KR100615640B1 - An Improved Production Method of High Performance Concrete Dispersant - Google Patents

An Improved Production Method of High Performance Concrete Dispersant Download PDF

Info

Publication number
KR100615640B1
KR100615640B1 KR1020050029260A KR20050029260A KR100615640B1 KR 100615640 B1 KR100615640 B1 KR 100615640B1 KR 1020050029260 A KR1020050029260 A KR 1020050029260A KR 20050029260 A KR20050029260 A KR 20050029260A KR 100615640 B1 KR100615640 B1 KR 100615640B1
Authority
KR
South Korea
Prior art keywords
meth
reaction
polyalkylene glycol
dispersant
salt
Prior art date
Application number
KR1020050029260A
Other languages
Korean (ko)
Other versions
KR20060046620A (en
Inventor
김제삼
오정면
공복의
Original Assignee
(주) 청도정밀화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 청도정밀화학 filed Critical (주) 청도정밀화학
Publication of KR20060046620A publication Critical patent/KR20060046620A/en
Application granted granted Critical
Publication of KR100615640B1 publication Critical patent/KR100615640B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/41Connecting devices specially adapted for embedding in concrete or masonry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/001Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with means for preventing rotation of the dowel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/04Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front
    • F16B13/06Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve
    • F16B13/063Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/12Separate metal or non-separate or non-metal dowel sleeves fastened by inserting the screw, nail or the like
    • F16B13/124Separate metal or non-separate or non-metal dowel sleeves fastened by inserting the screw, nail or the like fastened by inserting a threaded element, e.g. screw or bolt

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 폴리알킬렌글리콜모노알킬에테르와 (메타)아크릴산과의 직접 에스테르 반응에 의하여 폴리알킬렌글리콜(메타)아크릴레이트를 제조하는 방법에 있어서 직접 에스테르 반응 촉매인 무기산 촉매의 양을 최적의 반응속도를 얻을 수 있는 만큼 원하는 대로 사용하여 에스테르 반응 시간을 단축함으로써 반응을 경제적으로 수행할 수 있도록 하고 이때 사용된 무기산 촉매를 에스테르 반응 종료 후 알카리 화합물로 중화하여 염을 형성하게 한 후, 에스테르 반응 생성물로부터 제거함을 특징으로 한다. 상기와 같이 염이 제거된 폴리 알킬렌글리콜(메타)아크릴레이트 단량체 혼합물은 또 다른 단량체들과 공중합하여 콘크리트 분산제가 제조되는데 최종 제품내 에스테르 반응용 무기산 촉매의 염이 폴리알킬렌글리콜(메타)아크릴레이트 중량의 0 ~ 1 중량%일 때 분산 능력이 우수하고, 슬럼프 유지 능력이 우수한 콘크리트 분산제가 제조됨을 특징으로 한다.The present invention provides an optimal reaction for the amount of the inorganic acid catalyst which is a direct ester reaction catalyst in the method for producing polyalkylene glycol (meth) acrylate by direct ester reaction of polyalkylene glycol monoalkyl ether and (meth) acrylic acid. The reaction rate can be economically performed by shortening the ester reaction time as desired to obtain the rate, and at this time, the inorganic acid catalyst used is neutralized with an alkali compound after the completion of the ester reaction to form a salt, and then the ester reaction product. Characterized in that the removal from. As described above, the polyalkylene glycol (meth) acrylate monomer mixture from which the salt is removed is copolymerized with other monomers to prepare a concrete dispersant. The salt of the inorganic acid catalyst for ester reaction in the final product is polyalkylene glycol (meth) acrylic. When it is 0 to 1% by weight of the weight weight, it is characterized in that the concrete dispersant having excellent dispersibility and excellent slump retention ability is produced.

콘크리트 분산제, 슬럼프, 불포화 카르복실산, 에스테르 반응, 폴리알킬렌 글리콜모노알킬에테르, (메타)아크릴산, 공중합 Concrete dispersant, slump, unsaturated carboxylic acid, ester reaction, polyalkylene glycol monoalkyl ether, (meth) acrylic acid, copolymerization

Description

개선된 고성능 콘크리트 분산제와 그 제조방법{An Improved Production Method of High Performance Concrete Dispersant}Improved Production Method of High Performance Concrete Dispersant

본 발명은 고성능의 콘크리트 분산제 및 그 제조방법에 관한 것이다. 보다 상세하게는 콘크리트 내에 존재하는 시멘트의 분산력을 향상시켜 적은 양의 물로도 유동성이 높고, 시멘트 입자의 분산 유지 능력을 향상시켜, 장시간 콘크리트의 유동성을 유지시켜 작업성을 향상시키는 콘크리트 분산제 및 그 제법에 관한 것이다.The present invention relates to a high performance concrete dispersant and a method of manufacturing the same. More specifically, the concrete dispersing agent and its method of improving the dispersibility of the cement present in the concrete to have high fluidity even with a small amount of water, improve the ability to maintain the dispersion of cement particles, maintain the fluidity of the concrete for a long time and improve workability It is about.

최근 들어 콘크리트 구조물의 강도 개선 요구와 교통 혼잡으로 인하여 작업장까지의 콘크리트 운반 시간이 지연되는 등의 문제점으로 인하여 구조물 콘크리트의 유동성과 분산 유지 능력에 대한 관심이 고조되고 있다.Recently, due to problems such as the demand for improving the strength of concrete structures and the delay of transporting concrete to the workplace due to traffic congestion, interest in the fluidity and dispersion of concrete in structures is increasing.

콘크리트의 강도를 개선하기 위해선 사용하는 시멘트 양에 비해 투입하는 물의 양을 줄이는 것이 중요하지만 물의 사용량을 줄이면 콘크리트의 운동성을 얻을 수 없다. 따라서 고 성능의 콘크리트 혼화용 분산제가 반드시 필요하다. 또한 타설 현장까지의 콘크리트 운반시간 지연, 현장에서의 대기시간 등에 의하여 콘크리트 혼합물의 품질변화 및 슬럼프 로스 등으로 콘크리트 조성물의 펌프 압 상승 또는 막힘 현상이 발생하여 타설 작업의 효율성이 급격히 저하되는 문제가 있어서 콘크리트 분산제의 슬럼프 유지 능력이 매우 필요하다.In order to improve the strength of concrete, it is important to reduce the amount of water input compared to the amount of cement used. However, reducing the amount of water used does not provide the mobility of concrete. Therefore, a high performance concrete dispersant is essential. In addition, there is a problem that the efficiency of the pouring work is drastically deteriorated due to the increase in the pump pressure or blockage of the concrete composition due to the change of the quality of the concrete mixture and the slump loss due to the delay of the transport time of the concrete to the pouring site, the waiting time at the site, etc. The slump retention capacity of the concrete dispersant is very necessary.

콘크리트 혼화용 분산제는 그 화학 성분에 따라 크게 리그닌계, 폴리올계, 옥시 유기산염계, 폴리 카본산계, 멜라닌계, 나프탈렌계 등으로 분류되어 있으며, 통상 분산제의 감수율이 10~15%인데 대하여 감수율이 20~30%인 것을 고성능 분산제라 하며, 분자 내에 카르복실산기(-COOH)를 두개 이상 갖고 있는 것을 폴리 카본산계라 한다. 이러한 폴리카본산계 콘크리트 분산제를 제조하기 위하여 종래에는 친수성 그룹인 폴리알킬렌글리콜모노알킬에테르와 중합을 할 수 있는 불포화 카르복실산인 (메타)아크릴산 또는 메틸메타아크릴레이트를 직접 에스테르 반응 또는 에스테르 교환 반응을 통하여 폴리알킬렌글리콜(메타)아크릴레이트를 제조한 후, 카본산계 단량체와 라디칼 공중합을 통하여 폴리 카본산계 분산제를 제조하고 있다.Dispersants for concrete admixtures are classified into lignin-based, polyol-based, oxy-organic acid-based, polycarboxylic acid-based, melanin-based, naphthalene-based, etc. according to their chemical composition. 20-30% is called a high-performance dispersing agent, and a poly carboxylic acid system is one having two or more carboxylic acid groups (-COOH) in its molecule. In order to prepare such a polycarboxylic acid-based concrete dispersant, a conventional ester reaction or transesterification reaction of (meth) acrylic acid or methyl methacrylate, which is an unsaturated carboxylic acid capable of polymerization with a hydrophilic group polyalkylene glycol monoalkyl ether, is carried out. After preparing a polyalkylene glycol (meth) acrylate, a polycarboxylic acid-based dispersant is prepared through radical copolymerization with a carbonic acid monomer.

대한민국 특허 10-0247527에 나타난 선행기술에서는 메틸메타아크릴레이트와 폴리알킬렌글리콜모노알킬에테르의 에스테르 교환 반응에 의하여 폴리알킬렌글리콜메타아크릴레이트를 제조하고 있다. 이 공정에서는 과량의 메틸메타아크릴레이트를 반응기로 환류시켜 공비에 의하여 반응부산물인 메탄올을 제거하고, 촉매로는 수산화나트륨 등의 알카리 염기를 사용한다. 이 제법은 반응 시간이 짧은 대신 공비로 비등한 메틸메타아크릴레이트 중 메탄올을 분리하는 공정이 필요하고, 반응생성물 내에 존재하는 미반응 메틸메타아크릴레이트를 완벽히 제거해야 하는 문제가 존재함과 동시에 반응 촉매로 사용한 염기를 필터링 등을 통하여 제거해야 하는 문제점등이 존재한다. 직접 에스테르법에 의한 폴리알킬렌글리콜메타아크릴레이트의 제조 방법은 일본 특허 11-71152에서 개시되고 있다. In the prior art shown in Korean Patent No. 10-0247527, polyalkylene glycol methacrylate is prepared by a transesterification reaction of methyl methacrylate and polyalkylene glycol monoalkyl ether. In this step, excess methyl methacrylate is refluxed to the reactor to remove the reaction byproduct methanol by azeotropy, and an alkali base such as sodium hydroxide is used as a catalyst. This method requires a step of separating methanol from the azeotropic boiling methylmethacrylate instead of short reaction time and completely removes unreacted methylmethacrylate present in the reaction product. There are problems such as the need to remove the used base through filtering and the like. A method for producing polyalkylene glycol methacrylate by the direct ester method is disclosed in Japanese Patent 11-71152.

(메타)아크릴산을 폴리알킬렌글리콜모노알킬에테르와 직접 에스테르 반응시켜 폴리알킬렌글리콜(메타)아크릴레이트를 제조하는 방법으로 공지의 사실로 알려져 있는 제조 방법이나 발명자들은 촉매로 사용하는 황산 등의 산 촉매를 적게 사용하고 반응 중 부산물로 생성되는 생성수를 공비로 제거하기 위한 벤젠 등의 솔벤트 사용량을 과도하게 사용하여 반응 중 생성되는 원하지 않는 분순물인 폴리알킬렌글리콜(메타)아크릴레이트의 생성을 최대로 억제하여 반응 종료 후 폴리알킬렌 글리콜(메타)아크릴레이트의 함량이 폴리알킬렌글리콜(메타)아크릴레이트의 중량비로 0 ~ 5%이하가 되는 기술에 대하여 알려주고 있다. The production method known to the known fact that the (meth) acrylic acid is directly esterified with polyalkylene glycol monoalkyl ether to produce polyalkylene glycol (meth) acrylate. Using less catalyst and excessive use of solvents such as benzene to azeotropically remove the water produced as by-products during the reaction maximizes the production of polyalkylene glycol (meth) acrylates, which are unwanted impurities produced during the reaction. After suppressing the reaction, the content of polyalkylene glycol (meth) acrylate becomes 0-5% or less by weight ratio of polyalkylene glycol (meth) acrylate.

그러나, 산 촉매의 사용을 원료로 사용되는 폴리에틸렌글리콜모노메틸에테르와 (메타)아크릴산을 합한 총 중량의 0.5 중량%로 제한하여, 반응시간이 약 25시간으로 극도로 느리고, 반응 중 (메타)아크릴산의 중합반응이 발생할 위험이 크며, 또한, 긴 반응 시간으로 인하여 경제적인 제법이 되기 어렵다. 한편, 과량으로 사용한 벤젠 등의 솔벤트를 반응 종료 후 제거하는 것도 공정에 부담이 된다. 상기의 선행 기술에서 주장하는 원치 않는 부산물인 폴리알킬렌글리콜(메타)아크릴레이트의 생성 또한, 상기 선행기술의 명세서 내용으로는 억제 또는 제어 할 수 있는 구체적인 방법이 나타나 있지 않다.However, the use of an acid catalyst is limited to 0.5% by weight of the total weight of the total weight of polyethylene glycol monomethyl ether and (meth) acrylic acid used as raw materials, so that the reaction time is extremely slow to about 25 hours, and (meth) acrylic acid during the reaction. There is a high risk of polymerization reaction, and due to the long reaction time, it is difficult to be an economical production method. On the other hand, it is also a burden on the process to remove solvents such as benzene that are used in excess after the completion of the reaction. The production of polyalkylene glycol (meth) acrylates, which are unwanted by-products claimed in the prior art, also does not show specific methods that can be suppressed or controlled in the specification of the prior art.

그러므로 제조시 부산물의 생성을 억제할 제어 변수를 설정할 수 없어 반응 후 폴리알킬렌글리콜(메타)아크릴레이트의 함량을 분석하여 반응 종료 후 생성물의 품질을 결정할 수밖에 없는 문제점이 존재한다.Therefore, there is a problem that can not set the control variable to suppress the production of by-products during the manufacturing process to determine the quality of the product after the reaction by analyzing the content of polyalkylene glycol (meth) acrylate after the reaction.

상기와 같이 직접 에스테르법 또는 에스테르 교환반응법에 의해 제조된 폴리알킬렌글리콜(메타)아크릴레이트는 아크릴산 또는 메타아크릴산과 같은 불포화 카르복실산 등과 공중합 반응을 거친 후 중화시켜 최종 제품인 콘크리트 분산제가 제조된다.As described above, the polyalkylene glycol (meth) acrylate prepared by the direct ester method or the transesterification reaction is copolymerized with an unsaturated carboxylic acid such as acrylic acid or methacrylic acid, and then neutralized to prepare a concrete dispersant as a final product. .

본 발명에서 이루고자 하는 기술적 과제는, 직접 에스테르 반응에 의하여 폴리에틸렌글리콜(메타)아크릴레이트 제조에 있어서 반응 속도를 현저히 증가시켜 경제성 있는 제품을 제조함과 동시에 제품의 품질을 제어 할 수 있는 제조방법을 제공하고, 상기의 제품을 이용하여 고성능의 폴리카본산계 분산제를 제조하는 방법을 제공함을 목적으로 하고 있다.The technical problem to be achieved in the present invention, by increasing the reaction rate in the production of polyethylene glycol (meth) acrylate by direct ester reaction to provide a manufacturing method that can control the quality of the product while at the same time economical production An object of the present invention is to provide a method for producing a high-performance polycarboxylic acid dispersant using the above product.

또한 본 발명의 분산제는 분산력이 좋고, 슬럼프 유지능력이 매우 우수한 분산제를 제조하는 방법을 제공하고자 한다.In addition, the dispersant of the present invention is to provide a method for producing a dispersant having a good dispersing ability, very excellent slump retention ability.

상기의 목적을 달성하기 위하여 본 발명의 발명자들이 꾸준히 연구한 결과, 하기의 [화학식 1]로 표시되는 폴리알킬렌글리콜모노알킬에테르와 [화학식 2]로 표시되는 불포화카르복실산의 직접 에스테르 반응에 의하여 [화학식 3]으로 표시되는 폴리알킬렌글리콜(메타)아크릴레이트를 제조할 때, 촉매로 사용하는 황산 등의 일반적인 무기 산 촉매의 양이 너무 적으면 반응 속도가 극도로 느려져서 제조 공정 의 경제성이 저하되고, 산촉매량이 일정 반응 속도를 얻기 위해 충분히 사용되면 최종 제품의 분산성 및 유지 능력에 지대한 악 영향을 줌을 발견하였다. In order to achieve the above object, the inventors of the present invention have steadily studied, and thus, in the direct ester reaction of polyalkylene glycol monoalkyl ether represented by the following [Formula 1] and unsaturated carboxylic acid represented by [Formula 2] In preparing the polyalkylene glycol (meth) acrylate represented by [Formula 3], if the amount of a general inorganic acid catalyst such as sulfuric acid used as a catalyst is too small, the reaction rate is extremely slow and economical efficiency of the manufacturing process It was found that the degradation and the amount of acid catalyst sufficiently used to obtain a constant reaction rate have a significant adverse effect on the dispersibility and retention ability of the final product.

[화학식 1][Formula 1]

Figure 112005018410711-pat00001
Figure 112005018410711-pat00001

(단, 식 중에서 R1은 탄소수 1 ~ 22인 알킬기, R2는 탄소 원자수가 2 ~ 4인 알킬렌 기의 1종 또는 2종이상의 혼합물이며, n은 1 ~ 100이다.)(Wherein R 1 is an alkyl group having 1 to 22 carbon atoms, R 2 is one or a mixture of two or more kinds of alkylene groups having 2 to 4 carbon atoms, and n is 1 to 100).

[화학식 2][Formula 2]

Figure 112005018410711-pat00002
Figure 112005018410711-pat00002

(단, 식 중에서 R3는 수소원자 또는 메틸기이다.)(Wherein R 3 is a hydrogen atom or a methyl group)

[화학식 3][Formula 3]

Figure 112005018410711-pat00003
Figure 112005018410711-pat00003

(단, 식 중에서 R1, R2, R3, n 은 상기한 바와 같다)(Wherein R 1 , R 2 , R 3 , n are as defined above)

상기와 같은 문제를 해결하기 위해 연구한 결과 사용한 무기산촉매와 이 무기산촉매를 수산화나트륨과 같은 염기로 중화할 때 발생하는 무기염이 최종 제품에 잔존하는 경우 최종 제품인 콘크리트 분산제의 분산능력과 유지능력에 큰 악영향을 미침을 발견하였다. As a result of researches to solve the above problems, when the inorganic acid catalyst used and the inorganic salt generated when neutralizing the inorganic acid catalyst with a base such as sodium hydroxide remain in the final product, the dispersion capacity and retention capacity of the final product concrete dispersant It was found to have great adverse effects.

따라서, 본 발명은 불포화 카르복실산[화학식1]과 폴리알킬렌글리콜모노알킬에테르[화학식2]를 원료로 사용하고 황산 등의 일반적 무기산 촉매를 사용하여 직접 에스테르반응을 통하여 폴리알킬렌글리콜(메타)아크릴레이트를 합성하는 반응 공정에서, 반응 종료 후 잔류 산촉매를 제거하고, 이와 같이 무기산 촉매가 제거된 폴리알킬렌글리콜(메타)아크릴레이트와 불포화 카르복실산을 공중합 반응시켜 고성능의 콘크리트 분산제를 제조하는 것으로 구성된다. Accordingly, the present invention uses polyalkylene glycol (meth) by direct ester reaction using unsaturated carboxylic acid [Formula 1] and polyalkylene glycol monoalkyl ether [Formula 2] as raw materials and a general inorganic acid catalyst such as sulfuric acid. In the reaction step of synthesizing the acrylate, the residual acid catalyst is removed after completion of the reaction, and the polyalkylene glycol (meth) acrylate and the unsaturated carboxylic acid in which the inorganic acid catalyst is removed are copolymerized to prepare a high-performance concrete dispersant. It consists of doing.

본 발명의 분산제를 제조하는 과정을 설명하면,Referring to the process of preparing the dispersant of the present invention,

유기용제하에서 폴리알킬렌글리콘모노알킬에테르와 불포화 카르복실산을 무기산촉매 하에서 반응시켜 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체 용액을 제조하는 단계; 상기 용액으로부터 유기용제를 증류제거 하는 단계; 상기 잔류 용액에 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체가 70 ~ 95 중량%의 범위가 되도록 물을 추가하는 단계; 상기 수용액에 염기를 투입하여 반응성 무기산을 중화시키는 단계; 상기 무기산촉매와 염기로부터 생성되는 염을 여과하는 단계; 및 분리된 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체용액을 포함한 공중합체를 제조하는 단계; 를 포함하여 고성능의 분산제를 제조하는 것을 특징으로 한다.Preparing a polyalkylene glycol (meth) acrylic acid ester monomer solution by reacting a polyalkylene glycol monoalkyl ether and an unsaturated carboxylic acid under an organic acid catalyst in an organic solvent; Distilling off the organic solvent from the solution; Adding water to the residual solution such that the polyalkylene glycol (meth) acrylic acid ester monomer is in a range of 70 to 95% by weight; Adding a base to the aqueous solution to neutralize the reactive inorganic acid; Filtering the salt generated from the inorganic acid catalyst and the base; And preparing a copolymer including the separated polyalkylene glycol (meth) acrylic acid ester monomer solution. It characterized in that to produce a high-performance dispersant including.

이하는 본 발명을 보다 구체적으로 설명한다.The following describes the present invention in more detail.

본 발명에서 폴리알킬렌글리콜(메타)아크릴레이트를 합성하는 직접 에스테르 반응에서 반응원료인 불포화 카르복실산과 폴리알킬렌글리콜모노알킬에테르의 몰비는 1:1 ~ 5:1이 적당하고 더욱 바람직하게는 1:1 ~ 3:1이 적당하다. In the present invention, in the direct ester reaction for synthesizing polyalkylene glycol (meth) acrylate, the molar ratio of unsaturated carboxylic acid and polyalkylene glycol monoalkyl ether as a reaction raw material is 1: 1 to 5: 1, more preferably. 1: 1 to 3: 1 are suitable.

반응 중 발생하는 생성수를 제거하기 위하여 생성수와 공비를 이루는 솔벤트 를 사용할 수 있는데 예로서, 벤젠, 톨루엔 등의 방향족 탄화수소, 사이클로 헥산 등의 지환식 화합물, n-헥산 등의 지방족 탄화수소류가 있다. In order to remove the generated water generated during the reaction, a solvent which forms an azeotrope with the generated water may be used. Examples include aliphatic hydrocarbons such as benzene and toluene, alicyclic compounds such as cyclohexane, and aliphatic hydrocarbons such as n-hexane. .

에스테르 반응에 사용 가능한 촉매로는 황산, 파라톨루엔 술폰산, 메탄 술폰산, 질산, 인산 등의 무기산이 적당하고, 사용량은 반응에 투여한 폴리알킬렌글리콜모노알킬에테르 양의 1 ~ 10 중량%가 적당하고, 더욱 바람직하게는 2 ~ 8 중량%가 적당하다. 촉매량이 너무 적으면 반응속도가 현저히 저하되어 경제성에 문제가 생기고, 너무 많으면 반응 속도는 빨라지나, 불포화 카르복실산의 중합반응 등의 부반응이 많이 발생한다. As the catalyst that can be used for the ester reaction, inorganic acids such as sulfuric acid, paratoluene sulfonic acid, methane sulfonic acid, nitric acid and phosphoric acid are suitable, and an amount of 1 to 10% by weight of the amount of polyalkylene glycol monoalkyl ether administered to the reaction is suitable. More preferably 2 to 8% by weight. If the amount of the catalyst is too small, the reaction rate is considerably lowered to cause problems in economical efficiency. If the amount is too large, the reaction rate is increased, but many side reactions such as polymerization of unsaturated carboxylic acid occur.

반응 중 불포화 카르복실산의 중합을 방지하기 위하여 중합 방지제를 사용하는데 공지의 중합 방지제인 하이드로퀴논류, 페노시아진류를 사용할 수 있다. 반응온도는 상압에서 75 ~ 120℃가 적당하다.In order to prevent superposition | polymerization of unsaturated carboxylic acid during reaction, a polymerization inhibitor is used, Hydroquinones and phenocyazines which are well-known polymerization inhibitors can be used. The reaction temperature is suitable at 75 ~ 120 ℃ at normal pressure.

에스테르 반응이 종료되면 투입했던 벤젠 등의 솔벤트를 감압하에서 제거하고 반응 생성물에 물을 섞어 반응 생성물 중량이 70 ~ 95 중량%가 되도록 수용액을 제조한 후 반응 생성물내에 존재하는 산 촉매를 중화시켜 염을 형성시킨 후 제거한다. 상기 범위는 반응기의 산촉매를 중화시켜 형성되는 염을 제거하기 위한 것으로, 상기 범위 이하의 경우는 물이 지나치게 많아 염이 석출되지 않고, 상기 범위보다 높은 경우에는 물이 지나치게 적어 석출염을 효과적으로 분리할 수 없으므로, 본 발명에서는 수용액의 고형분함량을 상기 범위로 조절하는 것이 매우 중요하다. 또한 상기 범위로 조절함으로써 본 발명의 최종 중합체 내의 산 또는 염의 성분은 본 발명이 목적으로 하는 범위로 달성 할 수 있다.After the completion of the ester reaction, solvents such as benzene, which have been added, are removed under reduced pressure, an aqueous solution is prepared by mixing water with the reaction product so that the weight of the reaction product is 70 to 95% by weight, and then neutralizing the salt of the acid catalyst present in the reaction product. Form and remove. The above range is for removing the salt formed by neutralizing the acid catalyst of the reactor, in the case below the above range, the salt is not precipitated because there is too much water, and if it is higher than the above range, the precipitate salt is effectively separated because the water is too small. In this invention, it is very important to control the solid content of the aqueous solution in the above range. In addition, by adjusting to the above range, the component of the acid or salt in the final polymer of the present invention can be achieved in the range of the present invention.

제거하는 방법은 여러 가지가 존재한다. There are many ways to remove it.

한 방법은 사용한 산 촉매와 같은 당량의 수산화나트륨 수용액을 투여하면 황산이 촉매인 경우 황산나트륨이 형성되어 잠시 상온에서 방치하면 비중이 상대적으로 높은 황산나트륨이 층분리되어 쉽게 염을 제거할 수 있다. In one method, the same amount of sodium hydroxide solution used as the acid catalyst is used, and when sulfuric acid is the catalyst, sodium sulfate is formed, and when left at room temperature for a while, sodium sulfate, which has a relatively high specific gravity, is easily separated to remove salts.

또 다른 방법은 반응 생성물의 수용액에 MgO, CaO와 같은 고체염을 투입하면 산 촉매가 중화되어 침전되고 필터링 등을 통하여 제거하면 산 촉매의 염을 효율적으로 제거 가능하다. Another method is to add a solid salt such as MgO and CaO to the aqueous solution of the reaction product to neutralize and precipitate the acid catalyst, and to remove the salt of the acid catalyst efficiently by removing through filtering and the like.

상기의 중화는 0 ~ 50 ℃, 좋게는 30 ~ 40 ℃에서 이루어지는 것이 반응성 무기산을 제거하는 효율이 더욱 좋다.Said neutralization is made at 0-50 degreeC, preferably 30-40 degreeC, and the efficiency which removes a reactive inorganic acid is more efficient.

상기와 같이 산 촉매가 제거된 반응 생성물은 폴리알킬렌글리콜(메타)아크릴레이트[화학식3]와 (메타)아크릴산계 단량체[화학식2]가 공중합하여 콘크리트 분산제의 최종 제품이 합성된다. 상기와 같이 제조된 반응생성물 내에는 폴리알킬렌글리콜(메타)아크릴레이트와 (메타)아크릴산 류 단량체가 동시에 존재하기 때문에 반응 생성물 그대로 공중합 반응을 시킬 수도 있고, 다른 공중합 가능한 단량체를 첨가하여 공중합 반응을 시킬 수 있다. 다른 공중합 가능한 단량체로는 말레익산, 푸마르산, 알릴 알콜류, (폴리)에틸렌글리콜알릴에테르 등을 들 수 있고, 공중합 후 분자량은 젤 퍼미에이션 크로마토그래피 (GPC)로 분석하였을때 중량 평균 분자량이 15,000 ~ 50,000이 적당하다. As described above, the reaction product from which the acid catalyst is removed is copolymerized with polyalkylene glycol (meth) acrylate [Formula 3] and (meth) acrylic acid monomer [Formula 2] to synthesize a final product of the concrete dispersant. Since the polyalkylene glycol (meth) acrylate and the (meth) acrylic acid monomer are present at the same time in the reaction product prepared as described above, the reaction product may be copolymerized as it is or by adding another copolymerizable monomer to perform the copolymerization reaction. You can. Other copolymerizable monomers include maleic acid, fumaric acid, allyl alcohols, (poly) ethylene glycol allyl ether, and the molecular weight after copolymerization is 15,000 to 50,000 when the molecular weight is analyzed by gel permeation chromatography (GPC). This is suitable.

중합 개시제는 수용성이면 가능한데, 예로서는 과황산 암모늄, 과황산 나트륨과 황산칼륨 등의 일반적인 과황산염이 적당하다. As long as the polymerization initiator is water-soluble, general persulfates such as ammonium persulfate, sodium persulfate and potassium sulfate are suitable.

분자량 조절을 위하여 연쇄 이동제는 필요에 따라 사용가능하며, 연쇄 이동제로는 메르켑토프로피온산, 메르켑토 아세틱산, 메르켑토 프로피온산 2-에틸 헥실 에스테르 등의 공지의 화합물을 사용할 수 있다. A chain transfer agent can be used as needed for molecular weight adjustment, and as a chain transfer agent, well-known compounds, such as a merceto propionic acid, a merceto acetic acid, a merceto propionic acid 2-ethyl hexyl ester, can be used.

공중합 반응 온도는 50 ~ 150℃ 정도가 적당하나 50 ~ 120℃가 바람직하다. 공중합 반응 종료 후 제품의 pH가 6.5 ~ 7.5가 되도록 알카리 금속 수산화물, 알카리 토금속 수산화물 또는 아민 등의 염기성 물질로 중화 시킨다. 상기와 같이 얻어지는 공중합체를 주 성분으로 하는 콘크리트 분산제는 시멘트와 물로 이루어지는 시멘트 조성물에 투입되었을 때 시멘트의 분산능력 및 수화반응 지연능력을 향상 시킨다. 이 때, 상기와 같이 얻어지는 공중합체 최종 제품내에 무기산 촉매의 염이 공중합 반응 전에 제거되어, 상기의 폴리에틸렌글리콜(메타)아크릴레이트 중량의 0 ~ 1 중량% 일 때 제조된 콘코리트 분산제의 분산능력과 유지능력이 월등히 향상된다. 50-150 degreeC is suitable for copolymerization reaction temperature, but 50-120 degreeC is preferable. After the completion of the copolymerization reaction, the product is neutralized with basic materials such as alkali metal hydroxide, alkaline earth metal hydroxide or amine such that the pH of the product is 6.5 to 7.5. The concrete dispersant having the copolymer obtained as described above as a main component improves the dispersibility of the cement and the ability to delay the hydration reaction when it is added to a cement composition composed of cement and water. At this time, the salt of the inorganic acid catalyst is removed before the copolymerization reaction in the copolymer final product obtained as described above, and the dispersion capacity of the concrete dispersant prepared when the weight of the polyethylene glycol (meth) acrylate is 0 to 1% by weight. Maintenance capacity is greatly improved.

이하 실시예에서 본 발명을 보다 구체적으로 설명한다. 그러나 하기의 실시예에 의하여 본 발명이 한정되는 것은 아니다.In the following Examples the present invention will be described in more detail. However, the present invention is not limited by the following examples.

[실시예 1]Example 1

온도계, 교반기, 반응 생성수 분리기, 냉각 환류기 등이 장착된 2리터 유리 반응기에 평균 분자량 475의 폴리에틸렌글리콜모노메틸에테르를 712.5g 투입하고, 반응 촉매인 황산을 15g 투입한 후, 중합 방지제로 하이드로 퀴논을 1.7g 투입하여 하이드로 퀴논이 완전히 용해 되도록 하였다. 그 후 메타아크릴산을 194g 정량하여 반응기에 투입하고, 벤젠을 400g 주입한 후 승온, 환류하여 직접 에스테르 반응을 시작하였다. 소정량의 생성수가 발생한 것을 확인 한 후 반응기로부터 벤젠을 감압하에서 제거하고 반응 생성물에 물을 첨가하여 85% 수용액을 제조하였다.712.5 g of polyethylene glycol monomethyl ether having an average molecular weight of 475 was added to a 2-liter glass reactor equipped with a thermometer, a stirrer, a reaction water separator, and a reflux condenser, and 15 g of sulfuric acid, a reaction catalyst, was added thereto. 1.7 g of quinone was added to completely dissolve the hydroquinone. Thereafter, 194 g of methacrylic acid was quantified and added to the reactor, 400 g of benzene was injected, and the temperature was raised to reflux to directly start the ester reaction. After confirming that a predetermined amount of generated water occurred, benzene was removed from the reactor under reduced pressure, and water was added to the reaction product to prepare an 85% aqueous solution.

물이 첨가된 반응 생성물에 50 중량%의 가성소다(NaOH)를 24.5g을 주입하여 상온에서 교반시키며 촉매로 사용한 황산을 완전 중화 하였다. 중화가 완료된 후 잠시 교반을 중지하고, 용액 전체를 분액깔대기에 주입한다. 잠시 동안 용액을 정체 시키면 중화에 의해 생성된 황산나트륨 염이 용액으로부터 분리되어 용액의 맨 밑부분에 상분리(Phase Separation)되어 황산나트륨 염의 층이 생성된다. 층분리가 완전히 종료된 후 밑 부분의 황산나트륨 염층을 분액 깔대기로부터 제거한다.24.5 g of 50 wt% caustic soda (NaOH) was added to the reaction product to which water was added, stirred at room temperature, and the sulfuric acid used as a catalyst was completely neutralized. After neutralization is completed, the stirring is stopped for a while, and the whole solution is injected into the separatory funnel. If the solution is held for a while, the sodium sulfate salt generated by neutralization is separated from the solution and phase separated at the bottom of the solution to form a layer of sodium sulfate salt. After the phase separation is complete, the bottom sodium sulfate salt layer is removed from the separating funnel.

상기와 같이 무기산 촉매의 염을 완전히 제거한 에스테르 반응 생성물 320g에 아크릴산 26.5g, 메타아크릴산 26.4g을 첨가하고, 연쇄 이동제로 메르켑토프로피온산 2.8g을 섞어 공중합 혼합물을 제조하였다.As described above, 26.5 g of acrylic acid and 26.4 g of methacrylic acid were added to 320 g of the ester reaction product from which the salt of the inorganic acid catalyst was completely removed, and 2.8 g of mercetopropionic acid was mixed with a chain transfer agent to prepare a copolymerization mixture.

교반기가 장착된 2리터 유리 반응기에 우선 물을 155g 투입하고, 질소로 치환한 후, 반응온도를 80℃로 유지 하였다. 이 반응기에 상기의 공중합 혼합물을 4시간에 걸쳐 적하 투입하고, 중합 개시제인과 황산암모늄 2.4g을 180g의 물에 녹여 5시간 동안 공중합 혼합물과 함께 적하 투입하였다. 적하 투입이 완료 된 후, 공중합 반응을 완료하기 위하여 1시간 더 반응시킨 후 공중합 반응을 종료하였다. 반응 종료 후 33 중량%의 가성소다로 제품의 pH가 6.5~7.5가 되도록 중화 하였다. 공중합 반응 종료 후 잔류 무기산 촉매의 염은 제조된 분산제에 대하여 0.2 중량% 였다. 또한 얻어진 공중합체의 중량 평균 분자량은 24,000이었다.155 g of water was first introduced into a 2 liter glass reactor equipped with a stirrer, replaced with nitrogen, and the reaction temperature was maintained at 80 ° C. The copolymerization mixture was added dropwise to the reactor over 4 hours, 2.4 g of a polymerization initiator and 2.4 g of ammonium sulfate were dissolved in 180 g of water, and added dropwise together with the copolymerization mixture for 5 hours. After the dropwise addition was completed, the reaction was completed for 1 hour to complete the copolymerization reaction, and then the copolymerization reaction was terminated. After the reaction was completed, the pH of the product was neutralized to ca. 6.5-7.5 with 33 wt% caustic soda. After completion of the copolymerization reaction, the salt of the residual inorganic acid catalyst was 0.2% by weight based on the prepared dispersant. Moreover, the weight average molecular weight of the obtained copolymer was 24,000.

[실시예 2]Example 2

에스테르반응의 무기산 촉매인 황산을 중화할 때 50% 가성소다 대신 고체 염기인 MgO분말을 사용한 것을 제외하면 [실시예 1]과 동일하다. 85% 에스테르 반응 생성물 수용액에 7.2g의 MgO 분말을 투입하여 교반한 후 반응 생성물이 중화 됐음을 확인 한 후 사용한 MgO와 황산의 염을 필터링에 의하여 제거한 후 공중합 반응을 실시하였다.When neutralizing sulfuric acid which is an inorganic acid catalyst of ester reaction, it is the same as [Example 1] except that MgO powder which is a solid base is used instead of 50% caustic soda. 7.2 g of MgO powder was added to an aqueous 85% ester reaction product, followed by stirring. After confirming that the reaction product was neutralized, the salts of MgO and sulfuric acid used were removed by filtration, followed by copolymerization.

공중합 반응 후 제조된 콘크리트 분산제의 중량 평균 분자량은 28,000이었고, 무기산 촉매인 황산의 염은 폴리에틸렌글리콜메타아크릴레이트 중량의 0.15 중량% 이었다.The weight average molecular weight of the concrete dispersant prepared after the copolymerization reaction was 28,000, and the salt of sulfuric acid as an inorganic acid catalyst was 0.15 wt% of the weight of polyethylene glycol methacrylate.

[실시예 3]Example 3

[실시예 1] 에서 사용한 동일한 반응기에 분자량 1068인 폴리에틸렌글리콜 모노에틸에테르를 827g 투입하고 80℃를 유지한 후, 반응 촉매로서 황산을 20g 주입하였다. 중합 방지제로 하이드로퀴논을 1.7g 투입하여 용해시킨 후 메타아크릴산을 204g 투입하고, 생성수 추출 용제인 벤젠을 400g 주입하고 승온하여 반응을 시작하였다. 소정량의 생성수가 발생한 후 감압하에서 벤젠을 제거하고 물을 섞어 80% 수용액을 제조 하였다.Into the same reactor used in Example 1, 827 g of polyethylene glycol monoethyl ether having a molecular weight of 1068 was added and maintained at 80 ° C., followed by 20 g of sulfuric acid as a reaction catalyst. 1.7 g of hydroquinone was added and dissolved as a polymerization inhibitor, and then 204 g of methacrylic acid was added, 400 g of benzene, which was a product water extraction solvent, was injected, and the temperature was raised to start the reaction. After a predetermined amount of water generated, benzene was removed under reduced pressure, and water was mixed to prepare an 80% aqueous solution.

상온에서 50% 가성소다 32.7g을 상기의 수용액에 투입하여 교반하여 중화 반응을 종결 시킨 후 혼합액을 분액 깔대기로 옮겨 정체 시켰다. 혼합물로부터 무기산 촉매염이 분액 깔대기 밑층에 층분리 된 후 완전 제거 하였다.At room temperature, 32.7 g of 50% caustic soda was added to the aqueous solution, followed by stirring to terminate the neutralization reaction, and the mixture was transferred to a separatory funnel for stagnation. Inorganic acid catalyst salts were separated from the mixture on the bottom of the separating funnel and then completely removed.

상기의 염이 제거된 수용액 320g에 아크릴산 16g과 메타 아크릴산 16g을 섞고, 연쇄 이동제로 메르켑토 프로피온산을 2.8g 섞어 공중합 혼합물을 제조하였다. 교반기가 장착된 2리터 유리 반응기에 우선 물 155g을 투입하고, 질소로 반응기 내부를 치환한 후 반응온도를 80℃로 유지하였다. 상기의 공중합 혼합물을 4시간에 걸쳐 반응기에 적하 투입하고, 중합 개시제인 과황산암모늄 2.4g을 180g의 물에 녹여 5시간 동안 공중합 혼합물과 함께 적하 투입하였다. 개시제의 적하 투입이 완료된 후 중합 반응을 완료하기 위하여 1시간 동안 80℃를 유지 하였다.16 g of acrylic acid and 16 g of methacrylic acid were mixed with 320 g of the aqueous solution from which the salt was removed, and 2.8 g of merceto propionic acid was mixed with a chain transfer agent to prepare a copolymerization mixture. 155 g of water was first added to a 2 liter glass reactor equipped with a stirrer, and the reaction temperature was maintained at 80 ° C. after replacing the inside of the reactor with nitrogen. The copolymer mixture was added dropwise to the reactor over 4 hours, and 2.4 g of ammonium persulfate, a polymerization initiator, was dissolved in 180 g of water and added dropwise together with the copolymer mixture for 5 hours. After the dropwise addition of the initiator was completed, 80 ℃ was maintained for 1 hour to complete the polymerization reaction.

공중합 반응 완료후 33 중량%의 가성소다로 제품의 PH가 6.5 ~ 7.5가 되도록 중화하였다.After completion of the copolymerization reaction, the product was neutralized with ca.

이렇게 하게 제조된 콘크리트 분산제의 중량 평균 분자량은 32,000이었고, 잔류 무기산 촉매의 염은 폴리에틸렌글리콜메타아크릴레이트 중량의 0.32 중량% 이었다.The weight average molecular weight of the concrete dispersant thus prepared was 32,000, and the salt of the residual inorganic acid catalyst was 0.32 wt% of the weight of polyethylene glycol methacrylate.

[비교예 1]Comparative Example 1

공중합 반응 이전에 에스테르 반응 촉매인 황산을 중화한 후 제거 하지 않은것을 제외하며 [실시예 1]과 동일하다. 공중합 반응 종료 후 최종 콘크리트 분산제의 중량 평균 분자량은 26,000이었고, 최종 제품내 무기산 촉매 염은 폴리에틸렌 글리콜메타아크릴레이트 중량의 1.85 중량% 이었다.It is the same as Example 1 except that sulfuric acid, which is an ester reaction catalyst, is not removed after neutralization before the copolymerization reaction. After completion of the copolymerization reaction, the weight average molecular weight of the final concrete dispersant was 26,000, and the inorganic acid catalyst salt in the final product was 1.85 wt% of the weight of polyethylene glycol methacrylate.

[비교예 2]Comparative Example 2

공중합 반응전에 에스테르 반응 촉매인 황산을 중화한 후 제거 하지 않은 것을 제외하면 [실시예 3]과 동일하다. 공중합 반응 종료 후 최종 콘크리트 분산제의 중량 평균 분자량은 33,000이었고, 최종 제품내 무기산 촉매 염은 폴리에틸렌글리콜메타아크릴레이트 중량의 2.3 중량% 이었다.It is the same as [Example 3] except that sulfuric acid which is an ester reaction catalyst is not removed after neutralization before the copolymerization reaction. After completion of the copolymerization reaction, the weight average molecular weight of the final concrete dispersant was 33,000, and the inorganic acid catalyst salt in the final product was 2.3 wt% of the weight of polyethylene glycol methacrylate.

[실험예]Experimental Example

콘크리트 시험Concrete test

시멘트는 보통의 포틀랜드 시멘트를 사용하고 골재 또한 일반 수계의 모래와 경질 사암 쇄석을 사용하였다. 시멘트 분산제로는 실시예 1 내지 실시예 3, 비교예 1 및 2에서 제조된 분산제를 각각 사용하였다. 콘크리트 배합조건은 시멘트 300kg당 물 188kg과 모래 833kg과 자갈 997kg 이다. 상기 조건하에서 콘크리트를 배합하였고, KS F2560에서 정한 바에 따라 슬럼프 경시 변화를 측정하여 각각 콘크리트 분산제의 성능을 [표 1]에 나타내었다.Cement was used as normal Portland cement, and aggregates were also used as general water sand and hard sandstone crushed stone. As the cement dispersant, dispersants prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were used, respectively. Concrete mixing conditions are 188 kg water, 833 kg sand and 997 kg gravel per 300 kg cement. Concrete was blended under the above conditions, and the slump over time was measured as defined in KS F2560, and the performance of the concrete dispersant was shown in [Table 1].

[표 1]TABLE 1

Figure 112005018410711-pat00004
Figure 112005018410711-pat00004

[표 1]에서 나타난 바와 같이 무기산 촉매를 중화한 후 공중합 반응전에 제거한 콘크리트 분산제의 성능이 그렇게 하지 않은 분산제에 비해 월등히 우수함을 알 수 있다. 그 이유는 공중합 반응에 잔류 에스테르 반응용 산촉매가 악영향을 줄 수도 있고, 최종 제품 내에 잔류하는 무기산 촉매의 염이 분산력과 유지 능력에 나쁜 영향을 주는 것으로 추측된다.As shown in Table 1, the performance of the concrete dispersant removed after the neutralization of the inorganic acid catalyst before the copolymerization reaction was superior to that of the dispersant not doing so. The reason is that the acid catalyst for the residual ester reaction may adversely affect the copolymerization reaction, and it is assumed that the salt of the inorganic acid catalyst remaining in the final product adversely affects the dispersibility and the holding ability.

즉, 비교예 1에서와 같이, 본 발명의 범주에 속하지 않는 분산제의 경우는 과량 사용하여도 본 발명의 효과보다 열세였으며, 본 발명과 동일한 양을 사용할 경우 흐름성이 매우 급격히 떨어지는 것을 알 수 있었다.That is, as in Comparative Example 1, the dispersant which does not belong to the scope of the present invention was inferior to the effect of the present invention even when used in excess, it was found that the flowability is very sharply dropped when using the same amount as the present invention. .

직접 에스테르 반응에 의하여 폴리알킬렌글리콜(메타)아크릴레이트를 함유하는 단량체성분을 제조하여, 중합한 후 콘크리트 분산제를 제조하는 방법에서 무기산 촉매를 원하는 양 만큼 사용하여 폴리알킬렌글리콜(메타)아크릴레이트 제조시 반응속도를 최대로 빨리하여 경제성을 양호하게 하고, 에스테르 반응 후 무기산 촉매를 중화한 후 제거하고 공중합 반응을 시켜 제조된 콘크리트 분산제의 분산능력과 슬럼프 유지 능력이 매우 우수한 콘크리트 분산제 제조 방법을 제공할 수 있다.Polyalkylene glycol (meth) acrylate using a desired amount of inorganic acid catalyst in a method of preparing a monomer component containing polyalkylene glycol (meth) acrylate by direct ester reaction, and then polymerizing and preparing a concrete dispersant Provides a method of producing a concrete dispersant with excellent dispersibility and slump retention of the concrete dispersant prepared by neutralizing and removing the inorganic acid catalyst after the ester reaction and removing the copolymer after the ester reaction. can do.

Claims (4)

유기용제하에서 폴리알킬렌글리콘모노알킬에테르와 불포화 카르복실산을 무기산촉매 하에서 반응시켜 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체 용액을 제조하는 단계;Preparing a polyalkylene glycol (meth) acrylic acid ester monomer solution by reacting a polyalkylene glycol monoalkyl ether and an unsaturated carboxylic acid under an organic acid catalyst in an organic solvent; 상기 용액으로부터 유기용제를 증류제거 하는 단계;Distilling off the organic solvent from the solution; 상기 잔류 용액에 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체가 70 ~ 95 중량%의 범위가 되도록 물을 추가하는 단계;Adding water to the residual solution such that the polyalkylene glycol (meth) acrylic acid ester monomer is in a range of 70 to 95% by weight; 상기 수용액에 염기를 투입하여 반응성 무기산을 중화시키는 단계;Adding a base to the aqueous solution to neutralize the reactive inorganic acid; 상기 무기산촉매와 염기로부터 생성되는 염을 여과하는 단계; 및Filtering the salt generated from the inorganic acid catalyst and the base; And 분리된 폴리알킬렌글리콜(메타)아크릴산에스테르계 단량체용액을 포함한 공중합체를 제조하는 단계;Preparing a copolymer comprising a separated polyalkylene glycol (meth) acrylic acid ester monomer solution; 를 포함하는 콘크리트 분산제의 제조방법.Method for producing a concrete dispersant comprising a. 제 1항에 있어서,The method of claim 1, 상기 무기산촉매의 염은 분산제에 대하여 1중량% 이하로 함유하는 것을 특징으로 하는 콘크리트 분산제 제조방법.The salt of the inorganic acid catalyst is a method for producing a concrete dispersant, characterized in that containing less than 1% by weight relative to the dispersant. 제 2항에 있어서,The method of claim 2, 상기 공중합체는 (메타)아크릴산, (메타)아크릴레이트, 말레익산, 푸마르산, 알릴알콜류, 폴리에틸렌글리콜알릴에테르에서 선택되는 어느 하나 이상을 함유하는 것을 특징으로 하는 콘크리트 분산제 제조방법.The copolymer is a method for producing a concrete dispersant, characterized in that it contains any one or more selected from (meth) acrylic acid, (meth) acrylate, maleic acid, fumaric acid, allyl alcohol, polyethylene glycol allyl ether. 무기산 촉매의 염을 1중량%이하로 함유하는 제 1항 내지 제 3항의 제조방법으로 제조된 분산제를 시멘트 혼합물과 혼합하여 제조되는 안정한 흘림성을 가지는 시멘트 조성물.A cement composition having stable flowability prepared by mixing a dispersant prepared by the method of claim 1 with a salt of an inorganic acid catalyst in an amount of 1% by weight or less with a cement mixture.
KR1020050029260A 2004-06-03 2005-04-08 An Improved Production Method of High Performance Concrete Dispersant KR100615640B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040040578 2004-06-03
KR1020040040578 2004-06-03

Publications (2)

Publication Number Publication Date
KR20060046620A KR20060046620A (en) 2006-05-17
KR100615640B1 true KR100615640B1 (en) 2006-08-25

Family

ID=37149434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050029260A KR100615640B1 (en) 2004-06-03 2005-04-08 An Improved Production Method of High Performance Concrete Dispersant

Country Status (1)

Country Link
KR (1) KR100615640B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101984685B1 (en) * 2017-06-08 2019-05-31 공주대학교 산학협력단 Concrete residue remover and method for removing concrete residue using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970006222A (en) * 1995-07-13 1997-02-19 아이다 겐지 Cement dispersant, method for producing the same, and cement composition using the same
US5925184A (en) 1996-02-22 1999-07-20 Nippon Shokubai Co., Ltd. Cement composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970006222A (en) * 1995-07-13 1997-02-19 아이다 겐지 Cement dispersant, method for producing the same, and cement composition using the same
US6376581B1 (en) 1995-07-13 2002-04-23 Mbt Holding Ag Cement dispersant, method for production thereof, and cement composition using the dispersant
US5925184A (en) 1996-02-22 1999-07-20 Nippon Shokubai Co., Ltd. Cement composition

Also Published As

Publication number Publication date
KR20060046620A (en) 2006-05-17

Similar Documents

Publication Publication Date Title
KR100348852B1 (en) Cement admixture and cement composition
CN102993432B (en) Water reducer midbody, preparation method thereof and water reducer prepared by using preparation method
CA2727656C (en) Copolymer admixture system for workability retention of cementitious compositions
JP5416618B2 (en) Process for producing alkylene oxide adducts and derivatives thereof
JP5215663B2 (en) Copolymers and dispersants
WO2014059674A1 (en) Water reducer intermediate, preparation method therefor, and water reducer prepared by using the same
CN108218284B (en) Concrete water reducing agent composition
JP3327809B2 (en) Cement dispersant, method for dispersing cement and cement composition
CN109942754B (en) Method for preparing delayed coagulation type superplasticizer by atom transfer radical polymerization
JP2017186232A (en) Manufacturing method of water-reducing agent for hydraulic material
WO2023184785A1 (en) Crosslinked polycarboxylic acid water reducer and preparation method therefor
JP5107789B2 (en) Cement admixture and its manufacturing method
KR100615640B1 (en) An Improved Production Method of High Performance Concrete Dispersant
KR100587429B1 (en) Graft polymer and method for preparing the graft polymer
JP2003105042A (en) Method for manufacturing polycarboxlic acid-based copolymer and additive for cement
JP2017186233A (en) Manufacturing method of dispersion holding agent for hydraulic material
JP2011132383A (en) Method for producing cement dispersing agent
CN115678006B (en) Viscosity reducer with hyperbranched topological structure, and preparation method and application thereof
KR20060007610A (en) A manufacture method of highly efficient cement didpersion agant with antifoamer force and rised skill to drainage
KR101707572B1 (en) Cement admixture and concrete composition containing the same
KR100485941B1 (en) A New Chemical Composition of High Performance Concrete Dispersant
KR101648255B1 (en) Copolymer for cement admixture, method for preparing the same, and cement composition containing the same
JP3568430B2 (en) Method for producing raw monomer for cement dispersant
KR100462452B1 (en) method of manufacturing the concrete admixture
JP2019137799A (en) Polycarboxylic acid copolymer and method for producing the same, and additive for inorganic particles and cement composition including the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140610

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150810

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160621

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 12