KR20040013479A - A New Chemical Composition of High Performance Concrete Dispersant - Google Patents

A New Chemical Composition of High Performance Concrete Dispersant Download PDF

Info

Publication number
KR20040013479A
KR20040013479A KR1020020046418A KR20020046418A KR20040013479A KR 20040013479 A KR20040013479 A KR 20040013479A KR 1020020046418 A KR1020020046418 A KR 1020020046418A KR 20020046418 A KR20020046418 A KR 20020046418A KR 20040013479 A KR20040013479 A KR 20040013479A
Authority
KR
South Korea
Prior art keywords
reaction
polymerization
monomer
acid
formula
Prior art date
Application number
KR1020020046418A
Other languages
Korean (ko)
Other versions
KR100485941B1 (en
Inventor
정훈채
Original Assignee
정훈채
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정훈채 filed Critical 정훈채
Priority to KR10-2002-0046418A priority Critical patent/KR100485941B1/en
Publication of KR20040013479A publication Critical patent/KR20040013479A/en
Application granted granted Critical
Publication of KR100485941B1 publication Critical patent/KR100485941B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Abstract

PURPOSE: A concrete dispersant composition using a polycarbonic acid-based surfactant is provided, to improve the slump loss and to enhance the dispersion stability and the water reduction for enhancing the strength of concrete remarkably. CONSTITUTION: The concrete dispersant composition comprises a polycarbonic acid-based surfactant which is prepared by reacting polyalkylene glycol monoalkyl ether and maleic anhydride to prepare a key monomer, and copolymerizing the key monomer with a (meth)acrylic acid-based monomer, wherein the polycarbonic acid is represented by the formula, wherein R2O is at least one of oxyalkylene of C2-C4; R1 is an alkyl group of C1-C22; m is an integer of 1-100; M is H, a monovalent or divalent metal atom, an ammonium, or an amine group; R3 is H or CH3; and n is a degree of polymerization and is an integer of 2-100.

Description

폴리 카본산계 고성능 콘크리트 분산제의 새로운 조성물{A New Chemical Composition of High Performance Concrete Dispersant}A new chemical composition of high performance concrete dispersant

슬럼프 로스 현상을 개선하고, 분산 안정성 및 감수성을 크게 향상시켜 경화 후 콘크리트의 강도를 현저하게 향상시키는 폴리카본산계 계면활성제 화합물을 경제적으로 제조할 수 있는 새로운 화학 조성물을 제공한다.It provides a new chemical composition that can economically produce a polycarboxylic acid-based surfactant compound that improves the slump loss phenomenon, greatly improves the dispersion stability and sensitivity to significantly improve the strength of concrete after curing.

본 발명은 콘크리트 혼화용 고성능 분산제의 새로운 화학적 조성물에 관한 것이다. 콘크리트 혼화용 분산제는 시멘트 입자를 고르게 분산시켜 수화(水和) 효과를 높여주며, 콘크리트의 작업성을 개선하고 동결 융해 저항성을 향상시키며 감수효과에 의한 물 사용량의 절감 및 초기 강도 확보를 위하여 사용되는 콘크리트 혼화제의 일종이다.The present invention relates to novel chemical compositions of high performance dispersants for concrete admixtures. Dispersant for concrete admixture is used to improve the hydration effect by dispersing the cement particles evenly, improve the workability of concrete, improve the resistance to freeze-thawing, reduce the water consumption by the water reduction effect and secure initial strength. It is a kind of concrete admixture.

콘크리트 혼화용 분산제는 그 화학성분에 따라 리그닌계, 폴리올계, 옥시 유기산염계, 폴리 카본산계, 알킬 아릴 설폰산염계, 멜라민계, 나프탈렌계 등으로 분류되고 있으며 통산 분산제의 감수율이 10-15인데 대하여 감수율이 20-30인 것을 고성능 감수제라 하며, 화학성분이 분자내의 카르복실기(-COOH)를 2개 이상 갖고 있는 것을 폴리 카본산계라 한다. 폴리 카본산계를 포함한 시멘트 분산제는 분자내에 소수성 그룹과 친수성 그룹이 존재하는데 특히, 폴리 카본산계에는 친수성 그룹으로 폴리 알킬렌 글리콜 모노알킬 이서가 존재한다. 그리고 폴리머를 형성하고 있는 탄소로 이루어진 주쇄가 소수성 그룹으로 작용한다. 종래의 기술에서는 친수성을 부여하는 폴리 알킬렌 글리콜 모노 알킬 이서기를 메타 크릴산 또는 메틸 메타 아크릴 레이트와 직접 에스테르 반응 또는 에스테르 교환 반응을 통하여 폴리 알킬렌 글리콜 메타아크릴레이트를 제조한 후 카본산계 단량체와 라디칼공중합을 통하여 폴리 카본산계 분산제를 제조하고 있다.Dispersants for concrete admixtures are classified into lignin-based, polyol-based, oxy-organic acid-based, polycarboxylic acid-based, alkyl aryl sulfonate-based, melamine-based and naphthalene-based, depending on their chemical composition. Regarding the water-resistance ratio of 20-30, it is called a high performance water reducing agent, and a polycarboxylic acid type having a chemical component having two or more carboxyl groups (-COOH) in the molecule. Cement dispersants, including polycarboxylic acids, have hydrophobic and hydrophilic groups in the molecule. In particular, polyalkylene glycols have polyalkylene glycol monoalkyl ethers as hydrophilic groups. And the main chain made of carbon forming the polymer acts as a hydrophobic group. In the prior art, polyalkylene glycol monoalkyl isomers which give hydrophilicity are prepared by direct esterification or transesterification with methacrylic acid or methyl methacrylate, followed by carboxylic acid monomers and radicals. Polycarbonate-based dispersant is prepared through copolymerization.

일본 특허 11-71152를 보면 메톡시 폴리 에틸렌 글리콜과 메타 크릴산을 에스테르 반응을 통하여 분산제 제조의 키(Key) 모노머인 폴리 알킬렌 글리콜 메타아크릴레이트를 제조한다. 반응시 부산물로 발생하는 수분을 제거하기 위하여 공비제인 벤젠을 사용하고 에스테르 반응 도중 메타 크릴산의 중합을 방지하기 위하여 히드로 퀸논도 사용한다. 하지만, 상기에 나타난 바와 같이 폴리 알킬렌 글리콜 메타아크릴레이트를 제조하면, 반응중 부산물인 수분을 반응계로부터 제거하기 위하여 에스테르 반응 도중 공비제인 벤젠을 과량으로 반응기에 환류 시키기 때문에 에너지 소비가 막대하고 또한 다량의 메타 아크릴산의 중합을 피할 수 없으며, 반응이 완료된 후 수세공정을 거처 반응 생성물을 정제하여야 하기 때문에 제품의 손실을 피할 수 없어 경제성 있는 공정이 되기 어렵다. 또한, 대한민국 특허 10-0247527에 나타난 선행 기술에서는 메타 아크릴산 대신에 메틸 메타아크릴레이트를 사용하여 폴리 알킬렌 글리콜 모노 알킬이서와 에스테르 교환 반응에 의하여 폴리 알킬렌 글리콜 메타아크릴레이트를 제조하고 있다. 하지만, 이 공정에서도 과량의 메틸 메타아크릴레이트를 반응기로 환류시켜 비등에 의하여 메틸메타아크릴레이트와 함께 반응 부산물인 메탄올을 제거해야 하고, 중합 금지제인 페노 시아진을 반응기에 주입하여 메틸 메타아크릴레이트의 중합을 억제해야 하며, 반응 후 필터링 등의 정제를 통하여 키(Key) 모노머인 폴리알킬렌 글리콜 메타아크릴레이트를 제조하여야 한다.In Japanese Patent No. 11-71152, polyalkylene glycol methacrylate, which is a key monomer for dispersant preparation, is produced by esterification of methoxy polyethylene glycol and methacrylic acid. Azeotropic benzene is used to remove water generated as a by-product during the reaction, and hydroquinone is also used to prevent the polymerization of methacrylic acid during the ester reaction. However, when the polyalkylene glycol methacrylate is prepared as shown above, in order to remove the by-product water during the reaction from the reaction system, the azeotropic benzene is excessively refluxed in the reactor during the ester reaction, and the energy consumption is enormous and large. The polymerization of methacrylic acid of the product cannot be avoided, and since the reaction product must be purified after the reaction is completed, the loss of the product cannot be avoided and it is difficult to become an economical process. In addition, in the prior art shown in Korean Patent 10-0247527, polyalkylene glycol methacrylate is prepared by transesterification with polyalkylene glycol monoalkyl using methyl methacrylate instead of methacrylic acid. However, also in this process, excess methyl methacrylate is refluxed to the reactor to remove the reaction by-product methanol along with methyl methacrylate by boiling, and phenocyazine, a polymerization inhibitor, is injected into the reactor to remove methyl methacrylate. The polymerization should be suppressed, and polyalkylene glycol methacrylate, which is a key monomer, should be prepared through purification such as filtering.

상기에 나타낸 바와 같이 지금까지의 종래의 기술들은 시멘트 분산제 제조에 가장 많이 사용되는 키(key) 모노머인 폴리 알킬렌 글리콜메타아크릴레이트 제조 부분에서 긴 반응시간, 메타아크릴산 또는 메틸 메타아크릴레이트의 중합, 정제시 제품 손실, 반응 부산물 제거를 위한 에너지 소모등의 많은 어려움을 겪어왔다. 그래서, 경제적으로 키(Key) 모노머를 제조할 수 있는 새로운 기술의 개발이 강력히 요구되어 왔다.As indicated above, the conventional techniques up to now have long reaction times in the production of poly alkylene glycol methacrylate, which is the key monomer used in the production of cement dispersants, polymerization of methacrylic acid or methyl methacrylate, There have been many difficulties such as product loss during purification and energy consumption to remove reaction byproducts. Thus, there has been a strong demand for the development of new technologies that can economically produce key monomers.

따라서, 본 발명은 종래의 기술적인 어려움을 해결하고 매우 경제적으로 고성능의 시멘트 분산제를 제조할 수 있는 폴리 카본산계 분산제의 화학적조성물 및 그 제조 방법을 제공하는 것을 목적으로 하고 있다.Accordingly, an object of the present invention is to provide a chemical composition of a polycarboxylic acid-based dispersant and a method for producing the same, which can solve the conventional technical difficulties and produce a high-performance cement dispersant very economically.

상기의 목적은,The above purpose is

[화학식 3][Formula 3]

R1O (R2O)m HR 1 O (R 2 O) m H

(단, 식 중에서 R1을 탄소수가 1∼22인 알킬기, R2O는 탄소 원자수가 2~4인옥시 알킬렌기의 1종 또는 2종 이상의 혼합물을 나타내며, m은 옥시 알킬기의 평균 부가 몰수로 1-100인 수를 나타낸다)로 표시되는 폴리 알킬렌 글리콜 모노 알킬 이서와 말레익 안하이드라이드(Maleic Anhydride)를 황산 등의 산 촉매하에서 개환 반응시켜(Wherein R 1 represents an alkyl group having 1 to 22 carbon atoms, R 2 O represents one or two or more mixtures of oxy alkylene groups having 2 to 4 carbon atoms, and m is an average added mole number of oxy alkyl groups). Polyalkylene glycol monoalkyl isomer and maleic anhydride represented by a number of 1-100) by ring-opening reaction under an acid catalyst such as sulfuric acid

[화학식 1][Formula 1]

(단, 식 중에서 R1, R2O 및 m은 상기한 바와 같다)로 표시되는 화합물을 합성하고 합성된 화합물 단량체를 5~95 중량 %와(Wherein R 1 , R 2 O and m are the same as described above) and synthesize the compound monomer 5 to 95% by weight and

[화학식 4][Formula 4]

(단, 식중에서 R3는 수소원자 또는 메틸기를 나타내며, M은 수소원자, 1가 금속원자, 2가 금속원자, 암모늄기 또는 유기 아민기를 나타낸다)로 표시되는 불포화 카르복실산(염) 단량체 95~5중량 %로 공중합하여(Wherein R 3 represents a hydrogen atom or a methyl group, M represents a hydrogen atom, a monovalent metal atom, a divalent metal atom, an ammonium group or an organic amine group) Copolymerized to 5% by weight

[화학식 2][Formula 2]

(단, 식에서 M,R2O,R1및 m은 상기한 바와 같으며 n은 중합도를 나타내며 2~100인 수를 나타낸다)을 합성 함으로서 이루어 진다.Wherein M, R 2 O, R 1 and m are as defined above and n represents the degree of polymerization and represents a number from 2 to 100.

본 발명에서 폴리 알킬렌 글리콜 모노 알킬 이서와 말레익 안하이드라이드 반응의 몰비는 1/1 ~ 1/10이 적당하고 특히 1/1 ~ 1/5가 바람직하다. 상기 반응의 반응 촉매로는 황산, 염산, 인산, 보릭산 등의 산촉매가 적당하고 염기성 촉매로서 수산화나트륨, 수산화칼륨, 수산화리튬 등의 알카리 금속 수화물도 가능하다. 사용되는 촉매는 반응물 전체 중량의 0.01 ~ 10 중량 %가 적당하다. 반응 시간은 비교적 짧아서 30분에서 2시간 정도가 적당하다.In the present invention, the molar ratio of the polyalkylene glycol monoalkyl isomer and maleic anhydride reaction is preferably from 1/1 to 1/10, particularly preferably from 1/1 to 1/5. Acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid and boric acid are suitable as the reaction catalyst for the reaction, and alkali metal hydrates such as sodium hydroxide, potassium hydroxide and lithium hydroxide may be used as the basic catalyst. The catalyst used is suitably 0.01 to 10% by weight of the total weight of the reactants. The reaction time is relatively short, suitable for 30 minutes to 2 hours.

상기와 같은 반응에 의하여 얻어진 [화학식 1] 로 표시되는 단량체를 키(Key) 모노머(monomer)라고 명명하고 [화학식 4] 로 표시되는 (메타)아크릴산(염) 단량체와 함께 중합 반응에 사용된다.The monomer represented by [Formula 1] obtained by the above reaction is called a key monomer and used for the polymerization reaction together with the (meth) acrylic acid (salt) monomer represented by [Formula 4].

[화학식 2] 로 표시되는 공중합체를 얻기 위해서는 중합 개시제를 사용하여 상기 단량체 성분을 공중합 시키면 된다. 공중합은 용매 중에서의 중합이나 괴상중합 등의 방법에 의해 실시 될 수 있다. 용매중에서의 중합은 연속식 또는 회분식으로 이루어질 수 있으며, 이때 사용되는 용매는 물;메틸 알코올, 에틸 알코올, 이소 프로필 알코올 등의 저급알콜;벤젠, 톨루엔 등의 방향족 탄화수소 또는 사이클로 헥산, n-헥산 등의 지방족 탄화수소;초산 에틸 등의 에스테르 화합물;아세톤, 메틸 에틸케톤 등의 케톤 화합물 등이 있다. 물 용매중에서 중합을 실시 할 때는 중합 개시제로 암모늄 또는 알카리 금속의 과황산염 등의 수용성 개시제가 사용된다. 또한, 저급 알코올, 방향족 탄화수소, 지방족 탄화수소, 에스테르 화합물 또는 케톤 화합물을 용매로 사용하는 중합에서는 벤조일 퍼옥사이드나 라우일 퍼옥사이드 등의 퍼옥사이드가 개시제로 사용된다. 중합온도는 사용되는 용매나 중합 개시제에 의해 적절히 결정되는 데 일반적으로 25 ~ 120℃ 범위내에서 결정된다. 괴상 중합은 중합 개시제로 퍼옥사이드 계통이 사용되고 중합 온도는 50~200℃의 온도 범위 내에서 결정된다. 또한, 얻어지는 중합체 [화학식 2] 의 분자량 조절을 위하여 머캡탄계 연쇄 이동제가 병용 될 수 있다. 사용되는 연쇄 이동제로는 머캅토 에탄올, 머캅토 프로퍼온산, 머캅토 아세틱산 등이 있다. 상기와 같이 얻어지는 중합체 [화학식 2] 는 그대로 시멘트 분산제의 주성분으로 사용 될 수 있는데, 필요에 따라 알카리성 물질로 중화시켜 시멘트 분산제로 사용할 수 있다. 이와 같은 알카리성 물질로는 1가 금속 또는 2가 금속의 수산화물, 암모니아, 유기아민 등이 적당하다. 상기와 같이 얻어지는 중합체 [화학식 2]의 중량 평균 분자량은 5000~20,000이 적당하고, 더 바람직하게는 10,000~100,000이 적당하다. 이와 같이 얻어지는 중합체를 주성분으로 하는 시멘트 분산제는 시멘트와 물로 이루어지는 시멘트 조성물에 투입되었을 때 시멘트의 분산을 촉진 시킨다. 이하 실시예에서 본 발명을 보다 구체적으로 설명한다.What is necessary is just to copolymerize the said monomer component using a polymerization initiator, in order to obtain the copolymer represented by [Formula 2]. The copolymerization can be carried out by a method such as polymerization in a solvent or bulk polymerization. The polymerization in the solvent may be carried out continuously or batchwise, and the solvent used may include water; lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; aromatic hydrocarbons such as benzene and toluene or cyclohexane, n-hexane, etc. Aliphatic hydrocarbons; ester compounds such as ethyl acetate; ketone compounds such as acetone and methyl ethyl ketone. When the polymerization is carried out in a water solvent, a water-soluble initiator such as ammonium or an alkali metal persulfate is used as a polymerization initiator. In addition, in polymerization using a lower alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, an ester compound or a ketone compound as a solvent, a peroxide such as benzoyl peroxide or lauyl peroxide is used as an initiator. The polymerization temperature is appropriately determined by the solvent or polymerization initiator used, and is generally determined within the range of 25 to 120 ° C. In the bulk polymerization, a peroxide system is used as the polymerization initiator, and the polymerization temperature is determined within a temperature range of 50 to 200 ° C. In addition, a mercaptan-based chain transfer agent may be used in combination to control the molecular weight of the resulting polymer [Formula 2]. Chain transfer agents used include mercapto ethanol, mercapto propionic acid, mercapto acetic acid and the like. The polymer [Formula 2] obtained as described above can be used as a main component of the cement dispersant as it is, can be used as a cement dispersant by neutralizing with an alkaline material as needed. As such an alkaline substance, hydroxide of a monovalent or divalent metal, ammonia, an organic amine, etc. are suitable. 5000-20,000 are suitable for the weight average molecular weight of the polymer [Formula 2] obtained as mentioned above, More preferably, 10,000-100,000 are suitable. The cement dispersant containing the polymer thus obtained as a main component promotes dispersion of the cement when introduced into a cement composition composed of cement and water. In the following Examples the present invention will be described in more detail.

[ 실시예 1]Example 1

온도계와 교반기가 장착된 1000㎤ 유리 반응기에 우선 중량 평균 분자량 1,100의 폴리 에틸렌 글리콜 모노 메틸 이서를 110g 투입하고 반응 온도를 85℃로 유지하였다. 이 반응 온도에서 폴리 에틸렌 글리콜 모노 에틸 이서를 완전히 녹인 후 말레익 안하이드라이드 9.8g을 투입하고 촉매로서 황산을 1.2g 주입한 후 1시간30분 동안 반응을 진행 시켰다. 키(Key) 모노머 합성 반응이 완결된 후 물 209.2g에 개시제로서 소디움 퍼설페이트(Sodium persulfate)를 26g 녹여 상기의 1000㎤ 유리 반응기에 투입하였다. 상기의 키 모노머는 물에 완전히 용해되어 맑은 액체를유지한다. 반응물의 온도를 80℃에 유지 시키며 52.0g의 메틸 아크릴산을 2시간30분에 걸처 반응기에 적하 하면서 중합 반응을 시킨 후 중합 반응 종결을 위하여 30분 동안 더 반응 시켰다. 반응 종결 후 반응 생성물을 40℃로 냉각한 후 33중량 %의 가성소다(NaOH) 수용액으로 중화시켜 본 발명의 시멘트 분산제를 합성하였다. 상기와 같이 제조된 시멘트 분산제를 물 188kg과 시멘트 300kg과 모래 833kg과 자갈 997kg을 혼합한 콘크리트 조성물에 시멘트 중량의 1.0% 투입한 후,KS F2560 에서 정한 바에 따라 슬럼프 경시 변화 및 공기량을 측정한 결과, 슬럼프는 초기 20cm, 30분 후 18cm, 1시간 후 16cm의 결과가 나타났고 콘크리트내 공기량은 4.4 용량 %로 나타났다.Into a 1000 cm 3 glass reactor equipped with a thermometer and a stirrer, 110 g of polyethylene glycol monomethyl ether having a weight average molecular weight of 1,100 was first charged, and the reaction temperature was maintained at 85 ° C. After completely dissolving polyethylene glycol monoethyl ether at this reaction temperature, 9.8 g of maleic anhydride was added, 1.2 g of sulfuric acid was injected as a catalyst, and the reaction was performed for 1 hour 30 minutes. After the completion of the key monomer synthesis reaction, 26 g of sodium persulfate was dissolved in 209.2 g of water as an initiator and introduced into the 1000 cm 3 glass reactor. The key monomer is completely dissolved in water to maintain a clear liquid. The temperature of the reactant was maintained at 80 ° C., and 52.0 g of methyl acrylic acid was added dropwise to the reactor over 2 hours and 30 minutes, followed by further polymerization for 30 minutes to terminate the polymerization reaction. After completion of the reaction, the reaction product was cooled to 40 ° C. and neutralized with 33% by weight aqueous sodium hydroxide (NaOH) solution to synthesize a cement dispersant of the present invention. The cement dispersant prepared as described above was added 1.0% of the cement weight to the concrete composition of 188kg water, 300kg cement, 833kg sand and 997kg gravel, and measured the change in slump over time and air volume as determined by KS F2560, The slump was 20cm early, 18cm after 30 minutes and 16cm after 1 hour, and the air content in concrete was 4.4% by volume.

[ 실시예 2]Example 2

온도계와 교반기가 장착된 5000㎤의 반응기에 중량 평균 분자량 1500인 폴리 에틸렌 글리콜 모노 메틸 이서를 600g 투입하고 85℃에서 녹인 후 말레익 안하이드라이드 39.2g을 투입하고 말레익 안하이드라이드의 용융이 종결된 후 황산을 6.4g 주입시켜 키(Key) 모너머 합성을 하였다. 반응시간은 1시간 30분이다. 반응이 종결된 후 1000㎤의 물에 127.0g의 소디움 퍼설페이트를 용해시켜 반응기에 투입시켜 중합 반응을 시작하였다. 중합 반응 온도 80℃를 유지시키며 메타아크릴산과 아크릴산을 90 : 10으로 혼합한 혼합물 208g을 2시간40분에 걸쳐 적하하였다. 반응 종결을 위하여 30분 더 중합 반응 시킨 후 중합 반응을 종결하였다. 반응 생성물의 온도를 40℃로 냉각한 후 33 중량 %으 수산화 나트륨 수용액으로 중화시켜 시멘트 분산제를 합성하였다. 상기와 같이 제조된 시멘트 분산제를 KS F2560에서 정한 바에 따라 슬럼프 경시 변화와 공기량을 측정하였다. 측정결과 슬럼프 초기 20cm, 30분 후 19cm, 1시간 후 17cm로 나타났고 1시간 후의 공기량은 4.2 용량 % 였다.Into a 5000 cm3 reactor equipped with a thermometer and a stirrer, 600 g of polyethylene glycol monomethyl ether having a weight average molecular weight of 1500 was dissolved at 85 ° C., and 39.2 g of maleic anhydride was added to terminate melting of maleic anhydride. Then, 6.4 g of sulfuric acid was injected to synthesize key monomers. The reaction time is 1 hour 30 minutes. After the reaction was terminated, 127.0 g of sodium persulfate was dissolved in 1000 cm 3 of water and introduced into the reactor to start the polymerization reaction. 208 g of the mixture of methacrylic acid and acrylic acid mixed at 90:10 while maintaining the polymerization reaction temperature of 80 ° C was added dropwise over 2 hours 40 minutes. In order to terminate the reaction, the polymerization reaction was further performed for 30 minutes, and then the polymerization reaction was terminated. The cement product was synthesized by cooling the temperature of the reaction product to 40 ° C. and then neutralizing with 33% by weight aqueous sodium hydroxide solution. The cement dispersant prepared as described above was measured in slump over time and the amount of air as determined in KS F2560. As a result, the initial slump was 20cm, 19cm after 30 minutes, and 17cm after 1 hour, and the air volume after 1 hour was 4.2% by volume.

종래의 메타 아크릴산이나 메틸 메타 아크릴레이트를 원료로 사용하여 폴리 알킬렌 글리콜 메타아크릴레이트(키 모노머)를 제조할 때의 막대한 에너지 소모 및 제품의 손실을 완전히 해결하면서도 제품의 성능을 유지할 수 있는 새로운 개념의 시멘트 분산제의 화학적 조성물을 제시한다.New concept to maintain product performance while completely eliminating enormous energy consumption and product loss when producing polyalkylene glycol methacrylate (key monomer) using conventional methacrylic acid or methyl methacrylate as raw materials The chemical composition of the cement dispersant is presented.

Claims (1)

폴리 알킬렌 글리콜 모노 알킬 이서와 말레익 안하이드라이드를 반응시켜 키(Key) 모노머를 합성하고 합성된 키(Key) 모노머와 (메타) 아크릴산계 단량체를 공 중합하여 시멘트 혼화용 폴리 카본산을 얻는 방법에 있어서, 공중합 완료 후 시멘트 혼화용 폴리 카본산의 화학적 조성이 하기 [화학식 1] 과 같은 구조를 갖는 것을 특징으로 하는 콘크리트 분산제.Synthesis of Key Monomer by Reaction of Polyalkylene Glycol Monoalkyl Ether and Maleic Anhydride and Copolymerization of Synthetic Key Monomer and (meth) acrylic Acid Monomer to Obtain Polycarbonates for Cement Admixture The method of claim 1, wherein the chemical composition of the polycarbonate acid for cement admixture after the completion of the copolymer has a structure as shown in the following [Formula 1]. [화학식 1][Formula 1] 단, 식중 R2O는 탄소수 2~4의 옥시 알킬렌기의 1종 또는 2종 이상의 혼합물, R1은 탄소수 1~22의 알킬기, m은 옥시 알킬렌기의 평균 부가 몰수로 1~100의 수, M은 수소원자, 1가 금속원자, 2가 금속원자 암모늄기 또는 아민기를 나타내고, R3는 수소원자 또는 메틸기를 나타내며 n은 중합도를 의미하고 2~100의 수를 나타낸다.Wherein R 2 O is one or a mixture of two or more oxyalkylene groups having 2 to 4 carbon atoms, R 1 is an alkyl group having 1 to 22 carbon atoms, m is an number of 1 to 100 as the average added mole number of the oxy alkylene group, M represents a hydrogen atom, a monovalent metal atom, a divalent metal atom ammonium group or an amine group, R 3 represents a hydrogen atom or a methyl group, n means a degree of polymerization and represents a number of 2 to 100.
KR10-2002-0046418A 2002-08-06 2002-08-06 A New Chemical Composition of High Performance Concrete Dispersant KR100485941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046418A KR100485941B1 (en) 2002-08-06 2002-08-06 A New Chemical Composition of High Performance Concrete Dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0046418A KR100485941B1 (en) 2002-08-06 2002-08-06 A New Chemical Composition of High Performance Concrete Dispersant

Publications (2)

Publication Number Publication Date
KR20040013479A true KR20040013479A (en) 2004-02-14
KR100485941B1 KR100485941B1 (en) 2005-05-03

Family

ID=37320803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0046418A KR100485941B1 (en) 2002-08-06 2002-08-06 A New Chemical Composition of High Performance Concrete Dispersant

Country Status (1)

Country Link
KR (1) KR100485941B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072646A1 (en) * 2014-11-04 2016-05-12 주식회사 엘지화학 Cement composition additive comprising polycarbonic acid-based copolymer, zinc oxide particles, and gluconate
CN112441768A (en) * 2020-11-26 2021-03-05 江苏超力建材科技有限公司 Water-washing sandstone treatment agent and method for preparing concrete

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797223A (en) * 1988-01-11 1989-01-10 Rohm And Haas Company Water soluble polymers for detergent compositions
GB8813978D0 (en) * 1988-06-13 1988-07-20 Unilever Plc Liquid detergents
ES2218636T3 (en) * 1996-01-25 2004-11-16 Unilever N.V. LIQUID DETERGENT.
EP0786514B1 (en) * 1996-01-25 2004-07-14 Unilever N.V. Stick pretreatment compositions
AU5355599A (en) * 1998-10-22 2000-05-04 Rohm And Haas Company Polymer compositions and a method of promoting soil release from fabrics using said polymer compositions
KR20030068997A (en) * 2002-02-19 2003-08-25 정훈채 The Chemical Composition of High Performance Concrete Flow Improver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072646A1 (en) * 2014-11-04 2016-05-12 주식회사 엘지화학 Cement composition additive comprising polycarbonic acid-based copolymer, zinc oxide particles, and gluconate
US10029946B2 (en) 2014-11-04 2018-07-24 Lg Chem, Ltd. Cement composition additive containing polycarboxylic acid copolymer, zinc oxide particles and gluconate
CN112441768A (en) * 2020-11-26 2021-03-05 江苏超力建材科技有限公司 Water-washing sandstone treatment agent and method for preparing concrete

Also Published As

Publication number Publication date
KR100485941B1 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
AU2014213572B2 (en) Copolymer admixture system for workability retention of cementitious compositions
US6048916A (en) Method for dispersion of cement
JP5416618B2 (en) Process for producing alkylene oxide adducts and derivatives thereof
JP3327809B2 (en) Cement dispersant, method for dispersing cement and cement composition
WO2023184785A1 (en) Crosslinked polycarboxylic acid water reducer and preparation method therefor
KR100485941B1 (en) A New Chemical Composition of High Performance Concrete Dispersant
CN115678006B (en) Viscosity reducer with hyperbranched topological structure, and preparation method and application thereof
CN106046238A (en) Unsaturated polyether monomer and method for synthesizing and preparing polycarboxylate-type water reducing agent
KR100615640B1 (en) An Improved Production Method of High Performance Concrete Dispersant
JP3568430B2 (en) Method for producing raw monomer for cement dispersant
KR20060007610A (en) A manufacture method of highly efficient cement didpersion agant with antifoamer force and rised skill to drainage
CN101942085B (en) Synthetic method of sorbierite polyoxyethylene ether tall-oil acid ester
KR100372041B1 (en) Polymer based cement superplasticizer
KR20040009222A (en) Dispersant for cement and concrete
CN117659377A (en) Unsaturated branched polyether, preparation method thereof and application of unsaturated branched polyether in preparation of phosphate water reducer
KR100710832B1 (en) Improved production method of high molecular weight alkoxy poly alkylene glycol (meth)acrylate
KR100341965B1 (en) Polymer based cement superplasticizer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20160316

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170407

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20200226

Year of fee payment: 16