KR20040021074A - MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same - Google Patents

MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same Download PDF

Info

Publication number
KR20040021074A
KR20040021074A KR1020020052515A KR20020052515A KR20040021074A KR 20040021074 A KR20040021074 A KR 20040021074A KR 1020020052515 A KR1020020052515 A KR 1020020052515A KR 20020052515 A KR20020052515 A KR 20020052515A KR 20040021074 A KR20040021074 A KR 20040021074A
Authority
KR
South Korea
Prior art keywords
photocatalyst
hydrogen
atom
precipitate
hydrogen generation
Prior art date
Application number
KR1020020052515A
Other languages
Korean (ko)
Inventor
박대철
백진욱
박양진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020020052515A priority Critical patent/KR20040021074A/en
Publication of KR20040021074A publication Critical patent/KR20040021074A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A mixed metal sulfide based photocatalyst used in manufacturing hydrogen from water by photoreaction is provided, a method for manufacturing the same is provided, and a method for manufacturing hydrogen using the same is provided. CONSTITUTION: The mixed metal sulfide based photocatalyst for generating hydrogen is characterized in that it has the following general formula 1: MxM1yS, where M is a metal selected from Al, Cu, Ag, Sn and Zn, M1 is a metal selected from Pb, Fe, Mo, Ag, Cu, Ni and Al, x for showing a mixing ratio represented in an atom% of M/(M+M1) has a value of 5.0 to 95.0, and y for showing a mixing ratio represented in an atom% of M1/(M+M1) has a value of 5.0 to 95.0.

Description

수소발생용 혼합 금속 설파이드계 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법 {MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same}Mixed-metal sulfide-based photocatalyst for hydrogen generation, method for producing same, and method for producing hydrogen using same {MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same}

본 발명은 수소발생용 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법에 관한 것으로, 보다 상세하기로는 물로부터 광반응으로 수소를 제조하는 데에 사용되는 혼합 금속 설파이드 광촉매 및 그 제조방법, 그리고 이를 이용한 수소의 제조방법에 관한 것이다.The present invention relates to a photocatalyst for generating hydrogen, a method for producing the same, and a method for producing hydrogen using the same, more specifically, a mixed metal sulfide photocatalyst used for producing hydrogen by photoreaction from water, and a method for producing the same. It relates to a method for producing hydrogen using the same.

수소는 암모니아, 메탄올 등의 제조원료로 사용되며, 포화화합물을 생성시키는 수소화반응의 필수원료이다. 동시에 수소 첨가반응, 탈황반응, 탈질소반응, 탈금속반응 등과 같은 수소처리공정에 사용되고 있으며, 특히 최근의 지구온난화의 주원인으로 주목받고 있는 이산화탄소의 고정화반응에서 필수적으로 사용되고 있다. 또한 수소는 청정한 대체에너지 가운데 하나로서, 저렴한 연료전지의 개발에 의한 연료전지의 주원료로 사용될 시 현재의 화석연료를 대체하는 미래의 에너지원으로 크게 기대되고 있다.Hydrogen is used as a raw material for ammonia, methanol, etc., and is an essential raw material for the hydrogenation reaction to produce a saturated compound. At the same time, it is used in hydrotreating processes such as hydrogenation, desulfurization, denitrification, and demetallization. In particular, it is essentially used in the immobilization of carbon dioxide, which has recently attracted attention as a major cause of global warming. In addition, hydrogen is one of the clean alternative energy, and it is expected to be a future energy source that replaces the current fossil fuel when used as the main raw material of the fuel cell by the development of a cheap fuel cell.

수소를 제조하는 종래의 방법들로는 나프타 및 천연가스와 같은 화석연료를 개질하여 수소를 제조하는 방법, 고온에서 철과 수증기를 접촉하는 방법, 알카리금속과 물을 반응시키는 방법 및 물의 전기분해방법 등을 들 수 있다.Conventional methods of producing hydrogen include a method of producing hydrogen by reforming fossil fuels such as naphtha and natural gas, a method of contacting iron and steam at high temperatures, a method of reacting alkali metals with water, and an electrolysis method of water. Can be mentioned.

그러나 상기 방법들은 근본적으로 많은 에너지를 필요로 하기 때문에 경제적이라 할 수 없으며, 특히 화석연료의 개질은 많은 량의 이산화탄소를 부생시키는 문제점이 있다. 또한, 물의 전기분해의 경우는 전극의 짧은 수명과 부생하는 산소의 처리가 항상 문제점으로 존재한다. 이와 같은 여러 가지 문제점들 때문에 실제 수소제조용 설비를 갖추기 위하여서는 많은 비용이 소요된다.However, the above methods are not economical because they require a lot of energy, and in particular, the reforming of fossil fuels has a problem of generating a large amount of carbon dioxide by-products. In addition, in the case of electrolysis of water, the short life of the electrode and the treatment of by-product oxygen always exist as problems. Due to these various problems, it is expensive to equip the actual hydrogen production facilities.

이러한 화석 연료에 의한 수소생산방법을 대체하기 위한 연구로서, 무한 청정한 태양에너지원을 이용하여 물을 직접 광분해 하여 차세대 청정 대체에너지원인 수소로 전환하는 방법의 개발은 가장 이상적인 환경 친화적 에너지 시스템의 확보이며, 핵심과학기술 분야 중의 하나이다.As a research to replace the hydrogen production method by fossil fuels, the development of a method of directly photolysis of water using hydrogen energy, which is infinitely clean, and converting it into hydrogen, a next-generation clean alternative energy source, is to secure an ideal environmentally friendly energy system. It is one of the core science and technology fields.

태양에너지의 새로운 전환은 여러 가지 방법과 수단으로 가능하며, 그 중의 하나가 여러 가지 광촉매 물질을 이용한 물의 광분해이며, 1972년 Honda와 Fujishima는 TiO2반도체 광촉매를 개발하면서(Nature, 37, 1972, 238.), 물의 광분해에 의한 태양광 에너지 변환의 가능성이 나타남에 따라 크게 이목을 집중하게 되었고, 그에 대한 연구는 발전을 계속하고 있다. 그러나 개발 초기엔 TiO2반도체전극과 백금 전극을 가진 photoelectrochemical cell에 광을 조사하여 물을 분해하는 방식으로 이 cell에서 발생한 전압이 물의 전기분해에 필요한 전압(1.23 V) 에는미치지 못함으로 0.25 V 정도의 외부전압을 걸어 물분해를 하였다.The new transformation of solar energy is possible in a number of ways and means, one of which is the photolysis of water using various photocatalytic materials, and in 1972 Honda and Fujishima developed TiO 2 semiconductor photocatalysts (Nature, 37, 1972, 238). As the possibility of photovoltaic energy conversion by photolysis of water emerges, the attention has been focused and research on it continues to develop. In the early stages of development, however, photoelectrochemical cells with TiO 2 semiconductor electrodes and platinum electrodes were irradiated with light to decompose water.The voltage generated in this cell did not reach the voltage required for electrolysis of water (1.23 V). The water was decomposed under an external voltage.

그보다 조금 진보된 단일산화물인 반도체 구조인 SrTiO3등도 개발되었으나, 수소발생효율이 너무 낮다 (5μmol/hr). 일본의 H. Arakawa 등은 Rh을 담지 시킨 Rh(0.3 wt %)-SrTiO3를 개발하여, 이를 Na2CO3수용액 상에 광반응시켜 수소발생효율을 48μmol/hr 까지 끌어올렸다(미국특허 제 5,262,023호).SrTiO 3 , a semiconductor structure that is a little more advanced than that, has been developed, but the hydrogen generation efficiency is too low (5 μmol / hr). In Japan, H. Arakawa et al. Developed Rh (0.3 wt%)-SrTiO 3 supporting Rh and photoreacted it in an aqueous solution of Na 2 CO 3 to increase the hydrogen generation efficiency to 48 μmol / hr (US Patent No. 5,262,023). number).

일본의 K. Domen 등은 기존의 TiO2나 SrTiO3보다 활성이 보다 우수한 K4Nb6O7나 Rb2La2TiO10등과 같은 Perovskite계 광촉매를 개발하여 물분해 활성을 수백 μmol/hr 수준으로 끌어올렸다(Chem. Mater. 1997, 9, 1063.). 최근에는 국내에서도 유사 연구가 시작되어 기존의 Perovskite보다 광효율이 보다 높은 신규 Perovskite계 물질을 개발하였으나(Journal of Catalysis, 2000, 40.), 아직까지 전술한 촉매들은 자외선 영역의 광원에서만 반응을 일으키고 있으며, 실제적으로 가시광선이 대부분인 태양광을 거의 이용할 수가 없으므로 수소제조기술을 실용화하는 광촉매로서는 한계가 있다고 할 수 있다.Japan's K. Domen et al. Developed Perovskite-based photocatalysts such as K 4 Nb 6 O 7 and Rb 2 La 2 TiO 10 , which are more active than conventional TiO 2 or SrTiO 3 , resulting in hydrolysis activity of several hundred μmol / hr. Up (Chem. Mater. 1997, 9, 1063.). Recently, similar research has been started in Korea, and a new Perovskite-based material with higher light efficiency than conventional Perovskite has been developed (Journal of Catalysis, 2000, 40.). However, the catalysts described above are only reacting in the ultraviolet light source. In reality, since photovoltaic light, which is mostly visible, is hardly available, it can be said that there is a limit as a photocatalyst for practical application of hydrogen production technology.

본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위한 것으로, 두 종류 이상의 상이한 금속이온 물질을 혼합시켜 가시광선영역에서 물분해 광촉매로서 이상적인 band gap energy를 가진 신규 혼합 금속 설파이드계 광촉매를 제공하는 것을 목적으로 한다.The present invention is to solve the above problems, and to provide a novel mixed metal sulfide-based photocatalyst having an ideal band gap energy as a water decomposition photocatalyst in the visible region by mixing two or more different metal ion materials. It is done.

본 발명의 다른 목적은 종래의 광촉매가 보인 가시광에 대한 제한적인 활성을 획기적으로 해결하여, 수소생성량이 현격히 증가된 수소발생용 광촉매를 제공하는 것이다.Another object of the present invention is to provide a hydrogen photocatalyst for generating hydrogen with a significant increase in the amount of hydrogen production by resolving the limited activity on visible light seen by conventional photocatalysts.

본 발명의 또 다른 목적은 높은 활성을 보이는 혼합 금속 설파이드계 광촉매의 신규 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a novel method for preparing a mixed metal sulfide-based photocatalyst showing high activity.

본 발명의 광촉매는 하기 일반식 I로 표시되며,The photocatalyst of the present invention is represented by the following general formula (I)

MxM'yS ------------------------------------------- 일반식 IM x M ' y S ------------------------------------------- General Equation I

(상기 일반식에서 M은 Al, Cu, Ag, Sn, Zn 중 선택된 금속이고, M'은 Pb, Fe, Mo, Ag, Cu, Ni, Al 중 선택된 금속이다. x는 M/(M+M')의 atom %로 표시된 혼합비를 나타낸 것으로 5.0 ∼ 95.0의 값을 갖는다. y는 M'/(M+M')의 atom %로 표시된 혼합비를 나타낸 것으로 5.0 ∼ 95.0의 값을 갖는다.)(In the general formula, M is a metal selected from Al, Cu, Ag, Sn, Zn, and M 'is a metal selected from Pb, Fe, Mo, Ag, Cu, Ni, Al. X is M / (M + M' ) Represents a mixing ratio expressed as atom%, and has a value of 5.0 to 95.0. Y represents a mixing ratio expressed as atom% of M '/ (M + M') and has a value of 5.0 to 95.0.)

본 발명의 광촉매의 제조방법은 상기 M의 atom %가 5.0 ∼ 95.0 그리고 M'의 atom %가 5.0 ∼ 95.0의 값을 갖도록 M 및 M'함유 화합물을 물에 용해한 후 여기에 반응물로 H2S 또는 Na2S를 M 및 M'와 S가 화학당량적으로 결합될 수 있도록 포화되게 가하고 저어서 MxM'yS침전물을 얻고, 이 침전물을 물로 세척하고 얻어진 세척된 침전물을 질소(기류)분위기하에서 진공건조시킨 다음, 이 MxM'yS침전물을 소성시키는 것으로 구성된다. 소성온도는 200 ∼ 600℃가 적절하며, 소성기간은 1.0 ∼ 12.0시간이 적절하다. 소성방법은 산화소성을 한 후 환원소성을 한다.Manufacturing method according to the present invention, the photocatalyst is the M of the atom% is 5.0 to 95.0, and M 'of the atom% is 5.0 to have a value of 95.0 M and M' containing compound was dissolved in water where the reaction with H 2 S or the Na 2 S was added saturated so that M and M 'and S could be combined chemically and stir to obtain M x M' y S precipitate, the precipitate was washed with water and the washed precipitate obtained was nitrogen (air) atmosphere. Drying under vacuum and then calcining this M x M ' y S precipitate. The firing temperature is suitably 200 to 600 ° C., and the firing period is suitably 1.0 to 12.0 hours. In the firing method, the oxide is fired and then reduced firing.

본 발명의 수소제조방법은 상기의 방법으로 제조된 광촉매를 환원제로서 Na2S 및 Na2SO3를 각각 가한 물에 현탁시키고 광필터(light filter)로 조정된 가시광선영역의 광 또는 자외광을 조사시키는 것을 특징으로 한다.In the hydrogen production method of the present invention, the photocatalyst prepared by the above method is suspended in water to which Na 2 S and Na 2 SO 3 are added as reducing agents, respectively, and the light or ultraviolet light in the visible region adjusted by a light filter is applied. It is characterized by irradiating.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

상기 일반식 I 중 M 및 M'은 각각의 설파이드 화합물이 반도체 광촉매이며, 그 중 M은 Al, Cu, Ag, Sn, Zn 중 선택된 금속이고 5.0 ∼ 95.0 atom %의 값을 갖는다. 그리고 M'은 Pb, Fe, Mo, Ag, Cu, Ni, Al 중 선택된 금속이고 5.0 ∼ 95.0 atom %의 값을 갖는다. M 및 M' 각각의 함량이 5.0 atom% 미만의 경우 나 95.0 atom%의 값을 초과하는 경우, 한 반도체 성분의 일방적인 부족 또는 과다로 인하여 혼합 반도체 광촉매가 물분해에 적합한 band gap energy를 가지지 못함과 동시에, 이들 혼합 촉매간의 전자전달이 원활하게 되지 않아 촉매의 반응활성이 감소되어 수소발생량이 저하되는 문제점이 있다.In Formula I, M and M 'each sulfide compound is a semiconductor photocatalyst, wherein M is a metal selected from Al, Cu, Ag, Sn, and Zn, and has a value of 5.0 to 95.0 atom%. M 'is a metal selected from among Pb, Fe, Mo, Ag, Cu, Ni, and Al, and has a value of 5.0 to 95.0 atom%. When the content of M and M 'is less than 5.0 atom% or exceeds the value of 95.0 atom%, the mixed semiconductor photocatalyst does not have a band gap energy suitable for water decomposition due to one-sided shortage or excess of one semiconductor component. At the same time, there is a problem that the electron transfer between these mixed catalysts is not smooth and the reaction activity of the catalyst is reduced and the amount of hydrogen generation is lowered.

M과 S 및 M'과 S의 적절한 혼합비는 S가 M 및 M'과 화학당량적으로 결합된 것이다.A suitable mixing ratio of M and S and M 'and S is that S is chemically equivalent to M and M'.

M을 함유한 화합물의 예로는 Al(NO3)3, AlCl3, Cu(NO3)2·3H2O, AgNO3, ZnCl2,ZnBr2, ZnI2, Zn(CH3CO2)2·xH2O, ZnSO4·xH2O, Zn(NO3)2·xH2O, SnCl2, SnBr2, SnI2및 Sn(No3)4등을 들 수 있으며, M'을 함유한 화합물의 예로는 Pb(NO3)2,Pb(CH3CO2)4, FeCl3, MoCl5, AgNO3, CuCl2,Cu(NO3)2·3H2O, NiCl2, Ni(NO3)2·6H2O, Al(NO3)3, AlCl3등을 들 수 있다.Examples of compounds containing M include Al (NO 3 ) 3 , AlCl 3 , Cu (NO 3 ) 2 · 3H 2 O, AgNO 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , Zn (CH 3 CO 2 ) 2 xH 2 O, ZnSO 4 · xH and the like 2 O, Zn (NO 3) 2 · xH 2 O, SnCl 2, SnBr 2, SnI 2 , and Sn (No 3) 4, in a compound containing a M ' Examples include Pb (NO 3 ) 2 , Pb (CH 3 CO 2 ) 4 , FeCl 3 , MoCl 5 , AgNO 3 , CuCl 2 , Cu (NO 3 ) 2 · 3H 2 O, NiCl 2 , Ni (NO 3 ) 2 6H 2 O, Al (NO 3 ) 3 , AlCl 3 , and the like.

광촉매 제조방법에 있어서, 상기한 방법으로 얻어진 MxM'yS침전물을 pH가 7이 될 때까지 물로 세척하며 105 ∼ 130℃에서 1.5 ∼ 3.0시간 진공 건조시킨 후, 이를 소성한다.In the photocatalyst production method, the M x M ' y S precipitate obtained by the above-described method is washed with water until the pH reaches 7, and then vacuum dried at 105 to 130 ° C for 1.5 to 3.0 hours, and then fired.

소성방법은 200 ∼ 600℃ 온도에서 1.0 ∼ 6.0시간 산화소성하고, 200 ∼ 600℃에서 1.0 ∼ 6.0시간 환원소성을 한다. 더욱 바람직한 소성온도는 320 ∼ 450℃이며, 이 범위를 벗어나는 경우 촉매의 수명과 활성이 감소하는 문제점이 있다.The firing method is oxidized and fired at a temperature of 200 to 600 ° C for 1.0 to 6.0 hours, and reduced to firing at 200 to 600 ° C for 1.0 to 6.0 hours. More preferred firing temperature is 320 ~ 450 ℃, if out of this range there is a problem that the life and activity of the catalyst is reduced.

본 발명의 수소제조방법은 이들 광촉매를 전자공여체로 Na2S를 0.15∼1.00몰, 환원제로 Na2SO3를 0.15∼1.00몰을 가한 일차 내지 이차 증류수 또는 단순히 전처리 한 물과 접촉, 현탁시키고 교반하면서 5∼85℃의 온도, 0.1∼3기압의 조건에서 자외광 및 광필터(light filter)로 조성된 가시광선영역의 광을 조사시킴으로써 광반응이 일어나게 함으로써 물로부터 수소를 높은 효율로 발생시킬 수 있다.In the hydrogen production method of the present invention, these photocatalysts are contacted, suspended and stirred with primary to secondary distilled water or 0.12 to 1.00 mol of Na 2 S as an electron donor and 0.15 to 1.00 mol of Na 2 SO 3 as a reducing agent. While irradiating light in the visible light region composed of ultraviolet light and a light filter at a temperature of 5 to 85 ° C. and a pressure of 0.1 to 3 atmospheres, a photoreaction occurs to generate hydrogen from water with high efficiency. have.

그리고 여기서 전자공여체와 환원제의 농도범위를 유지하는 것이 중요하며, 상기 범위 미만이면 수소생성량이 저하되고, 상기 범위를 초과하더라도 수소발생량은 증가하지 않는다. 반응조건은 10 ∼ 60℃의 온도와 진공 ∼ 2기압이 적당하다.And here it is important to maintain the concentration range of the electron donor and the reducing agent, the hydrogen production amount is lower than the above range, the hydrogen generation amount does not increase even if it exceeds the above range. As for reaction conditions, the temperature of 10-60 degreeC and a vacuum-2 atmosphere are suitable.

본 발명의 실시예는 다음과 같다.Embodiments of the present invention are as follows.

<제조실시예 1><Production Example 1>

하기 표 1과 같은 조성을 갖도록 Cu(NO3)2·3H2O 과 Pb(NO3)2를 증류수 200mL에 첨가 후, Cu 및 Pb와 S가 당량결합되도록 H2S gas로 2시간 동안 bubbling하여 Cu50Pb50S침전물을 얻었다. 이 침전물을 pH가 7이 될 때까지 물로 잘 세척한 다음, 130℃ 및 질소기류의 분위기에서 2시간 진공 건조하여 Cu50Pb50S분말을 얻었다. 이 건조된 Cu50Pb50S분말을 400℃에서 4시간 동안 산화분위기로 소성한 후 다시 4시간 동안 환원분위기에서 소성 하여 최종 Cu50Pb50S를 얻었다.Cu (NO 3 ) 2 · 3H 2 O and Pb (NO 3 ) 2 were added to 200 mL of distilled water to have a composition as shown in Table 1, and then bubbling with H 2 S gas for 2 hours so that Cu, Pb, and S were equivalently combined. Cu 50 Pb 50 S precipitate was obtained. The precipitate was washed well with water until pH reached 7, and then vacuum dried for 2 hours in an atmosphere of 130 ° C. and a nitrogen stream to obtain a Cu 50 Pb 50 S powder. The dried Cu 50 Pb 50 S powder was calcined in an oxidizing atmosphere at 400 ° C. for 4 hours and then calcined again in a reducing atmosphere for 4 hours to obtain final Cu 50 Pb 50 S.

<제조실시예 2><Production Example 2>

Pb(NO3)2대신에 FeCl3를 사용한 것을 제외하고는 제조실시예 1과 동일하게 시행하여 광촉매 Cu50Fe50S를 얻었다.Photocatalyst Cu 50 Fe 50 S was obtained in the same manner as in Preparation Example 1, except that FeCl 3 was used instead of Pb (NO 3 ) 2 .

<제조실시예 3><Production Example 3>

Cu(NO3)2·3H2O 와 Pb(NO3)2대신에AgNO3와 MoCl5를 사용한 것을 제외하고는 제조실시예 1과 동일하게 시행하여 광촉매 Ag50Mo50S를 얻었다.Photocatalyst Ag 50 Mo 50 S was obtained in the same manner as in Preparation Example 1, except that AgNO 3 and MoCl 5 were used instead of Cu (NO 3 ) 2 .3H 2 O and Pb (NO 3 ) 2 .

<제조실시예 4>Production Example 4

MoCl5대신에 FeCl3를 사용한 것을 제외하고는 제조실시예 3과 동일하게 시행하여 광촉매 Ag50Fe50S를 얻었다.Photocatalyst Ag 50 Fe 50 S was obtained in the same manner as in Preparation Example 3, except that FeCl 3 was used instead of MoCl 5 .

<제조실시예 5>Production Example 5

광촉매 제조 시 H2S 가스 대신에 Na2S를 사용한 것을 제외하고는 제조실시예 4과 동일하게 시행하여 광촉매 Ag50Fe50S를 얻었다.Photocatalyst Ag 50 Fe 50 S was obtained in the same manner as in Preparation Example 4 except that Na 2 S was used instead of H 2 S gas.

<제조실시예 6>Preparation Example 6

Pb(NO3)2대신에 Al(NO3)3를 사용한 것을 제외하고는 제조실시예 1과 동일하게 시행하여 광촉매 Al50Cu50S를 얻었다.Photocatalyst Al 50 Cu 50 S was obtained in the same manner as in Production Example 1, except that Al (NO 3 ) 3 was used instead of Pb (NO 3 ) 2 .

<제조실시예 7>Production Example 7

Cu(NO3)2·3H2O 대신에 Pb(NO3)2를 사용한 것을 제외하고는 제조실시예 6과 동일하게 시행하여 광촉매 Ag50Pb50S를 얻었다.Photocatalyst Ag 50 Pb 50 S was obtained in the same manner as in Production Example 6 except that Pb (NO 3 ) 2 was used instead of Cu (NO 3 ) 2 .3H 2 O.

<제조실시예 8>Production Example 8

Cu(NO3)2·3H2O 대신에 MoCl5를 사용한 것을 제외하고는 제조실시예 6과 동일하게 시행하여 광촉매 Ag50Mo50S를 얻었다.Photocatalyst Ag 50 Mo 50 S was obtained in the same manner as in Production Example 6, except that MoCl 5 was used instead of Cu (NO 3 ) 2 .3H 2 O.

<제조실시예 9 및 10>Preparation Examples 9 and 10

Mo의 함유량이 각각 10.0 atom % 및 5.0 atom %가 되도록 MoCl5를 첨가 한 것을 제외하고는 제조실시예 6과 동일하게 시행하여 광촉매 Ag90Mo10S 및 Ag95Mo5S를 얻었다.Photocatalysts Ag 90 Mo 10 S and Ag 95 Mo 5 S were obtained in the same manner as in Preparation Example 6, except that MoCl 5 was added so that the Mo content was 10.0 atom% and 5.0 atom%, respectively.

<제조실시예 11>Production Example 11

Cu(NO3)2·3H2O 과 Pb(NO3)2대신에ZnSO4·xH2O와 FeCl3를 사용한 것을 제외하고는 제조실시예 1과 동일하게 시행하여 광촉매 Zn95Fe5S를 얻었다.Photocatalyst Zn 95 Fe 5 S was prepared in the same manner as in Preparation Example 1 except that ZnSO 4 · xH 2 O and FeCl 3 were used instead of Cu (NO 3 ) 2 · 3H 2 O and Pb (NO 3 ) 2 . Got it.

<제조실시예 12 및 13>Production Examples 12 and 13

FeCl3대신에 Pb(NO3)2를 사용하였고, Pb의 함유량이 각각 20.0 atom % 및 5.0 atom %가 되도록 Pb(NO3)2를 첨가 한 것을 제외하고는 제조실시예 11과 동일하게 시행하여 광촉매 Zn80Pb20S 및 Zn95Pb5S를 얻었다.Pb (NO 3 ) 2 was used in place of FeCl 3 , and Pb (NO 3 ) 2 was added in the same manner as in Preparation Example 11 except that Pb was added in an amount of 20.0 atom% and 5.0 atom%, respectively. The photocatalysts Zn 80 Pb 20 S and Zn 95 Pb 5 S were obtained.

<제조실시예 14>Preparation Example 14

FeCl3대신에 Al(NO3)3를 사용한 것을 제외하고는 제조실시예 11과 동일하게 시행하여 광촉매 Zn50Al50S를 얻었다.Photocatalyst Zn 50 Al 50 S was obtained in the same manner as in Example 11, except that Al (NO 3 ) 3 was used instead of FeCl 3 .

<제조실시예 15>Preparation Example 15

FeCl3대신에 Ni(NO3)2·6H2O를 사용한 것을 제외하고는 제조실시예 11과 동일하게 시행하여 광촉매 Zn95Ni5S를 얻었다.Photocatalyst Zn 95 Ni 5 S was obtained in the same manner as in Example 11, except that Ni (NO 3 ) 2 .6H 2 O was used instead of FeCl 3 .

<제조실시예 16>Production Example 16

Cu(NO3)2·3H2O 과 Pb(NO3)2대신에SnCl2와 MoCl5를 사용한 것을 제외하고는 제조실시예 1과 동일하게 시행하여 광촉매 Sn95Mo5S를 얻었다.Photocatalyst Sn 95 Mo 5 S was obtained in the same manner as in Preparation Example 1, except that SnCl 2 and MoCl 5 were used instead of Cu (NO 3 ) 2 .3H 2 O and Pb (NO 3 ) 2 .

<제조실시예 17>Preparation Example 17

MoCl5대신에 AgNO3를 사용한 것을 제외하고는 제조실시예 16과 동일하게 시행하여 광촉매 Sn50Ag50S를 얻었다.Photocatalyst Sn 50 Ag 50 S was obtained in the same manner as in Preparation Example 16, except that AgNO 3 was used instead of MoCl 5 .

<제조실시예 18 ∼ 19>Production Examples 18 to 19

MoCl5대신에 Cu(NO3)2·3H2O를 사용하였고, Cu의 함유량이 각각 50.0 atom % 및 5.0 atom % 가 되도록 Cu(NO3)2·3H2O를 첨가 한 것을 제외하고는 제조실시예 16과 동일하게 시행하여 광촉매 Sn50Cu50S, Sn95Cu5S를 얻었다.Cu (NO 3 ) 2 · 3H 2 O was used in place of MoCl 5, except that Cu (NO 3 ) 2 · 3H 2 O was added so that the Cu content was 50.0 atom% and 5.0 atom%, respectively. Photocatalyst Sn 50 Cu 50 S and Sn 95 Cu 5 S were obtained in the same manner as in Example 16.

<비교제조예 1><Comparative Production Example 1>

촉매를 질소기류 하에서 진공건조시키는 대신에 공기 중에서 130oC의 온도로 건조시킨 것을 제외하고는 제조실시예 6과 동일하게 시행하여 광촉매 Al50Cu50S를 얻었다.A photocatalyst Al 50 Cu 50 S was obtained in the same manner as in Preparation Example 6 except that the catalyst was dried in air at a temperature of 130 ° C. instead of vacuum drying under a nitrogen stream.

<비교제조예 2><Comparative Production Example 2>

촉매제조 시 400℃에서 4시간 동안 산화분위기로 소성한 후 다시 4시간 동안 환원분위기에서 소성 하는 공정을 생략한 것을 제외하고는 제조실시예 14과 동일하게 시행하여 광촉매 Zn50Al50S를 얻었다.The catalyst was prepared in the same manner as in Preparation Example 14 except that the baking was carried out in an oxidation atmosphere at 400 ° C. for 4 hours and then in the reducing atmosphere for 4 hours, thereby obtaining a photocatalyst Zn 50 Al 50 S.

<비교제조예 3><Comparative Production Example 3>

촉매제조 시 150℃에서 각각 4시간 동안 산화분위기로 소성한 후 다시 4시간 동안 환원분위기에서 소성 하는 공정을 제외하고는 제조실시예 13과 동일하게 시행하여 광촉매 Zn95Ni5S를 얻었다.The catalyst was prepared in the same manner as in Preparation Example 13 except for calcining in an oxidizing atmosphere at 150 ° C. for 4 hours and then in a reducing atmosphere for 4 hours to obtain a photocatalyst Zn 95 Ni 5 S.

<비교제조예 4><Comparative Production Example 4>

촉매제조 시 700℃에서 각각 4시간 동안 산화분위기로 소성한 후 다시 4시간 동안 환원분위기에서 소성 하는 공정을 제외하고는 제조실시예 13과 동일하게 시행하여 광촉매 Zn95Pb5S를 얻었다.A catalyst was prepared in the same manner as in Preparation Example 13 except that the catalyst was calcined in an oxidizing atmosphere at 700 ° C. for 4 hours and then calcined in a reducing atmosphere for 4 hours to obtain a photocatalyst Zn 95 Pb 5 S.

<비교제조예 5><Comparative Production Example 5>

Cu의 함유량이 1.0 atom %가 되도록 Cu(NO3)2·3H2O를 첨가 한 것을 제외하고는 제조실시예 16과 동일하게 시행하여 광촉매 Sn99Cu1S를 얻었다.Photocatalyst Sn 99 Cu 1 S was obtained in the same manner as in Production Example 16, except that Cu (NO 3 ) 2 .3H 2 O was added so that the Cu content was 1.0 atom%.

<실시예 1 ∼ 19> 및 <비교예 1∼5><Examples 1-19> and <Comparative Examples 1-5>

제조실시예 1∼19 및 제조비교예 1∼5에 의하여 얻어진 광촉매 1.0g을 Na2S 농도가 0.24 M, Na2SO3농도가 0.36 M인 수용액 500mL에 넣고 현탁하여 폐쇄기체순환계 광반응장치에 넣고 교반하면서, 상온, 상압에서 500w Xe lamp 또는 450w Hg lamp 및 광 filter로 조성된 광을 조사하여 발생한 수소의 량을 가스 Gas Chromatography(5A molecular sieve, 1/8 X 2m) 및 Gas Burette으로 정량분석 하였으며, 그 결과는 아래의 표1과 같았다.1.0 g of the photocatalysts obtained in Production Examples 1 to 19 and Comparative Examples 1 to 5 were added to 500 mL of an aqueous solution having a Na 2 S concentration of 0.24 M and a Na 2 SO 3 concentration of 0.36 M, and suspended in a closed gas circulation system. While stirring and stirring, the amount of hydrogen generated by irradiating light composed of 500w Xe lamp or 450w Hg lamp and light filter at room temperature and atmospheric pressure was quantitatively analyzed by gas gas chromatography (5A molecular sieve, 1/8 X 2m) and gas burette. The results are shown in Table 1 below.

[표1]Table 1

구분division 촉 매catalyst 발생기체의 양(??mol/gr.cat.hr)Amount of gas generated ( ?? mol / gr.cat.hr) 비 고Remarks 실시예 1Example 1 Cu50Pb50SCu 50 Pb 50 S 777777 실시예 2Example 2 Cu50Fe50SCu 50 Fe 50 S 741741 실시예 3Example 3 Ag50Mo50SAg 50 Mo 50 S 804804 실시예 4Example 4 Ag50Fe50SAg 50 Fe 50 S 669669 실시예 5Example 5 Ag50Fe50SAg 50 Fe 50 S 419419 Na2S를 사용하여촉매를 제조하였음Catalysts were prepared using Na 2 S 실시예 6Example 6 Al50Cu50SAl 50 Cu 50 S 830830 실시예 7Example 7 Al50Pb50SAl 50 Pb 50 S 768768 실시예 8Example 8 Al50Mo50SAl 50 Mo 50 S 527527 실시예 9Example 9 Al90Mo10SAl 90 Mo 10 S 438438 실시예 10Example 10 Al95Mo5SAl 95 Mo 5 S 268268 비교예 1Comparative Example 1 Al50Cu50SAl 50 Cu 50 S 6565 공기중 건조Air drying 실시예 11Example 11 Zn95Fe5SZn 95 Fe 5 S 402402 Na2S를 사용하여촉매를 제조하였음Catalysts were prepared using Na 2 S 실시예 12Example 12 Zn80Pb20SZn 80 Pb 20 S 16251625 실시예 13Example 13 Zn95Pb5SZn 95 Pb 5 S 688688 실시예 14Example 14 Zn50Al50SZn 50 Al 50 S 24462446 실시예 15Example 15 Zn95Ni5SZn 95 Ni 5 S 732732 Na2S를 사용하여촉매를 제조하였음Catalysts were prepared using Na 2 S 비교예 2Comparative Example 2 Zn50Al50SZn 50 Al 50 S 153153 미소성Unsung 비교예 3Comparative Example 3 Zn95Ni5SZn 95 Ni 5 S 7878 150oC 산화, 환원 소성150 o C oxidation, reduction firing 비교예 4Comparative Example 4 Zn95Pb5SZn 95 Pb 5 S 3535 700oC 산화, 환원 소성700 o C oxidation, reduction firing

구분division 촉 매catalyst 발생기체의 양(??mol/gr.cat.hr)Amount of gas generated ( ?? mol / gr.cat.hr) 비 고Remarks 실시예 16Example 16 Sn95Mo5SSn 95 Mo 5 S 276276 실시예 17Example 17 Sn50Ag50SSn 50 Ag 50 S 268268 실시예 18Example 18 Sn50Cu50SSn 50 Cu 50 S 270270 실시예 19Example 19 Sn95Cu5SSn 95 Cu 5 S 420420 비교예 5Comparative Example 5 Sn99Cu1SSn 99 Cu 1 S 116116

상기의 실시예 및 비교예에 의하여 확인되는 바와 같이, 본 발명의 광촉매는 두 종류 이상의 상이한 금속이온 물질을 포함하고있는 혼합 금속 설파이드계 광촉매이며, 가시광선영역에서 물분해 광촉매로서 이상적인 band gap energy를 가진 신규 반도체 광촉매이다. 이 광촉매는 종래의 이들 촉매의 단점인 가시광 이용효율이 높고, 또한 최대 촉매활성을 나타내는 MxM'yS계 촉매의 최적 M과 M'의 조성비율 및 반응조건의 확립으로 물분해에 의한 수소발생량이 종래의 방법보다 현저히 증가하였다.As confirmed by the above examples and comparative examples, the photocatalyst of the present invention is a mixed metal sulfide-based photocatalyst including two or more different metal ion materials, and has an ideal band gap energy as a hydrolysis photocatalyst in the visible ray region. It is a novel semiconductor photocatalyst. This photocatalyst has a high disadvantages of the visible light utilization efficiency of the prior art of these catalysts, and hydrogen by water decomposition in the establishment of the M x M 'y S system optimal M and M of the catalyst, the composition ratio and the reaction conditions exhibits the maximum catalytic activity The amount of generation was significantly higher than that of the conventional method.

Claims (6)

하기의 일반식 I를 가지는 것을 특징으로 하는 수소발생용 혼합 금속 설파이드계 광촉매.A mixed metal sulfide-based photocatalyst for hydrogen generation, having the following general formula (I). MxM'yS ------------------------------------------- 일반식 IM x M ' y S ------------------------------------------- General Equation I (상기 일반식에서 M은 Al, Cu, Ag, Sn, Zn 중 선택된 금속이고, M'은 Pb, Fe, Mo, Ag, Cu, Ni, Al 중 선택된 금속이다. x는 M/(M+M')의 atom %로 표시된 혼합비를 나타낸 것으로 5.0 ∼ 95.0의 값을 갖는다. y는 M'/(M+M')의 atom %로 표시된 혼합비를 나타낸 것으로 5.0 ∼ 95.0의 값을 갖는다.)(In the general formula, M is a metal selected from Al, Cu, Ag, Sn, Zn, and M 'is a metal selected from Pb, Fe, Mo, Ag, Cu, Ni, Al. X is M / (M + M' ) Represents a mixing ratio expressed as atom%, and has a value of 5.0 to 95.0. Y represents a mixing ratio expressed as atom% of M '/ (M + M') and has a value of 5.0 to 95.0.) 제 1항 기재의 M의 atom %가 5.0 ∼ 95.0, 그리고 M'의 atom %가 5.0 ∼ 95.0의 값을 갖도록 M 및 M'함유 화합물을 물에 용해한 후 여기에 반응물로 H2S 또는 Na2S를 충분히 가하고 저어서 MxM'yS침전물을 얻고, 이 침전물을 물로 세척하고 얻어진 세척된 침전물을 질소(기류)분위기하에서 진공건조시킨 다음, 이 MxM'yS침전물을 200 ∼ 600℃에서 1.0 ∼ 6.0시간 산화소성하고, 200∼600℃에서 1.0 ∼ 6.0시간 환원소성 시키는 것을 특징으로 하는 수소발생용 혼합 금속 설파이드계 광촉매의 제조방법.The M and M'-containing compounds are dissolved in water so that the atom% of M described in claim 1 has a value of 5.0 to 95.0, and the atom% of M 'is 5.0 to 95.0, and then H 2 S or Na 2 S is used as a reactant. After sufficiently adding and stirring to obtain an M x M ' y S precipitate, the precipitate was washed with water and the resulting washed precipitate was dried in vacuo under a nitrogen (air) atmosphere, and the M x M' y S precipitate was subjected to 200 to 600 ° C. A method for producing a mixed metal sulfide-based photocatalyst for hydrogen generation, characterized in that the oxide is calcined at 1.0 to 6.0 hours in a reduction furnace and reduced-fired at 200 to 600 ° C for 1.0 to 6.0 hours. 제 2항에 있어서, M을 함유한 화합물은 Al(NO3)3, AlCl3, Cu(NO3)2·3H2O, AgNO3, ZnCl2, ZnBr2, ZnI2, Zn(CH3CO2)2·xH2O, ZnSO4·xH2O 및 Zn(NO3)2·xH2O, SnCl2, SnBr2, SnI2, Sn(No3)4를 포함하는 것을 특징으로 하는 수소발생용 혼합 금속 설파이드계 광촉매의 제조방법.The compound of claim 2 wherein the compound containing M is Al (NO 3 ) 3 , AlCl 3 , Cu (NO 3 ) 2 · 3H 2 O, AgNO 3 , ZnCl 2 , ZnBr 2 , ZnI 2 , Zn (CH 3 CO 2 ) Hydrogen generation, characterized in that it comprises 2 · xH 2 O, ZnSO 4 · xH 2 O and Zn (NO 3 ) 2 · xH 2 O, SnCl 2 , SnBr 2 , SnI 2 , Sn (No 3 ) 4 Method for producing a mixed metal sulfide-based photocatalyst for use. 제 2항에 있어서, M'을 함유한 화합물은 Pb(NO3)2,Pb(CH3CO2)4, FeCl3, MoCl5, AgNO3, CuCl2,Cu(NO3)2·3H2O, Al(NO3)3, AlCl3, NiCl2, Ni(NO3)2를 포함하는 것을 특징으로 하는 수소발생용 혼합 금속 설파이드계 광촉매의 제조방법.The compound of claim 2, wherein the compound containing M ′ is Pb (NO 3 ) 2 , Pb (CH 3 CO 2 ) 4 , FeCl 3 , MoCl 5 , AgNO 3 , CuCl 2 , Cu (NO 3 ) 2 · 3H 2 A method for producing a mixed metal sulfide-based photocatalyst for hydrogen generation, comprising O, Al (NO 3 ) 3 , AlCl 3 , NiCl 2 , Ni (NO 3 ) 2 . 제 1항 기재의 광촉매를 환원제로 Na2SO3를 0.05 ∼ 1.00몰, 전자공여체로 Na2S를 0.05 ∼ 1.00몰을 가한 물과 접촉, 현탁시키고 교반하면서 자외광 또는 광필터(light flter)로 조정된 가시광선 영역의 광을 조사하여 반응시키는 것을 특징으로 하는 광촉매를 이용한 수소발생방법.The photocatalyst according to claim 1 is contacted with water added with 0.05 to 1.00 mol of Na 2 SO 3 as a reducing agent and 0.05 to 1.00 mol of Na 2 S with an electron donor, suspended and stirred with ultraviolet light or a light filter. Hydrogen generation method using a photocatalyst, characterized in that for reacting the irradiation in the adjusted visible light region. 제 5항에 있어서, 반응조건은 10∼60℃의 온도 및 진공∼2기압인 것을 특징으로 하는 광촉매를 이용한 수소발생방법.The method of generating hydrogen using a photocatalyst according to claim 5, wherein the reaction conditions are a temperature of 10 to 60 DEG C and a vacuum to 2 atm.
KR1020020052515A 2002-09-02 2002-09-02 MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same KR20040021074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020052515A KR20040021074A (en) 2002-09-02 2002-09-02 MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020052515A KR20040021074A (en) 2002-09-02 2002-09-02 MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same

Publications (1)

Publication Number Publication Date
KR20040021074A true KR20040021074A (en) 2004-03-10

Family

ID=37325304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020052515A KR20040021074A (en) 2002-09-02 2002-09-02 MxM'yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same

Country Status (1)

Country Link
KR (1) KR20040021074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843172B2 (en) * 2018-09-17 2020-11-24 Korea Institute Of Science And Technology Catalyst for electrochemical ammonia synthesis and method for producing the same
WO2020260065A1 (en) * 2019-06-28 2020-12-30 IFP Energies Nouvelles Method for the photocatalytic production of h2 using a microporous crystalline metal sulfide photocatalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936545A (en) * 1982-07-21 1984-02-28 チバ−ガイギ−・アクチエンゲゼルシヤフト Production of hydrogen by non-uniform photo-redox catalyst and new catalyst used therein
JPS59128339A (en) * 1983-01-05 1984-07-24 Shozo Yanagida Photocatalyst reaction using zinc sulfide
US4484992A (en) * 1981-02-04 1984-11-27 Ciba-Geigy Corporation Process for the production of hydrogen by means of heterogeneous photoredox catalysis
JPS62277151A (en) * 1986-05-23 1987-12-02 Agency Of Ind Science & Technol Production of hydrogen generating powdery photocatalyst
KR100301281B1 (en) * 1999-06-18 2001-09-13 김충섭 The Manufacturing Method of CdS Photocatalyst for Hydrogen Production and Method for Producing Hydrogen by use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484992A (en) * 1981-02-04 1984-11-27 Ciba-Geigy Corporation Process for the production of hydrogen by means of heterogeneous photoredox catalysis
JPS5936545A (en) * 1982-07-21 1984-02-28 チバ−ガイギ−・アクチエンゲゼルシヤフト Production of hydrogen by non-uniform photo-redox catalyst and new catalyst used therein
JPS59128339A (en) * 1983-01-05 1984-07-24 Shozo Yanagida Photocatalyst reaction using zinc sulfide
JPS62277151A (en) * 1986-05-23 1987-12-02 Agency Of Ind Science & Technol Production of hydrogen generating powdery photocatalyst
KR100301281B1 (en) * 1999-06-18 2001-09-13 김충섭 The Manufacturing Method of CdS Photocatalyst for Hydrogen Production and Method for Producing Hydrogen by use of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10843172B2 (en) * 2018-09-17 2020-11-24 Korea Institute Of Science And Technology Catalyst for electrochemical ammonia synthesis and method for producing the same
WO2020260065A1 (en) * 2019-06-28 2020-12-30 IFP Energies Nouvelles Method for the photocatalytic production of h2 using a microporous crystalline metal sulfide photocatalyst
FR3097854A1 (en) * 2019-06-28 2021-01-01 IFP Energies Nouvelles H2 PHOTOCATALYTIC PRODUCTION PROCESS IMPLEMENTING A MICROPOREOUS CRYSTALLIZED METAL SULPHIDE PHOTOCATALYZER

Similar Documents

Publication Publication Date Title
KR100304349B1 (en) Photocatalyst for generating cadmium sulfide hydrogen and its production method and hydrogen production method using the same
KR100342856B1 (en) CdZnMS photocatalyst added with cation for water decomposition and preparation there for and method for producing hydrogen by use of the same
US6077497A (en) ZnS photocatalyst, preparation therefor and method for producing hydrogen by use of the same
CN112023938B (en) Bimetallic ion doped nano composite photocatalyst and preparation method thereof
WO2002062467A1 (en) Oxysulfide photocatalyst for use in decomposition of water by visible light
JP3586242B2 (en) Method for producing cadmium sulfide-based photocatalyst for hydrogen generation and method for producing hydrogen thereby
CN112473712A (en) CeO treated with different atmospheres2/g-C3N4Heterojunction material, preparation method and application thereof
CN113351210A (en) Cu-based catalyst and application thereof in photocatalytic water hydrogen production-5-HMF oxidation coupling reaction
EP0863799B1 (en) Novel photocatalyst, preparation therefor and method for producing hydrogen using the same
JP3421628B2 (en) Photocatalyst manufacturing method
CN112958130A (en) Catalyst for photocatalysis and preparation method and application thereof
CN115532298B (en) Preparation method of diatomic cluster photocatalyst
KR100288647B1 (en) Zinc sulfide-producing photocatalyst for producing hydrogen and its production method, and hydrogen production method using the same
KR20040021074A (en) MxM&#39;yS Photocatalyst for Hydrogen Production and Preparation Thereof and Method for Producing Hydrogen Use of the Same
KR100486388B1 (en) MyM&#39;zS Photocatalys Supported by Semiconductor Particle and Preparation Thereof and Method Producing Hydrogen by Use of the Same
CN112007663B (en) MoS2@CrOx/La,Al-SrTiO3/CoOOH photocatalyst and preparation method thereof
CN114534746A (en) Photocatalytic hydrogen production system based on heterojunction photocatalyst and formaldehyde aqueous solution
JP2876524B2 (en) Light energy conversion method
KR100598862B1 (en) Novel metal oxide-based photocatalysts for photocatalytic decomposion of hydrogen sulfide, and Claus process-substituting method using the photocatalysts
KR100764891B1 (en) Novel visible light metal oxide photocatalysts for photocatalytic decomposion of hydrogen sulfide, and photohydrogen production method under visible light irradiation using the photocatalysts
JP2004066028A (en) Visible light-responsive indium-barium compound oxide photocatalyst, method of producing hydrogen using the photocatalyst, and method for decomposing harmful chemical substance using photocatalyst
JP3421627B2 (en) Method for producing photocatalyst for zinc sulfide based hydrogen generation
KR102491167B1 (en) Preparing method of linear carbonate compounds
JP5358212B2 (en) Hydrogen production method
CN117019195A (en) g-C 3 N 4 /NiS/TiO 2 Preparation method of ternary composite photocatalytic material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application