시소성후에 두 층간의 응력에 대한 영향을 최소화할 수 있으므로, 소성된 적층체의 측면은 비교적 균일한 평면으로 형성되므로, 서로 연결해야 할, 유전체층 및/또는 자성체층 상의 도전패턴을 측면부까지 연장되도록 형성하고, 그 연장된 부분을 연결하는 측면패턴을 적층체의 측면에 외부전극 인쇄공정에서 함께 형성함으로써 앞서 언급한 문제를 야기하는 도전성 비아홀 형성공정을 생략할 수 있다.However, since the stacked LC filter according to the present invention can minimize the influence on the stress between the two layers after simultaneous firing, the side of the fired laminate is formed in a relatively uniform plane, so that the dielectric layer and / or The conductive pattern on the magnetic layer is formed to extend to the side portion, and the side pattern connecting the extended portion is formed together in the external electrode printing process on the side of the stack to omit the conductive via hole forming process causing the aforementioned problem. Can be.

이와 같은 측면패턴이 형성된 본 발명에 따른 적층형 LC필터는 도3a 및 3b에 도시되어 있다.The stacked LC filter according to the present invention having such a side pattern is shown in FIGS. 3A and 3B.

도3a는 본 발명의 일실시형태에 따른 적층형 LC 필터의 분해사시도이다. 도3a에 도시된 적층형 LC 필터는, 도1a와 같은 인덕터-캐패시터-인덕터(L-C-L)의 3단구조를 갖는 실시예이다. 상기 3단 적층형 LC필터는 2개의 자성체층(30a,30d)과 2개의 유전체층(30b,30c)을 포함하며, 각 유전체층(30b,30c)과 자성체층(30a,30d) 사이에는 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질이 혼합된 물질로 구성된 버퍼층(35a,35b)이 형성된다.3A is an exploded perspective view of a stacked LC filter according to an embodiment of the present invention. The stacked LC filter shown in FIG. 3A is an embodiment having a three-stage structure of an inductor-capacitor-inductor (L-C-L) as shown in FIG. 1A. The three-stage stacked LC filter includes two magnetic layers 30a and 30d and two dielectric layers 30b and 30c, and Ba-Nd- is disposed between each of the dielectric layers 30b and 30c and the magnetic layers 30a and 30d. Buffer layers 35a and 35b made of a mixture of a Ti-based material, a Ni-Zn-Cu-Fe-based material, and a 5-10 wt% Bi-based glass material are formed.

상기 2개의 자성체층(30a,30d)에는 각각 인덕터 요소를 구현하는 도전패턴(31,34)이 형성되고, 상기 2개의 유전체층(30b,30c)에는 각각 접지패턴(32)과 캐패시터 요소를 구현하는 도전패턴(33)이 형성된다. 또한, 도3a와 같이, 상기 상부 자성체층(30a)에 형성된 도전패턴(31)과 하부 자성체층(30d)에 형성된 도전패턴(34) 및, 하부 유전체층(30c)에 형성된 도전패턴(33)은 적층체의 측면에 연결되도록 모서리까지 연장되도록 설계된다. 이러한 모서리까지 연장된 패턴의 단부는 도3b와 같이 필터본체(30)의 측면패턴(P1,P2)을 통해 연결된다. 이러한 측면패턴(P1,P2)은 종래와 같은 외부전극(IN,OUT,GND)의 인쇄공정과 동시에 수행될 수 있어 기존의 공정으로 간소하게 구현될 수 있다.Each of the two magnetic layers 30a and 30d has conductive patterns 31 and 34 implementing inductor elements, and the two dielectric layers 30b and 30c have ground patterns 32 and capacitor elements respectively. The conductive pattern 33 is formed. 3A, the conductive pattern 31 formed on the upper magnetic layer 30a, the conductive pattern 34 formed on the lower magnetic layer 30d, and the conductive pattern 33 formed on the lower dielectric layer 30c may be formed. It is designed to extend to the edge so as to be connected to the side of the stack. The end of the pattern extending to the corner is connected through the side patterns (P1, P2) of the filter body 30 as shown in Figure 3b. The side patterns P1 and P2 may be performed simultaneously with the printing process of the external electrodes IN, OUT, and GND as in the prior art, and thus may be simply implemented in the existing process.

도3a 및 3b와 같이, 본 발명에 따른 LC필터는 새로운 조성의 버퍼층을 채용함으로써 두 이종물질을 동시소성한 후에도 그 층간의 응력에 대한 영향을 최소화하여 소성된 적층체의 측면이 비교적 균일한 평면으로 형성할 수 있다. 따라서, 외부전극공정에서 층간의 도전패턴을 연결하는 측면패턴을 형성하더라도, 굴곡에 의해 단락되거나 손상되는 경우가 발생되지 않을 수 있다. 결국, 정렬불량과 크랙문제를 야기하는 도전성 비아홀 형성공정을 생략하여 보다 양질의 적층형 LC필터를 간소한 공정으로 제조할 수 있게 되었다.As shown in Figures 3a and 3b, the LC filter according to the present invention employs a buffer layer of a new composition to minimize the influence on the stress between the layers even after simultaneous firing of two different materials, so that the sides of the fired laminate are relatively uniform. It can be formed as. Therefore, even when the side pattern is formed to connect the conductive patterns between the layers in the external electrode process, a short circuit or damage due to bending may not occur. As a result, a high quality laminated LC filter can be manufactured in a simple process by eliminating the conductive via hole forming process that causes misalignment and cracking problems.

이상에서 설명한 본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 명백할 것이다.The present invention described above is not limited by the above-described embodiment and the accompanying drawings, but by the appended claims. Therefore, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible without departing from the technical spirit of the present invention described in the claims.

상술한 바와 같이, 본 발명의 적층형 LC 필터에 따르면, Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질을 포함하는 버퍼층을 사용함으로써, 동시소싱시 유전체층과 자성체층 간의 응력발생으로 인한 캠버나 박리현상을 방지함은 물론, 그 유전체층과 자성체층을 구성하는 물질 간의 상호확산으로 인한 특성저하를 효과적으로 방지할 수 있다.As described above, according to the laminated LC filter of the present invention, by using a buffer layer containing a Ba-Nd-Ti-based material, a Ni-Zn-Cu-Fe-based material, and a 5-10 wt% Bi-based glass material, In the simultaneous sourcing, it is possible to prevent the camber or the peeling phenomenon due to the stress generation between the dielectric layer and the magnetic layer, as well as to effectively prevent the deterioration of the characteristics due to the interdiffusion between the material of the dielectric layer and the magnetic layer.

또한, 본 발명의 버퍼층을 채용한 LC필터는 동시 소성후에도 구조적으로 변형되지 않으므로, 소성된 적층체의 측면을 이용하여 층간의 패턴을 연결하는 측면패턴을 형성할 수 있으며, 결과적으로는 여러 형태의 불량을 야기하는 도전성 비아홀공정을 생략할 수 있는 잇점이 있다.In addition, since the LC filter employing the buffer layer of the present invention is not structurally deformed even after simultaneous firing, a side pattern connecting the patterns between layers can be formed by using the side of the fired laminate, and as a result, There is an advantage that the conductive via hole process causing the defect can be omitted.

Claims (6)

적어도 하나의 유전체층과 자성체층으로 이루어진 적층체를 포함하며, 그 유전체층과 자성체층 각각에는 캐패시터요소와 인덕터요소를 구성하는 소정의 도전패턴이 형성된 적층형 LC 필터에 있어서,In a stacked LC filter comprising a laminate comprising at least one dielectric layer and a magnetic layer, each of which has a predetermined conductive pattern constituting a capacitor element and an inductor element. 상기 유전체층은 Ba-Nd-Ti계 물질로 이루어지고, 상기 자성체층은 Ni-Zn-Cu-Fe계 물질로 이루어지며, 상기 유전체층과 상기 자성체층 사이에는, Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질 및, 5∼10wt%의 Bi계 글래스물질을 포함하는 버퍼층을 포함하는 적층형 LC 필터.The dielectric layer is made of Ba-Nd-Ti-based material, and the magnetic layer is made of Ni-Zn-Cu-Fe-based material, and between the dielectric layer and the magnetic layer, Ba-Nd-Ti-based material and Ni- A stacked LC filter comprising a Zn-Cu-Fe-based material and a buffer layer containing 5-10 wt% Bi-based glass material. 제1항에 있어서,The method of claim 1, 상기 버퍼층에 포함된 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질의 중량비는 3:7∼7:3범위임을 특징으로 하는 적층형 LC 필터.Stacked LC filter, characterized in that the weight ratio of Ba-Nd-Ti-based material and Ni-Zn-Cu-Fe-based material contained in the buffer layer ranges from 3: 7 to 7: 3. 제2항에 있어서,The method of claim 2, 상기 버퍼층에 포함된 Ba-Nd-Ti계 물질과 Ni-Zn-Cu-Fe계 물질의 중량은 실질적으로 동일함을 특징으로 하는 적층형 LC 필터.Stacked LC filter, characterized in that the weight of the Ba-Nd-Ti-based material and Ni-Zn-Cu-Fe-based material contained in the buffer layer is substantially the same. 제1항에 있어서,The method of claim 1, 상기 적층체는 제1 인덕터 패턴이 형성된 제1 자성체층과, 접지패턴이 형성된 제1 유전체층과, 캐패시터패턴이 형성된 제2 유전체층과 제2 인덕터 패턴이 형성된 제2 자성체층이 순차적으로 적층된 구조물로 이루어지며, 상기 버퍼층은 상기 제1 자성체층과 제1 유전체층 및 제2 자성체층과 제2 유전체층 사이에 각각 배치되는 적층형 LC 필터.The laminate is a structure in which a first magnetic layer having a first inductor pattern, a first dielectric layer having a ground pattern, a second dielectric layer having a capacitor pattern, and a second magnetic layer having a second inductor pattern are sequentially stacked. And the buffer layer is disposed between the first magnetic layer, the first dielectric layer, and the second magnetic layer and the second dielectric layer, respectively. 제1항 또는 제4항에 있어서,The method according to claim 1 or 4, 상기 유전체층과 자성체층의 적층체 측면에 형성되어, 서로 다른 층에 형성된 도전패턴을 연결하기 위한 적어도 하나 이상의 측면패턴을 더 포함함을 특징으로 하는 적층형 LC 필터.Stacked LC filter is formed on the side of the stack of the dielectric layer and the magnetic layer, further comprising at least one side pattern for connecting the conductive patterns formed on different layers. 제5항에 있어서,The method of claim 5, 상기 측면패턴은 외부전극인쇄공정과 동시에 형성됨을 특징으로 적층형 LC 필터.The side pattern is a stacked LC filter, characterized in that formed at the same time as the external electrode printing process.
KR10-2002-0057147A 2002-09-19 2002-09-19 Multilayered lc filter KR100471151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0057147A KR100471151B1 (en) 2002-09-19 2002-09-19 Multilayered lc filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0057147A KR100471151B1 (en) 2002-09-19 2002-09-19 Multilayered lc filter

Publications (2)

Publication Number Publication Date
KR20040025266A true KR20040025266A (en) 2004-03-24
KR100471151B1 KR100471151B1 (en) 2005-03-10

Family

ID=37328219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0057147A KR100471151B1 (en) 2002-09-19 2002-09-19 Multilayered lc filter

Country Status (1)

Country Link
KR (1) KR100471151B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614258B1 (en) * 2006-03-31 2006-08-22 (주) 래트론 LC filter
GB2445811A (en) * 2007-01-19 2008-07-23 Western Lights Semiconductor C Apparatus to Store Electrical Energy
GB2445812A (en) * 2007-01-19 2008-07-23 Western Lights Semiconductor C Apparatus to Store Electrical Energy
KR100920026B1 (en) * 2007-10-16 2009-10-05 주식회사 쎄라텍 Magnetic and dielectric composite electronic device
KR20190037070A (en) * 2017-09-28 2019-04-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Band stop filter structures and methods of forming and operating same
US11394359B2 (en) 2017-09-28 2022-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structure and method of forming
US11664776B2 (en) 2017-09-28 2023-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structure and method of forming

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097296B2 (en) * 1992-03-19 2000-10-10 株式会社村田製作所 Multilayer T-type LC filter
JP2904664B2 (en) * 1992-12-10 1999-06-14 太陽誘電株式会社 Multilayer LC filter parts
JPH07235852A (en) * 1994-02-23 1995-09-05 Mitsubishi Materials Corp Pi type filter
JPH08148382A (en) * 1994-11-22 1996-06-07 Mitsubishi Materials Corp Emi filter
JP3498200B2 (en) * 1997-08-06 2004-02-16 株式会社村田製作所 Multilayer ceramic composite parts

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614258B1 (en) * 2006-03-31 2006-08-22 (주) 래트론 LC filter
GB2445811A (en) * 2007-01-19 2008-07-23 Western Lights Semiconductor C Apparatus to Store Electrical Energy
GB2445812A (en) * 2007-01-19 2008-07-23 Western Lights Semiconductor C Apparatus to Store Electrical Energy
GB2445812B (en) * 2007-01-19 2009-01-07 Western Lights Semiconductor C Apparatus and method to store electrical energy
GB2445811B (en) * 2007-01-19 2009-01-07 Western Lights Semiconductor C Apparatus and method to store electrical energy
KR100920026B1 (en) * 2007-10-16 2009-10-05 주식회사 쎄라텍 Magnetic and dielectric composite electronic device
KR20190037070A (en) * 2017-09-28 2019-04-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Band stop filter structures and methods of forming and operating same
CN109585424A (en) * 2017-09-28 2019-04-05 台湾积体电路制造股份有限公司 Band stop filter structure and its formation and operating method
US10483936B2 (en) 2017-09-28 2019-11-19 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structures and methods of forming and operating same
US10868509B2 (en) 2017-09-28 2020-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structure and method of forming
TWI733000B (en) * 2017-09-28 2021-07-11 台灣積體電路製造股份有限公司 Filter structures and methods of forming same and method of filtering signal
US11394359B2 (en) 2017-09-28 2022-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structure and method of forming
US11664776B2 (en) 2017-09-28 2023-05-30 Taiwan Semiconductor Manufacturing Company, Ltd. Band stop filter structure and method of forming

Also Published As

Publication number Publication date
KR100471151B1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
KR100481393B1 (en) Multilayer ceramic electronic part and conductive paste thereof
KR100790694B1 (en) Method of manufacturing a ltcc board with embedded capacitors
US20140174800A1 (en) Embedded multilayer ceramic electronic component and method of manufacturing the same, and printed circuit board having embedded multilayer ceramic electronic component
KR20190116161A (en) Mutilayered electronic component
US8593785B2 (en) Electronic component
KR20190121180A (en) Ceramic electronic component
US20110149470A1 (en) Multilayer ceramic capacitor and manufacturing method thereof
US8993105B2 (en) Multilayer ceramic substrate and method for producing the same
KR20190027452A (en) Multilayer ceramic capacitor and method of manufacturing the same
KR20190116173A (en) Mutilayered electronic component
JP2000277371A (en) Multilayer ceramic electronic component
US20150179340A1 (en) Multilayer ceramic capacitor and method of fabricating the same
US20180061577A1 (en) Multilayer ceramic capacitor
US20110149469A1 (en) Multilayer ceramic capacitor and method of fabricating the same
KR101751058B1 (en) The multilayer ceramic capacitor and a fabricating method thereof
KR100471151B1 (en) Multilayered lc filter
US20030218870A1 (en) Low temperature co-fired ceramic with improved shrinkage control
KR100905878B1 (en) Fabrication method of multi-layer ceramic capacitor
KR101952845B1 (en) Multi-layer ceramic electronic part and method for manufacturing the same
JPH06267788A (en) Composite component
US20130219711A1 (en) Electronic component and selection method
JP2017143129A (en) Multilayer ceramic capacitor
US6776862B2 (en) Multilayered ceramic board, method for fabricating the same, and electronic device using multilayered ceramic board
KR20140139832A (en) Multi-layered ceramic electronic component and method of manufacturing the same
KR20190116162A (en) Mutilayered electronic component

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 15