KR20040016035A - Degradation method of waste-polymr using ozone - Google Patents

Degradation method of waste-polymr using ozone Download PDF

Info

Publication number
KR20040016035A
KR20040016035A KR1020020048225A KR20020048225A KR20040016035A KR 20040016035 A KR20040016035 A KR 20040016035A KR 1020020048225 A KR1020020048225 A KR 1020020048225A KR 20020048225 A KR20020048225 A KR 20020048225A KR 20040016035 A KR20040016035 A KR 20040016035A
Authority
KR
South Korea
Prior art keywords
waste
ozone
decomposition
polymer
waste polymer
Prior art date
Application number
KR1020020048225A
Other languages
Korean (ko)
Inventor
김영철
김아영
박남국
신재순
Original Assignee
대한민국(전남대학교총장)
김영철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(전남대학교총장), 김영철 filed Critical 대한민국(전남대학교총장)
Priority to KR1020020048225A priority Critical patent/KR20040016035A/en
Publication of KR20040016035A publication Critical patent/KR20040016035A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE: A method for degrading the waste polymer is provided, to degrade the waste polymer into small molecules by using ozone without using an expensive catalyst or without pyrolysis. CONSTITUTION: The method comprises the steps of dissolving the waste polymer in a solvent; and injecting ozone at a high temperature to degrade the waste polymer into small molecules. The waste polymer is the thermoplastic polymer generated from the plastic industry as by-products. Preferably the solvent is selected from the group consisting of ethylene glycol, diethylene glycol, 1,4-butanediol, methanol, water and trichlorobenzene; the reaction is performed at a temperature of 110-150 deg.C for 1-6 hours, and the concentration of ozone is 50-1,000 ppm based on 1 g of the waste polymer. Preferably the small molecules have a molecular weight of 50-35,000 Dalton.

Description

오존을 이용한 폐고분자의 분해방법{DEGRADATION METHOD OF WASTE-POLYMR USING OZONE}Decomposition of Waste Polymer Using Ozone {DEGRADATION METHOD OF WASTE-POLYMR USING OZONE}

본 발명은 폐고분자를 용매에 용해시킨 후 강력한 산화제인 오존을 첨가하여 저분자로 분해시키는 폐고분자의 분해방법에 관한 것이다.The present invention relates to a method of decomposing waste polymers by dissolving the waste polymers in a solvent and then decomposing them into low molecules by adding ozone, a powerful oxidizing agent.

지금까지 폐고분자는 매립하거나 소각하는 방법으로 처리하여 왔으나, 쉽게 분해되지 않기 때문에 매립지 확보가 어렵고 매립하면 토양을 오염시키기 때문에 이런 폐기방법은 적절하지 않고, 소각시켜 폐기하면 소각과정에서 발생하는 열을 일부 회수할 수 있으나, 유독성 기체 발생으로 대기를 오염시킬 수 있다. 이런 관점에서 폐고분자 물질을 분쇄하거나 용융시켜 다시 제품화하는 단순 재활용 방법은공해발생도 적고 자원을 효과적으로 재활용한다는 측면에서 매우 바람직하다. 대부분의 고분자 물질은 탄소와 수소로 이루어진 탄화수소이므로, 이들을 분해시켜서 저분자의 탄화수소 혼합물로 전환시킬 수 있다.Until now, waste polymer has been treated by landfilling or incineration, but since it is not easily decomposed, it is difficult to secure landfill and pollutes soil when landfilling is not appropriate. Some can be recovered, but polluting the atmosphere with the generation of toxic gases. From this point of view, a simple recycling method for pulverizing, melting and re-producting waste polymer materials is very desirable in terms of low pollution and efficient recycling of resources. Since most polymeric materials are hydrocarbons consisting of carbon and hydrogen, they can be broken down and converted to low molecular weight hydrocarbon mixtures.

고분자 물질을 분해시키는 방법으로는 열을 가하여 높은 온도에서 분해시키는 열분해와, 촉매를 사용하여 낮은 온도에서 특정 범위의 생성물을 얻는 촉매분해가 있다. 열분해공정은 조작이 용이하나, 에너지 소요가 많고, 메탄과 에탄 등 저급 탄화수소가 많이 생성되어 생성물의 경제적 가치가 낮다. 이에 비해 촉매분해공정은 낮은 온도에서 진행되므로 에너지 소요량이 적고, 생성물 분포를 어느 정도 제어할 수 있다는 장점이 있다. 그러나 사용 중 촉매의 활성이 저하되고 공정 조작이 복잡하다는 단점이 있다.Methods of decomposing the polymer material include pyrolysis which decomposes at high temperature by applying heat, and catalytic decomposition which uses a catalyst to obtain a specific range of products at low temperature. The pyrolysis process is easy to operate, but requires a lot of energy, and generates a lot of lower hydrocarbons such as methane and ethane, and thus the economic value of the product is low. On the other hand, since the catalytic decomposition process is performed at a low temperature, the energy requirement is small and the product distribution can be controlled to some extent. However, there are disadvantages in that the activity of the catalyst is lowered during use and the process operation is complicated.

기존의 고분자물질의 분해공정은 촉매와 첨가제를 사용하고 뒤에 회수공정이 필요하고 많은 시간이 걸린다. 예를 들어 폴리스틸렌, 폴리에틸렌테레프탈레이트 등의 고분자물질의 분해처리기술은 액체 용매(메탄올, 에틸렌글리콜 등)와 4-5시간 이상의 긴 반응시간 그리고 촉매가 필요하다는 단점이 있었다.The decomposition process of the existing polymer materials uses catalysts and additives, and then requires a recovery process and takes a lot of time. For example, the decomposition treatment technology of polymer materials such as polystyrene and polyethylene terephthalate has a disadvantage of requiring a liquid solvent (methanol, ethylene glycol, etc.), a long reaction time of 4-5 hours or more, and a catalyst.

한편, 오존은 자연계에서 불소 다음으로 강력한 산화력을 가진 가스로 이미 오존을 사용하여 특정유해물질(도금폐수)의 폐수처리방법, 유기 및 무기합성류 폐수(특히 제약회사에서 방출되는)의 처리방법, 상수도 살균처리방법 그리고 축사, 계사 및 돈사와 같은 가축사에서 발생하는 악취 및 병원균의 살균 및 예방에 다양하게 시도되었다. 그러나 아직까지 고분자의 분해에 사용하는 연구는 이루어진 바가 없다.On the other hand, ozone is the second strongest oxidizing gas after fluoride in nature, and already uses ozone to treat wastewater of certain harmful substances (plating wastewater), to treat organic and inorganic synthetic wastewater (especially from pharmaceutical companies), Various attempts have been made to disinfect water and sterilize and prevent odors and pathogens from livestock, such as barns, houses and pigs. However, no research has been done on the decomposition of polymers.

본 발명자들은 오존을 이용하여 폐고분자의 분해에 적용함으로써 촉매가 없어도 모노머 수준으로 분해되고 반응온도 및 반응시간을 단축시키기 위하여 다각도로 연구를 수행하였다. 이에, 폐고분자를 분쇄하여 용매에 녹인 후 일정 온도 이상에서 오존으로 처리하게 되면 폐고분자의 분해가 진행됨을 알아내고, 최적의 조건을 얻기 위하여 연구를 진행시켰다. 그결과, 폐고분자의 함량, 오존의 농도, 반응온도 및 반응시간, 용매의 최적의 조건을 제시할 수 있게 되었다.By applying ozone to the decomposition of waste polymers, the present inventors have conducted various studies to decompose to monomer level without a catalyst and to shorten reaction temperature and reaction time. Therefore, when the waste polymer was pulverized and dissolved in a solvent and treated with ozone at a predetermined temperature or more, it was found that the decomposition of the waste polymer proceeded, and the study was conducted to obtain the optimal conditions. As a result, it is possible to suggest the content of waste polymer, the concentration of ozone, the reaction temperature and reaction time, and the optimum conditions of the solvent.

본 발명의 목적은 폐고분자를 저분자로 전환하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for converting waste polymers into low molecules.

또한 본 발명의 또다른 목적은 저온에서 고수율로 저분자로의 전환방법을 제공하는 것이다,Still another object of the present invention is to provide a method for converting low molecular weight molecules at low temperatures and high yields.

또한 본 발명의 또다른 목적은 폐고분자의 재활용 방법을 제공하는 것이다.It is another object of the present invention to provide a recycling method of waste polymers.

도 1a내지1d는 온도에 따른 폐고분자의 분해율을 보여주는 그래프. 1a to 1d are graphs showing the decomposition rate of spent polymers with temperature.

도 2는 폐고분자의 함량에 따른 분해율을 보여주는 그래프. 2 is a graph showing the decomposition rate according to the content of the waste polymer.

도 3은 오존의 농도에 따른 폐고분자의 분해율을 보여주는 그래프. 3 is a graph showing the decomposition rate of the waste polymer according to the concentration of ozone.

본 발명은 적당한 크기로 분쇄된 폐고분자를 용매에 용해시킨 후, 강력한 산화제인 오존을 주입하여 상기 폐고분자를 저분자로 분해하는 방법을 제공한다.The present invention provides a method for dissolving the waste polymer to a low molecule by dissolving the waste polymer pulverized to a suitable size in a solvent, and then injecting ozone, a powerful oxidizing agent.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 폐고분자를 분해하는데 있어 고온에서 열분해하거나 촉매를 사용하는 대신 강력한 산화제인 오존을 사용하는 방법을 채택하고 있다.The present invention adopts a method of using ozone, a powerful oxidizing agent, instead of pyrolyzing at high temperature or using a catalyst to decompose waste polymers.

이하 명세서 전반에 걸쳐 언급되는 '폐고분자'는 플라스틱 공업에서 부산물로 발생되는 모든 폐고분자를 의미하며, 그 종류를 한정하지는 않으며, 바람직하기로는 용매에 용해가 가능한 열가소성 고분자를 사용한다. 일예로, 폴리에틸렌, 폴리프로필렌, 등의 폴리올레핀계 범용 수지; 폴리우레탄, 폴리스틸렌, 폴리에틸렌테레프탈레이트 (PET), 폴리부틸렌테레프탈레이트 (PBT), 폴리프로필렌 등 사용이 가능하다.As used throughout the specification, 'waste polymer' refers to all waste polymers generated as by-products in the plastics industry, and does not limit the type thereof, and preferably uses a thermoplastic polymer that can be dissolved in a solvent. For example, polyolefin general purpose resins, such as polyethylene and a polypropylene; Polyurethane, polystyrene, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polypropylene, etc. can be used.

상기 폐고분자는 용매에 대한 용해성을 높이기 위하여 이분야에서 통상적으로 사용되는 분쇄기를 이용하여 10 mm 내지 100 ㎛ 의 크기로 절단한다. 상기 폐고분자의 크기는 사용되는 반응기의 크기 및 용해도에 따라 적절하게 조절될 수 있다.The waste polymer is cut into a size of 10 mm to 100 μm using a grinder commonly used in the art in order to increase solubility in a solvent. The size of the waste polymer may be appropriately adjusted according to the size and solubility of the reactor used.

이하 언급되는 저분자는 모노머 및 올리고머 수준을 포함한 것으로, 50 내지 35,000 달톤 범위를 의미한다. .The low molecules referred to below include monomer and oligomer levels and refer to a range of 50 to 35,000 Daltons. .

구체적으로 폐고분자를 저분자로 분해하기 위하여, 적절한 크기로 분쇄된 폐고분자를 용매가 충진되어 있는 반응기에 주입한다.Specifically, in order to decompose the waste polymer into low molecules, the waste polymer pulverized to an appropriate size is injected into a reactor filled with a solvent.

이때 용매는 처리하고자 하는 폐고분자의 종류에 따라 다르며, 상기 폐고분자를 완전히 용해하거나 팽윤(sewlling) 시킬 수 있는 것을 사용하며, 일예로 에틸렌글리콜, 디에티렌클리콜, 1,4-부탄디올, 메탄올, TCB(trichlorobenzene)등을 사용하다. 바람직한 실시예에 따르면, 폐폴리우레탄 및 폐폴리에틸렌테레프탈레이트를 분해하기 위하여 에틸렌글리콜을, 폐폴리스틸렌은 분해하기 위하여 메탄올을 사용하였다.At this time, the solvent is different depending on the type of waste polymer to be treated, and can be used to completely dissolve or swell the waste polymer, for example ethylene glycol, diethylene glycol, 1,4-butanediol, methanol, TCB (trichlorobenzene) is used. According to a preferred embodiment, ethylene glycol is used to decompose the waste polyurethane and waste polyethylene terephthalate and methanol is used to decompose the waste polystyrene.

상기 사용되는 용매의 종류 및 함량은 폐고분자의 분해반응에 크게 영향을 미치는 인자로서 적절한 용매의 선택 및 함량을 통해 고수율로 폐고분자를 분해할 수 있다. 상기 용매는 폐고분자와 오존의 접촉을 용이하게 하도록 하기 위한 것으로 폐고분자를 녹일 수 있는 용매면 어느 것이든 사용할 수 있으며, 이분야의 통상적인 지식을 가진자에 의해 적절히 선택되어진다. 일예로, 폴리머핸드북(POLYMER HANDBOOK)등에 자세하게 기술되어 있다.The type and content of the solvent to be used as a factor that greatly affects the decomposition reaction of the waste polymer can be decomposed the waste polymer in high yield through the selection and content of the appropriate solvent. The solvent is for facilitating contact between the waste polymer and ozone, and any solvent that can dissolve the waste polymer may be used, and the solvent may be appropriately selected by those skilled in the art. One example is described in detail in the POLYMER HANDBOOK.

선택된 용매의 함량은 폐고분자와의 용해도에 따라 달라지며, 폐고분자가 완전히 용해될 정도의 함량으로 사용하며, 경우에 따라서 가열, 교반, 초음파 분쇄기, 가압 등의 물리적 공정을 수행할 수 있다. 일예로, 폐고분자의 함량에 따른 분해를 알아보기 위한 실시예에 따르면, 동일한 처리조건 하에 폴리스틸렌의 함량을 0.5∼5 g으로 변화시켜가면서 분해를 수행한 결과, 반응시간 초기 (1시간 미만)에는 유사한 수율을 나타내었으나, 반응이 완료된 6시간 이후에는 64∼92% 범위로 큰 분해율 차이를 나타내었다. 이러한 결과는 용매에 대한 폐고분자의 함량이 적으면 적을 수록 높은 분해율을 나타낸다는 결과를 나타내며, 실제적으로 파일럿 스케일로 스케일-업을 위한 기초가 된다.The content of the selected solvent depends on the solubility with the waste polymer, and the amount of the solvent is used so that the waste polymer is completely dissolved. In some cases, physical processes such as heating, stirring, an ultrasonic grinder, and pressurization may be performed. For example, according to the embodiment for determining the decomposition according to the content of the waste polymer, the decomposition was performed while changing the content of polystyrene to 0.5 to 5 g under the same treatment conditions, the initial reaction time (less than 1 hour) A similar yield was obtained, but after 6 hours of completion of the reaction, there was a large difference in decomposition rate ranging from 64 to 92%. These results indicate that the lower the content of the waste polymer in the solvent, the higher the decomposition rate is, which is actually the basis for scale-up to a pilot scale.

이때 폐고분자의 용해도를 높이고 오존과의 반응성을 높이기 위하여 반응기내 적절한 교반기를 설치하며, 그 속도는 반응기의 크기에 따라 적절하게 조절한다.At this time, in order to increase the solubility of the waste polymer and increase the reactivity with ozone, an appropriate stirrer is installed in the reactor, and the speed is appropriately adjusted according to the size of the reactor.

폐고분자가 주입된 반응기의 온도를 상승시킨 후, 오존을 주입하여 폐고분자의 분해반응을 수행한다.After raising the temperature of the reactor in which the waste polymer is injected, ozone is injected to decompose the waste polymer.

상기 반응기의 온도는 사용되는 용매의 종류에 따라 달라지며, 110 내지 150 ℃ 범위에서 1 시간 내지 6 시간 동안 수행한다. 이러한 반응온도 및 시간 또한 폐고분자의 분해반응에 크게 영향을 미치는 인자로서 적절한 반응온도 및 시간의 조절을 통해 고수율로 폐고분자를 분해할 수 있다. 바람직한 실시예에 따르면, 동일한 조건에서 110∼150 ℃로 반응온도를 달리하여 폴리스틸렌의 분해를 수행한 결과, 반응온도가 높을수록 분해율(dgradation yield)이 비례적으로 상승함을 알 수 있었으며, 이러한 결과는 본 발명의 방법을 통해 폐고분자를 분해하기 위하여 종래 사용되는 열분해 방법에서 400 ℃ 내지 500 ℃ 에서 수행하는 것에 비하여 비교적 낮은 온도에서 높은 수율로 분해가 일어남을 보여준다. 구체적으로, 온도가 증가함에 따라 고분자 체인 절단 (chain scission)이 증가하고, 반응초기에는 가지 또는 말단이 분해되고 시간이 지남에 따라 주쇄가 파괘된다. 더불어 상기 절단이 랜덤하게 진행됨에 따라 수소 추출 및 b-절단(b-scission) 이 증가하게 된다. (G. Madras et al., Thermal degradation kinetics of polystyrene in solution,Polymer Degradation and Stability, 58(1997) 131-138; Oxidative degradation kinetics of polystyrene in solution,Chemical Engineering Science, Vol. 52, No. 16, PP. 2707-2713)The temperature of the reactor depends on the type of solvent used, and is performed for 1 to 6 hours in the range of 110 to 150 ℃. Such reaction temperature and time can also decompose the waste polymer in high yield by controlling the appropriate reaction temperature and time as a factor influencing the decomposition reaction of the waste polymer. According to the preferred embodiment, the polystyrene was decomposed by varying the reaction temperature at 110 to 150 ° C. under the same conditions, and as the reaction temperature was higher, the degradation yield increased proportionally. Shows that the decomposition occurs in a high yield at a relatively low temperature compared to that performed at 400 ℃ to 500 ℃ in the conventional pyrolysis method to decompose the waste polymer through the method of the present invention. Specifically, as the temperature increases, the polymer chain scission increases, and at the beginning of the reaction, the branch or terminal is decomposed and the main chain is broken over time. In addition, as the cutting proceeds randomly, hydrogen extraction and b-scission increase. (G. Madras et al., Thermal degradation kinetics of polystyrene in solution, Polymer Degradation and Stability , 58 (1997) 131-138; Oxidative degradation kinetics of polystyrene in solution, Chemical Engineering Science , Vol. 52, No. 16, PP 2707-2713)

주입되는 오존은 라디칼 상태로 되어 폐고분자의 말단 또는 활성화 자리(active site)와 반응하여 고분자 사슬의 분해를 촉진시키게 되며, 본 발명에서는 폐고분자 1 g에 대하여 50 ppm 내지 1000 ppm 으로 조절한다. 상기 주입되는 오존의 농도가 상기 범위 미만이면 원하는 정도의 폐고분자의 분해를 이룰 수 없고, 초과하게 되면 남는 오존의 정화가 어려워 바람직하지 못하게 된다. 바람직한 실시예에 따르면, 동일한 처리조건하에 오존의 농도를 달리하여 폴리스틸렌의 분해 정도를 측정한 결과, 오존의 농도가 높을수록 분해율이 높았으며, 이는 반응초기 (1시간 미만)에서부터 차이를 보였다. 오존의 농도가 증가한다는 것은 폐고분자와 반응하는 오존 라디칼의 함량이 증가함을 의미하여, 이러한 오존 라디칼에 의해 폐고분자의 분해가 이루어지기 때문에 전체적으로 분해율의 증가를 가져온다. 그결과, 반응이 완료된 6시간 이후의 수율을 살펴보면, 43∼81%로 비교적 넓은 범위의 수율 차이를 보였으며, 일정 농도 이상에서는 유사한 분해율을 나타내었다. 또다른 바람직한 실시예에 따르면, 오존의 농도에 따른 활성화 에너지를 측정한 결과 농도가 높을 수록 낮은 활성화 에너지를 나타내었으며, 이러한 결과는 오존이 다른 촉매 또는 열분해에 비해 우수한 산화제임을 보여준다.The injected ozone is in the radical state and reacts with the terminal or the active site of the waste polymer to promote the decomposition of the polymer chain. In the present invention, the ozone is adjusted to 50 ppm to 1000 ppm with respect to 1 g of the waste polymer. If the concentration of the injected ozone is less than the above range, the desired degree of decomposition of the waste polymer cannot be achieved, and if it exceeds, the purification of the remaining ozone becomes difficult and undesirable. According to a preferred embodiment, the decomposition degree of polystyrene was measured by varying the concentration of ozone under the same treatment conditions, the higher the concentration of ozone, the higher the decomposition rate, which was different from the initial reaction (less than 1 hour). An increase in the concentration of ozone means an increase in the amount of ozone radicals reacting with the waste polymers, leading to an increase in the rate of decomposition as a result of decomposition of the waste polymers by such ozone radicals. As a result, looking at the yield after 6 hours after the reaction was completed, a relatively wide range of yield difference was shown to 43 ~ 81%, and showed a similar decomposition rate above a certain concentration. According to another preferred embodiment, the measurement of the activation energy according to the concentration of ozone, the higher the concentration showed a lower activation energy, these results show that ozone is an excellent oxidant compared to other catalysts or pyrolysis.

폐고분자를 분해하기 위해 사용되는 오존은 오존 발생기를 거쳐 생성되며, 통상적으로 산소 또는 공기를 이용하여 생성시킨다. 수율면에 있어서는 산소를 이용하는 것이 바람직하며, 경제적인 면에 있어서는 공기를 이용하는 것이 더 효율적인 바, 상황에 따라 적절하게 선택할 수 있다.Ozone, used to decompose waste polymers, is produced via an ozone generator and is typically produced using oxygen or air. In terms of yield, it is preferable to use oxygen, and in terms of economics, it is more efficient to use air, which can be appropriately selected depending on the situation.

상기의 방법을 거쳐 폐고분자로부터 분해된 저분자는 분자량의 범위가 50 내지 35,000 로서, 모노머의 수준까지 분해가 가능함을 알 수 있었다.The low molecular weight decomposed from the waste polymer through the above method was found to be capable of degrading to the level of the monomer, with a molecular weight ranging from 50 to 35,000.

이하 본 발명을 실시예에 의해 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

그러나 하기 실시예는 본 발명의 예시일 뿐 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.However, the following examples are only examples of the present invention and the present invention is not limited by these examples.

맨틀에 용액(용매 + 폐고분자)이 들어 있는 3구플라스크를 넣고 교반하면서 수행하며, 이때 증기의 역류방지를 위하여 냉각기를 플라스크 위쪽에 고정시켰다. 이때, 반응 온도는 플라스크에 들어있는 온도계를 통해 읽을 수 있도록 했으며, 맨틀과 플라스크사이에 열전대를 삽입하여 온도조절이 가능하도록 하였다.A three-necked flask containing a solution (solvent + waste polymer) was added to the mantle and agitated. The cooler was fixed to the top of the flask to prevent backflow of steam. At this time, the reaction temperature was read through a thermometer in the flask, and the thermocouple was inserted between the mantle and the flask to enable temperature control.

<실시예 1> 경질 폴리우레탄의 분해Example 1 Degradation of Hard Polyurethane

경질 폴리우레탄 발포체 (분자량 300,000)를 믹서기 형태의 파쇄기로 평균 직경이 약 1∼2 mm가 되도록 분말로 파쇄시켰다. 그리고 냉각기가 장착된 소형 반응기에 에틸렌 글리콜 40 g을 투입하고 반응기 내부의 온도를 200 ℃로 상승시킨 후, 여기에 상기 폴리우레탄 발포체 분말 50 g을 투입하고, 오존 농도가 300 ppm인 공기를 불어넣으면서 분해 반응을 실시하였다.Rigid polyurethane foams (molecular weight 300,000) were crushed into powder so as to have an average diameter of about 1-2 mm with a crusher in the form of a mixer. 40 g of ethylene glycol was added to a small reactor equipped with a cooler, and the temperature inside the reactor was raised to 200 ° C., and then 50 g of the polyurethane foam powder was added thereto while blowing air having an ozone concentration of 300 ppm. The decomposition reaction was performed.

이때, 경질 폴리우레탄의 밀도는 약 0.4 g/㎤이기 때문에, 반응시킬 에틸렌글리콜의 부피의 약 4배에 달한다. 본 실시예의 경우 글리콜-분해 반응은 약 3.5 시간만에 완료되었다. 이때, 반응의 완료는 폐고분자의 100% 분해를 의미하는 것이 아니고 3.5시간 이상이 되면 분해가 더 이상 진전되지 않는 최대 분해 상태를 의미한다.At this time, since the density of the rigid polyurethane is about 0.4 g / cm 3, it is about 4 times the volume of ethylene glycol to be reacted. For this example the glycol-decomposition reaction was completed in about 3.5 hours. At this time, the completion of the reaction does not mean 100% decomposition of the waste polymer, but when 3.5 hours or more, it means a maximum decomposition state in which decomposition does not progress any more.

이 때의 분해율은 87%이었으며, 검화도는 OH 값이 450 ㎎ KOH/g이었다. 상기 검화도 값은 그 수치가 클수록 저분자가 다량 존재함을 의미한다.The decomposition rate at this time was 87%, the saponification degree was OH value 450 mg KOH / g. The safflower value means that the larger the value, the greater the presence of low molecular weight.

<실시예 2> 경질 폴리우레탄의 분해Example 2 Degradation of Hard Polyurethane

오존의 농도를 500 ppm으로 한 것을 제외하고 상기 실시예 1과 동일한 방법으로 수행하여 경질 폴리우레탄을 분해하였다. 이때 반응시간은 2.5 시간이었으며 (분해율: 92%), 얻어진 재생 폴리올의 검화도는 490 ㎎ KOH/g이었다.The hard polyurethane was decomposed in the same manner as in Example 1 except that the concentration of ozone was 500 ppm. At this time, the reaction time was 2.5 hours (decomposition rate: 92%), and the saponification degree of the obtained regenerated polyol was 490 mg KOH / g.

<실시예 3> 경질 폴리우레탄의 분해Example 3 Degradation of Rigid Polyurethane

반응을 180 ℃에서 수행한 것을 제외하고 상기 실시예 1과 동일한 방법으로 수행하여 경질 폴리우레탄을 분해하였다. 이때 반응시간은 3 시간이었으며 (분해율: 84%), 검화도는 495 ㎎ KOH/g이었다.The hard polyurethane was decomposed in the same manner as in Example 1 except that the reaction was performed at 180 ° C. At this time, the reaction time was 3 hours (degradation rate: 84%), and saponification degree was 495 mg KOH / g.

<실시예 4> 경질 폴리우레탄의 분해Example 4 Degradation of Rigid Polyurethane

반응을 160 ℃에서 수행한 것을 제외하고 상기 실시예 1과 동일한 방법으로 수행하여 경질 폴리우레탄을 분해하였다. 이때 반응시간은 5 시간이었으며 (분해율: 79%), 검화도는 485 ㎎ KOH/g이었다.The hard polyurethane was decomposed in the same manner as in Example 1 except that the reaction was performed at 160 ° C. At this time, the reaction time was 5 hours (decomposition rate: 79%), and saponification degree was 485 mg KOH / g.

<실시예 5> 폐폴리우레탄의 분해Example 5 Degradation of Waste Polyurethane

반응기에 폐폴리우레탄 발포체로서, 분자량이 약 158,000이고, 실제 자동차에 장착되고 있는 시스템 시트 폼(system seat foam)을 원료로 사용하였다. 상기 폐폴리우레탄 발포체 분말 30 g 및 디에틸렌 글리콜 10 g을 투입하고 반응물을 교반시키면서 반응온도를 160℃로 상승시킨 후, 오존 농도는 300 ppm으로 하여 4시간 동안 반응(분해율 : 94%)시켰다. 검화도는 520 ㎎ KOH/g이었다.As waste polyurethane foam in the reactor, a system seat foam having a molecular weight of about 158,000 and mounted on an actual vehicle was used as a raw material. 30 g of the waste polyurethane foam powder and 10 g of diethylene glycol were added thereto, and the reaction temperature was raised to 160 ° C. while the reaction mixture was stirred. Then, the ozone concentration was 300 ppm and reacted for 4 hours (degradation rate: 94%). The degree of saponification was 520 mg KOH / g.

<실시예 6> 연질 폐폴리우레탄의 분해Example 6 Degradation of Soft Waste Polyurethane

반응기에 연질 폐폴리우레탄 발포체 (분자량은 200,000) 분말을 30 g, 에틸렌 글리콜을 20 g을 투입시켜 200 ℃에서 반응을 수행한 것을 제외하고, 상기 실시예 5와 동일한 방법으로 수행하여 연질 폐폴리우레탄을 분해하였다. 분해는 4시간동안 행하여 반응이 완료되었고 이때의 분해율은 82%이었으며, 얻어진 재생 폴리올의 검화도는 460 ㎎ KOH/g이었다.A soft waste polyurethane was carried out in the same manner as in Example 5, except that 30 g of a soft waste polyurethane foam (molecular weight: 200,000) powder and 20 g of ethylene glycol were added to the reactor to carry out the reaction at 200 ° C. Was decomposed. The decomposition was carried out for 4 hours to complete the reaction. The decomposition rate was 82%, and the saponification degree of the obtained regenerated polyol was 460 mg KOH / g.

<실시예 7><Example 7>

반응기에 연질 폐폴리우레탄 발포체 분말 30 g 및 1,4-부탄디올 30 g을 투입시켜 180 ℃에서 반응을 수행한 것을 제외하고, 실시예 5와 동이한 방법으로 수해하여 연질 폐폴리우레탄을 분해하였다. 반응시간은 5.5시간이었으며 재생 폴리올의검화도는 400 ㎎ KOH/g이었다.30 g of soft waste polyurethane foam powder and 30 g of 1,4-butanediol were introduced into the reactor, except that the reaction was carried out at 180 ° C., and the soft waste polyurethane was decomposed in the same manner as in Example 5. The reaction time was 5.5 hours and the saponification degree of the regenerated polyol was 400 mg KOH / g.

상기 실시예 1∼7에서 폐고분자를 분해하기 위한 반응조건 및 얻어진 폴리올의 물성을 정리하여 하기 표 1에 나타내었다.In Examples 1 to 7, the reaction conditions for decomposing the waste polymer and the physical properties of the obtained polyol are summarized in Table 1 below.

상기 표 1에 따르면, 오존 농도 및 반응온도가 증가할수록 저분자로의 분해가 증가함을 알 수 있었으며, 동일한 조건하에 용매의 종류에도 영향을 받음을 알 수 있다. 이러한 결과는 이후 실시예에 의해 좀더 상세하게 설명되어 진다.According to Table 1, as the ozone concentration and the reaction temperature increases, it was found that decomposition into low molecules increased, and it was also found that the kind of solvent was affected under the same conditions. This result is explained in more detail by the following examples.

<실시예 8> 반응온도 및 용매에 따른 폐고분자의 분해율Example 8 Degradation Rate of Waste Polymer According to Reaction Temperature and Solvent

반응온도 및 용매의 종류에 따른 폐고분자의 저분자로의 분해 정도를 알아보기 위하여 하기와 같이 실시하였다.In order to determine the degree of decomposition of the waste polymer into low molecules according to the reaction temperature and the type of solvent was carried out as follows.

1) 폐폴리스틸렌의 분해 : 트리클로로 벤젠 용매1) Decomposition of waste polystyrene: trichlorobenzene solvent

반응기에 분자량 350,000의 폐폴리스틸렌 (분자량 350,000 Aldrich) 2 g 및 200 cc (TCB(trichlorobenzene)을 주입하고 가열한 다음, 780 ppm 농도의 오존을 주입하여 폴리스틸렌의 분해를 수행하였다. 반응은 6시간 동안 수행하였으며, 반응온도는 110 ℃, 120 ℃, 130 ℃, 140 ℃, 150 ℃ 각각에서 수행하였다.2 g of waste polystyrene (molecular weight 350,000 Aldrich) and 200 cc (TCB (trichlorobenzene) having a molecular weight of 350,000 were injected into the reactor and heated, followed by decomposition of polystyrene by injecting ozone at a concentration of 780 ppm. The reaction temperature was carried out at 110 ℃, 120 ℃, 130 ℃, 140 ℃, 150 ℃ each.

2) 폐폴리에틸렌테레프탈레이트의 분해2) Degradation of Waste Polyethylene Terephthalate

상기와 동일한 방식으로 폐고분자로 폴리에틸렌테레프탈레이트(PET) (분자량 1.9×104 g/g mol)를, 용매로 에틸렌글리콜을 사용하였고, 300 ppm 농도의 오존을 주입하여 분해반응을 수행하였다. 이때 반응온도를 190 ℃, 200 ℃, 210 ℃, 220 ℃, 230 ℃로 변화시켜 수행하였다.Polyethylene terephthalate (PET) (molecular weight 1.9 × 104 g / g mol) was used as waste polymer in the same manner as above, and ethylene glycol was used as a solvent, and decomposition reaction was performed by injecting 300 ppm of ozone. At this time, the reaction temperature was carried out by changing to 190 ℃, 200 ℃, 210 ℃, 220 ℃, 230 ℃.

3) 폐폴리에틸렌테레프탈레이트의 분해3) Degradation of Waste Polyethylene Terephthalate

고압반응기에 폐고분자로 폴리에틸렌테레프탈레이트 20 g 및 메탄올 200 ml을 주입한 다음, 8 MPa 압력하에 300 ppm 농도의 오존을 주입하면서 분해를 수행하였다. 이때 반응온도를 220 ℃, 230 ℃, 240 ℃, 250 ℃, 260 ℃로 변화시켜 수행하였다.20 g of polyethylene terephthalate and 200 ml of methanol were injected into the high-pressure reactor, and then decomposition was performed while injecting 300 ppm of ozone under 8 MPa pressure. At this time, the reaction temperature was carried out by changing to 220 ℃, 230 ℃, 240 ℃, 250 ℃, 260 ℃.

4) 폐폴리에틸렌테레프탈레이트의 분해4) Degradation of Waste Polyethylene Terephthalate

고압반응기에 폐고분자로 폴리에틸렌테레프탈레이트 3 g 및 물 200 ml을 주입한 다음, 8 MPa 압력하에 300 ppm 농도의 오존을 주입하면서 분해를 수행하였다. 이때 반응온도를 70 ℃, 80 ℃, 90 ℃로 변화시켜 수행하였다.3 g of polyethylene terephthalate and 200 ml of water were injected into the high-pressure reactor, and then decomposition was performed while injecting 300 ppm of ozone under 8 MPa pressure. At this time, it was carried out by changing the reaction temperature to 70 ℃, 80 ℃, 90 ℃.

이때 분해율을 하기 수학식을 통해 계산되어 졌으며, 이러한 결과를 표 2 및 도 1a∼도 1d에 나타내었다.At this time, the decomposition rate was calculated through the following equation, and the results are shown in Table 2 and FIGS. 1A to 1D.

상기 표 2, 도 1a∼1d에 따르면, 반응온도가 증가할수록 분해율 또한 증가함을 알 수 있다. 이러한 결과는, 종래 열분해가 673∼773K (400 ∼ 500 ℃)의 높은 온도에서 이루어지는 반면, 본 발명의 오존을 이용한 산화분해에서는 383∼423K (110 ∼ 150℃) 의 비교적 낮은 온도에서도 높은 분해율을 얻을 수 있음을 보여준다. 더욱이, 폴리에틸렌테레프탈레이트를 분해하기 위하여 용매로서 메탄올 및 물을 사용하여도 분해율이 높음을 알 수 있었으며, 특히 물을 사용한 경우 낮은 온도에서의 분해가 가능함을 알 수 있다. 이처럼 폐고분자를 분해하기 위하여 물의 사용이 가능함에 따라 분해 공정에서의 폐용매를 발생시키지 않아 환경친화적인 공정을 이룰 수 있다.According to Table 2, Figures 1a to 1d, it can be seen that the decomposition rate also increases as the reaction temperature increases. These results show that while conventional pyrolysis is performed at a high temperature of 673 to 773 K (400 to 500 ° C.), high decomposition rates are obtained even at relatively low temperatures of 383 to 423 K (110 to 150 ° C.) in oxidative decomposition using ozone of the present invention. Shows that it can. Moreover, even when methanol and water were used as solvents in order to decompose polyethylene terephthalate, it was found that the decomposition rate was high, and in particular, when water was used, decomposition was possible at low temperature. As such, since water can be used to decompose waste polymers, waste solvents are not generated in the decomposition process, thereby achieving environmentally friendly processes.

<실시예 9> 폐고분자의 함량에 따른 분해율Example 9 Degradation Rate According to Content of Waste Polymer

폐고분자의 함량에 따른 저분자로의 분해 정도를 알아보기 위하여 하기와 같이 실시하였다.In order to determine the degree of decomposition into low molecules according to the content of the waste polymer was carried out as follows.

상기 실시예 8과 동일하게 실시하되, 반응온도를 130 ℃로 고정하고 폐고분자의 양만 변화하면서 6시간 동안 반응을 수행하였으며, 각 시간마다 시료를 채취하여 분해율을 측정하였으며, 얻어진 결과를 하기 표 3 및 도 2에 나타내었다.The reaction was carried out in the same manner as in Example 8, but the reaction temperature was fixed at 130 ℃ and the reaction was carried out for 6 hours while only changing the amount of the waste polymer, and the sample was taken at each time to measure the decomposition rate. And shown in FIG. 2.

상기 표 3 및 도 2에 따르면, 폐고분자의 함량이 증가할수록 분해율이 저하됨을 알 수 있으며, 이는 폐고분자와 접촉하는 오존 라디칼의 몰비가 적어 그만큼 반응이 적게 일어나기 때문이다.According to Table 3 and Figure 2, it can be seen that the decomposition rate is lowered as the content of the waste polymer is increased, because the less the molar ratio of ozone radicals in contact with the waste polymer, the less reaction occurs.

<실시예 10> 오존의 농도에 따른 폐고분자의 분해율Example 10 Degradation Rate of Waste Polymer According to Ozone Concentration

오존의 농도에 따른 폴리스틸렌의 분해를 알아보기 위하여 하기와 같이 실시하였다.In order to determine the decomposition of polystyrene according to the concentration of ozone was carried out as follows.

상기 실시예 8과 동일하게 실시하되, 반응온도를 130 ℃로 고정하고 오존의 농도만을 변화하면서 6시간 동안 반응을 수행하였으며, 각 시간마다 시료를 채취하여 분해율을 측정하였으며, 얻어진 결과를 하기 표 4 및 도 3에 나타내었다.In the same manner as in Example 8, but the reaction temperature was fixed at 130 ℃ and the reaction was carried out for 6 hours while changing only the concentration of ozone, each sample was taken to measure the decomposition rate, the results obtained Table 4 And shown in FIG. 3.

상기 표 4 및 도 3에 따르면, 처리하는 오존의 농도가 증가할수록 분해율이 저하됨을 알 수 있으며, 이는 상기 실시예 9의 결과와 마찬가지로 오존의 농도가 증가할수록 폐고분자와 접촉하는 오존 라디칼이 많아서 랜덤한 체인 절단이 다량 일어나기 때문으로 판단된다.According to Table 4 and Figure 3, it can be seen that the decomposition rate is lowered as the concentration of ozone to be treated is increased, which is the same as the result of Example 9, the more the ozone radicals in contact with the waste polymer as the concentration of ozone increases, the random This is because a large amount of chain cutting occurs.

상기한 실험으로부터 오존을 이용한 폐고분자의 분해는 하기의 결과를 보여준다.From the above experiments, decomposition of waste polymer using ozone shows the following results.

1) 처리하고자 하는 폐고분자는 파쇄된 형태가 바람직하며, 그 함량이 증가할수록 저분자로의 분해율은 저하된다.1) The waste polymer to be treated is preferably in a crushed form, and as the content thereof increases, the decomposition rate of the low molecules decreases.

2) 분해반응 수행시 반응기의 온도가 높을수록 랜덤한 체인 절단이 진행되어 저분자로의 분해율은 증가한다.2) When the decomposition reaction is performed, the higher the temperature of the reactor, the more random the chain cutting proceeds, the higher the decomposition rate to low molecules.

3) 처리하는 오존의 농도가 진할수록 폐고분자와 접촉하는 오존 라디칼이 증가하고, 활성화 에너지가 낮아 보다 강력한 산화반응이 수행됨에 따라 저분자로의 분해율을 증가한다.3) The higher the concentration of ozone treated, the higher the ozone radicals in contact with the spent polymers, and the lower the activation energy, the stronger the oxidation reaction.

따라서, 본 발명은 폐고분자를 오존 처리함으로써 저분자로 용이하게 분해될 수 있고, 상기 저분자의 재활용이 가능함에 따라 종래 폐플라스틱의 처리에 따른 여러가지 폐단을 극복할 수 있다. 특히 사용되는 열에너지의 소비를 감소시키며, 촉매를 사용하는 공정 등에 비하여 공정이 단순하게 되어 설비 투자 등 고정비와 운전비가 저렴하게 되고, 시설규모를 최소화하고 제조원가를 절감할 수 있게 되므로 경제적이며, 신속하게 제품을 생산할 수 있도록 하여 생산성을 향상시키도록 하는 효과가 있다.Therefore, the present invention can be easily decomposed into low molecules by ozone treatment of the waste polymer, and can overcome various waste stages due to the conventional waste plastic treatment as the low molecules can be recycled. In particular, it reduces the consumption of thermal energy used, and the process is simpler than the process using the catalyst, resulting in lower fixed and operating costs such as facility investment, minimizing the size of the facility, and reducing manufacturing costs. There is an effect to improve the productivity by allowing the product to be produced.

Claims (6)

폐고분자를 용매에 용해시킨 후, 고온에서 오존을 주입하여 저분자로 분해시키는 방법.After dissolving waste polymer in a solvent, ozone is injected at high temperature to decompose it into low molecules. 제 1항에 있어서, 상기 폐고분자는 플라스틱 산업에서 부산물로 발생하는 열가소성 고분자인 것을 특징으로 하는 방법.The method of claim 1, wherein the waste polymer is a thermoplastic polymer generated as a by-product in the plastics industry. 제 1항에 있어서, 상기 용매가 에틸렌글리콜, 디에티렌클리콜, 1,4-부탄디올, 메탄올, 물. 트리클로로벤젠 (Trichlorobenzene, TCB)으로 이루어진 그룹 중에서 선택된 것을 특징으로 하는 방법.The method of claim 1, wherein the solvent is ethylene glycol, diethylene glycol, 1,4-butanediol, methanol, water. Trichlorobenzene (TCB) characterized in that the method selected from the group consisting of. 제 1항에 있어서, 상기 반응은 110∼150 ℃에서 1 ∼ 6 시간동안 수행하는 것을 특징으로 하는 방법.The method of claim 1, wherein the reaction is carried out at 110 to 150 ° C for 1 to 6 hours. 제 1항에 있어서, 상기 오존의 농도가 폐고분자 1 g에 대하여 50∼1000 ppm인 것의 특징으로 하는 방법.The method according to claim 1, wherein the concentration of ozone is 50 to 1000 ppm with respect to 1 g of waste polymer. 제 1항에 있어서, 상기 저분자의 분자량이 50∼35,000 달톤인 것을 특징으로 하는 방법.The method of claim 1, wherein the low molecular weight is 50 to 35,000 Daltons.
KR1020020048225A 2002-08-14 2002-08-14 Degradation method of waste-polymr using ozone KR20040016035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020048225A KR20040016035A (en) 2002-08-14 2002-08-14 Degradation method of waste-polymr using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020048225A KR20040016035A (en) 2002-08-14 2002-08-14 Degradation method of waste-polymr using ozone

Publications (1)

Publication Number Publication Date
KR20040016035A true KR20040016035A (en) 2004-02-21

Family

ID=37322106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020048225A KR20040016035A (en) 2002-08-14 2002-08-14 Degradation method of waste-polymr using ozone

Country Status (1)

Country Link
KR (1) KR20040016035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041322A3 (en) * 2005-09-30 2007-06-07 Transcutaneous Tech Inc Iontophoretic delivery of active agents conjugated to nanoparticles
US7848801B2 (en) 2005-12-30 2010-12-07 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383969A1 (en) * 1989-02-22 1990-08-29 Wyzsza Szkola Inzynierska im. Kazimierza Pulaskiego Method for depressant obtaining
US5369215A (en) * 1992-04-06 1994-11-29 S-P Reclamation, Inc. Depolymerization method for resource recovery from polymeric wastes
US5373067A (en) * 1990-06-26 1994-12-13 Enterprise "Malet" Process for the treatment of polymers based on cross-linked E.V.A. and applications
US5516952A (en) * 1993-08-11 1996-05-14 The University Of Akron Oxidative decoupling of scrap rubber
US6184340B1 (en) * 1999-07-26 2001-02-06 Ecolab Inc. Chemical dissolution of poly(vinylalcohol) item or woven or non-woven fabric with antimicrobial action
JP2001329022A (en) * 2000-05-19 2001-11-27 Sony Corp Water-soluble polymer, its production method, and method for reusing used plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383969A1 (en) * 1989-02-22 1990-08-29 Wyzsza Szkola Inzynierska im. Kazimierza Pulaskiego Method for depressant obtaining
US5373067A (en) * 1990-06-26 1994-12-13 Enterprise "Malet" Process for the treatment of polymers based on cross-linked E.V.A. and applications
US5369215A (en) * 1992-04-06 1994-11-29 S-P Reclamation, Inc. Depolymerization method for resource recovery from polymeric wastes
US5516952A (en) * 1993-08-11 1996-05-14 The University Of Akron Oxidative decoupling of scrap rubber
US6184340B1 (en) * 1999-07-26 2001-02-06 Ecolab Inc. Chemical dissolution of poly(vinylalcohol) item or woven or non-woven fabric with antimicrobial action
JP2001329022A (en) * 2000-05-19 2001-11-27 Sony Corp Water-soluble polymer, its production method, and method for reusing used plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041322A3 (en) * 2005-09-30 2007-06-07 Transcutaneous Tech Inc Iontophoretic delivery of active agents conjugated to nanoparticles
US7848801B2 (en) 2005-12-30 2010-12-07 Tti Ellebeau, Inc. Iontophoretic systems, devices, and methods of delivery of active agents to biological interface

Similar Documents

Publication Publication Date Title
Lu et al. Learning nature: recyclable monomers and polymers
Bäckström et al. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals
US8680166B2 (en) Devulcanized rubber and methods
Song et al. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac]
JPH09501458A (en) Depolymerization method
Wang et al. Ring-closing depolymerization of polytetrahydrofuran to produce tetrahydrofuran using heteropolyacid as catalyst
EP4225719A1 (en) Styrene-assisted depolymerization of polyolefins
EP3400259B1 (en) A process for treating plastic waste
CZ2009620A3 (en) Raw material for producing polyurethanes and process for preparing thereof from waste polyurethane
MXPA97007605A (en) Method for the preparation of dereciclated polyols that have low content in am
KR20010095083A (en) Method of decomposing a polyurethane
JP4304237B2 (en) Gasification method of organic matter
KR20040016035A (en) Degradation method of waste-polymr using ozone
JP2008038006A (en) Method for recycling cross-linked polymer
Pant et al. Management of waste poly vinyl chloride (PVC) through chemical modification
JP2003103299A (en) Treatment method of high concentration sludge and its apparatus
Rossignolo et al. Recycling of Polyurethanes: where we are and where we are going to
Zhao et al. Upcycling of waste epoxy thermosets to robust polyurethane foams via an in situ degradation-foaming process
JP2009030071A (en) Method for gasifying organic substance
CA2207441C (en) Method for processing composite materials to enable recycling thereof
Calosi et al. Glycolysis of semi-interpenetrated polymer network foam based on poly (vinyl chloride) for recovery and reuse of the individual components
Gnanou Epilogue: Sorting, Depolymerizing, and Recycling Polymers: The Long Road to a Circular Plastics Economy
EP1466936B1 (en) Recyclable polymers, processes for their production, and recycling process
Esfandian et al. Chemical Recycling of Plastic Waste
Lewis Perfluoroalkylation of Commodity Plastics and Kinetic Resolution Polymerization of Cyclic Monomers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application