KR20040000585A - Method for Manufacturing Absorbent Capable of Stabilizing Heavy Metal in MSWI Fly Ash by Admixture and Absorbing Heavy Metal - Google Patents

Method for Manufacturing Absorbent Capable of Stabilizing Heavy Metal in MSWI Fly Ash by Admixture and Absorbing Heavy Metal Download PDF

Info

Publication number
KR20040000585A
KR20040000585A KR1020020035076A KR20020035076A KR20040000585A KR 20040000585 A KR20040000585 A KR 20040000585A KR 1020020035076 A KR1020020035076 A KR 1020020035076A KR 20020035076 A KR20020035076 A KR 20020035076A KR 20040000585 A KR20040000585 A KR 20040000585A
Authority
KR
South Korea
Prior art keywords
fly ash
heavy metal
adsorbent
water
ash
Prior art date
Application number
KR1020020035076A
Other languages
Korean (ko)
Other versions
KR100527036B1 (en
Inventor
이우근
김영근
심영숙
Original Assignee
대한민국(강원대학교 총장)
이우근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(강원대학교 총장), 이우근 filed Critical 대한민국(강원대학교 총장)
Priority to KR10-2002-0035076A priority Critical patent/KR100527036B1/en
Publication of KR20040000585A publication Critical patent/KR20040000585A/en
Application granted granted Critical
Publication of KR100527036B1 publication Critical patent/KR100527036B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: Provided is a method for preparing adsorbent for heavy metals by adding sodium sulfate and water to fly ash as additives and heating it to stabilize hazardous material in fly ash, thereby preparing adsorbent with large specific surface area and high adsorbability at low cost. CONSTITUTION: The method comprises the steps of (a) mixing fly ash collected by a dust collector in an incinerator, sodium sulfate and water with a mixing ratio of 4 : 0.5 to 1.5 : 5 to 6, (b) molding the mixture of the step (a) in granular form, (c) heating the granular form of the mixture at temperature in the range of 700 to 900°C, and (d) cooling the granular form of mixture.

Description

첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법{Method for Manufacturing Absorbent Capable of Stabilizing Heavy Metal in MSWI Fly Ash by Admixture and Absorbing Heavy Metal}Method for Manufacturing Absorbent Capable of Stabilizing Heavy Metal in MSWI Fly Ash by Admixture and Absorbing Heavy Metal}

본 발명은 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법에 관한 것으로서, 특히 도시폐기물을 소각처리할 때 집진장치에서 배출되는 비산재를 중금속 흡착제로 재활용하기 위한 최적의 흡착제 제조방법에 관한 것이다.The present invention relates to a method for stabilizing heavy metals and adsorbents for incineration fly ash using additives, and more particularly, to a method for producing an optimal adsorbent for recycling fly ash discharged from a dust collector to a heavy metal adsorbent when incineration of municipal waste.

일반적으로 폐기물을 소각처리한 후 발생되는 소각재를 바닥재와 비산재로 구분할 수 있는데 이중 비산재는 지정폐기물로 분류되어 특별히 관리되는 매립장에서 처리되어야 하나 향후 지정폐기물을 최종처분 할 수 있는 매립장의 확보가 어려운 실정이다.In general, incineration ash generated after incineration of waste can be classified into floor ash and fly ash. Among them, fly ash must be classified as designated waste and treated at a specially managed landfill, but it is difficult to secure landfill for final disposal of designated waste in the future. to be.

상기의 소각재 대부분(80-85%)은 바닥재인데 바닥재에는 철, 못 등의 불연분을 다량으로 함유하고 있으며 전체적인 입경분포가 48메쉬(mesh)[300㎛] 이상으로 이루어져 있어서 흡착제로 제조하기에는 입경이 크다. 반면에 비산재는 주로 10-20중량%의 산화규소(SiO2)와, 20-40중량%의 산화칼슘(CaO)과, 3-10중량%의 산화알루미늄(Al2O3), 1-5중량%의 철(Fe)과, 4-12중량%의 산화나트륨(Na2O)과, 10-30중량%의 미연소분 등으로 이루어져 있고 입경 크기도 주로 100메쉬[150㎛] 이하로 구성되어 있다.Most of the incineration ash (80-85%) is a flooring material, but the flooring material contains a large amount of incombustibles such as iron and nails, and the overall particle size distribution is made up of 48 mesh [300 μm] or more to produce an adsorbent. This is big. Fly ash, on the other hand, mainly contains 10-20% by weight of silicon oxide (SiO 2 ), 20-40% by weight of calcium oxide (CaO), 3-10% by weight of aluminum oxide (Al 2 O 3 ), 1-5 It is composed of iron (Fe) by weight, 4-12% by weight sodium oxide (Na 2 O), 10-30% by weight of unburned powder, etc., and the particle size is mainly composed of 100 mesh [150㎛] or less have.

비산재는 입경크기가 작아 바닥재보다는 흡착제로 제조하기에 용이하며, 비산재중에 주로 함유된 규소와 칼슘, 나트륨의 성분을 이용하여 흡착제로 유용하게 제조할 수 있다. 그러나 비산재는 바닥재보다 염기성 성분을 보다 많이 포함하고 있고 크롬(Cr), 구리(Cu), 납(Pb) 등의 중금속을 함유하고 있는 것으로 나타났다. 따라서, 소각 비산재를 흡착제로 제조하기 위해서는 비산재가 함유하고 있는 중금속을 안정화하고 흡착능력을 증진시켜야 한다.The fly ash has a small particle size and is easier to prepare as an adsorbent than a floor ash, and can be usefully prepared as an adsorbent using components of silicon, calcium and sodium mainly contained in the fly ash. However, fly ash contained more basic components than flooring and contained heavy metals such as chromium (Cr), copper (Cu), and lead (Pb). Therefore, in order to prepare the incineration fly ash as an adsorbent, it is necessary to stabilize the heavy metals contained in the fly ash and enhance the adsorption capacity.

오늘날 산업의 발전과 소비의 증가로 각종 부산물에 의한 환경오염의 문제가 심각하게 대두되고 있는 바, 중금속 등 유해물질의 정화 제거는 생존권을 좌우하는 주요관건이 되고 있다. 환경 오염 물질의 정화처리는 그 오염원의 특성에 따라 그 처리방법이 선택되어지는데, 일반적으로 염료공장, 제철공장, 필름제조공장, 합금공장, 합성공장, 안료공장 및 광산 등에서 배출하는 오폐수는 생물학적으로 처리 불가능한 화학약품, 중금속 등을 함유하고 있으므로, 그 종류에 따라서 흡착법, 이온교환법, 침전법 등을 사용하여 폐수를 처리하고 있다.Today, due to the development of the industry and the increase of consumption, the problem of environmental pollution caused by various by-products has been raised seriously, and the purification and removal of harmful substances such as heavy metals has become a key factor in determining the right to survival. The treatment of environmental pollutants is selected according to the characteristics of the pollutant. Generally, wastewater discharged from dye plants, steel mills, film manufacturing plants, alloy plants, synthesis plants, pigment plants and mines is biologically Since it contains unprocessable chemicals, heavy metals, etc., the wastewater is treated using an adsorption method, an ion exchange method, a precipitation method, or the like depending on the type.

상기한 방법 중에서 흡착법은 용액상 또는 기체상에서 분자가 물리적 혹은화학적 결합력에 의해서 고체표면에 붙는 현상인 흡착을 이용한 것으로 흡착을 위해서는 분자가 달라붙을 수 있는 표면을 제공하는 흡착제(Adsorbent)가 필요하다. 폐수 및 용수 중에 함유된 중금속이온을 제거하기 위한 흡착제로서 활성탄, 이온교환수지 및 합성제올라이트(Zeolite)가 주로 사용되고 있는데, 활성탄은 탄소원료를 수증기 또는 연소가스에 의하여 800∼1000℃로 활성화하거나 염화아연(ZnCl2)에 의하여 활성화한 것으로 활성화 공정에서 생성된 미세공에 중금속 이온이 흡착, 제거된다.Among the above methods, the adsorption method uses adsorption, which is a phenomenon in which molecules adhere to a solid surface by physical or chemical bonding force in a solution or gas phase, and an adsorption agent is required to provide a surface to which molecules can adhere for adsorption. Activated carbon, ion exchange resin, and synthetic zeolite are mainly used as adsorbents to remove heavy metal ions contained in wastewater and water, and activated carbon is activated at 800-1000 ℃ by steam or combustion gas or zinc chloride. Activated by (ZnCl 2 ), heavy metal ions are adsorbed and removed in the micropores generated in the activation process.

이온교환수지는 중금속 이온과 공존하는 다른 이온도 동일하게 흡착하기 때문에 다량의 공존이온을 함유하는 폐수 및 용수중에 미량 존재하는 중금속이온을 제거할 때 중금속이온의 유출이 많은 문제점이 있다. 또한, 합성 제올라이트는 알루민산나트륨(NaAl(OH)4), 규산나트륨(Na2SiO3) 및 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)을 출발원료로 하여 특수한 용도로 합성하기 때문에 제조경비가 많이 들고 여러 이온이 공존할 경우 전체이온을 제거할 수 없는 문제점이 있다.Since the ion exchange resin adsorbs other ions coexisting with the heavy metal ions in the same manner, there is a problem in that heavy metal ions flow out when the heavy metal ions are removed in the wastewater and the water containing a large amount of co-ions. In addition, synthetic zeolites are manufactured using sodium aluminate (NaAl (OH) 4 ), sodium silicate (Na 2 SiO 3 ) and sodium hydroxide (NaOH) or potassium hydroxide (KOH) as starting materials for special purposes. There is a problem that can not remove the whole ion when a lot of ions coexist.

대한민국 공개특허 제2000-049962호는 도시폐기물을 소각처리할 때 집진장치에서 배출되는 비산재를 폐수처리용 흡착제로 제조하는 방법에 관한 것으로서, 비산재 또는 소석회와 혼합한 비산재를 500∼600℃의 환원조건에서 1∼2시간 동안 열처리하는 단계와 열처리된 비산재를 냉각시켜 분말 흡착제를 생산하는 단계를 포함하는 것을 특징으로 하는 흡착제 제조방법이 개시되어 있다.Korean Patent Laid-Open No. 2000-049962 relates to a method for manufacturing fly ash discharged from a dust collecting device as an adsorbent for wastewater treatment when incineration of municipal waste, and the fly ash mixed with fly ash or slaked lime is reduced to 500 to 600 ° C. An adsorbent production method is disclosed that comprises a step of heat treatment for 1 to 2 hours and cooling the heat-treated fly ash to produce a powder adsorbent.

상기한 종래기술은 열처리된 비산재 자체를 흡착제로 사용하고 있으므로 균일한 입경과 기공을 가지기 어려운 분말 흡착제를 생산하므로 예를들어, 연속적으로 폐수를 처리하는 연속식 폐수 처리 시스템에 사용할 때 일정한 유량과 유속을 보장하지 못해 압력강하 문제가 야기되므로 사용이 어려우며, 안정화 및 흡착능이 떨어지는 문제점이 있다.Since the above-described prior art uses the heat-treated fly ash itself as an adsorbent, it produces a powder adsorbent that is difficult to have a uniform particle size and pores. For example, when used in a continuous wastewater treatment system that continuously treats wastewater, it has a constant flow rate and flow rate. Since it does not guarantee the pressure drop problem is difficult to use, there is a problem that the stabilization and adsorption capacity is poor.

본 발명자들은 상기한 종래 기술의 문제점을 해결하기 위해 예의 연구한 결과, 소각 비산재에 첨가제와 물을 첨가하여 소정 형상으로 입자를 성형한 후 이를 열처리함으로써 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 성형된 입자가 일정한 강도와 크기를 갖게되어 비표면적 및 중금속 흡착능이 우수하고 연속식 시설에서도 경제적으로 중금속 제거용 흡착제로 제조가 가능함을 발견하여 본 발명을 완성하였다.The present inventors have diligently studied to solve the problems of the prior art, and as a result, by adding an additive and water to the incineration fly ash, the particles are formed into a predetermined shape and then heat treated to stabilize the harmful substances contained in the fly ash, and molding The present invention completed the present invention by finding that the particles have a certain strength and size, and thus have excellent specific surface area and heavy metal adsorption capacity, and can be economically manufactured as an adsorbent for removing heavy metals even in a continuous facility.

본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 제안된 것으로서, 본 발명의 목적은 원료가 풍부하고 가격이 저렴한 소각 비산재에 첨가제로서 황산나트륨과 물을 첨가하여 열처리함으로써 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 일정한 강도와 크기를 갖도록 성형하여 비표면적 및 중금속 흡착능이 우수하고 연속식 폐수 처리시설에서도 적용 가능하며 경제적인 중금속 제거용 흡착제 제조방법을 제공하는 데 있다.The present invention has been proposed to solve the above problems of the prior art, and an object of the present invention is to add harmful sulfate and water as additives to incineration fly ash, which is rich in raw material and inexpensive, to heat the harmful substances contained in the fly ash. Stabilization and molding to have a certain strength and size is excellent in specific surface area and heavy metal adsorption capacity, and can be applied to continuous wastewater treatment facilities, and to provide an economical method for producing heavy metal removal adsorbent.

도 1은 본 발명에 따른 소각 비산재로부터 흡착제를 제조하는 방법을 나타내는 공정흐름도이다.1 is a process flow diagram illustrating a method for preparing an adsorbent from an incineration fly ash according to the present invention.

이와 같은 목적을 달성하기 위하여, 본 발명은 소각장의 집진장치에서 포집된 비산재와 황산나트륨과 물을 4 : 0.5~1.5 : 5~6 중량비로 혼합하는 단계와, 상기 혼합물을 소정 형상의 입상으로 성형하는 단계와, 상기 성형된 성형체를 열처리하는 단계와, 상기 열처리하여 형성된 흡착제를 냉각하는 단계로 이루어진 것을 특징으로 하는 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법이 제공된다.In order to achieve the above object, the present invention comprises the steps of mixing the fly ash collected in the dust collector of the incinerator, sodium sulfate and water in a weight ratio of 4: 0.5 ~ 1.5: 5 ~ 6, and molding the mixture into a granular shape There is provided a method of stabilizing heavy metals and adsorbents for incineration fly ash using an additive, comprising the steps of, heat treating the molded body, and cooling the adsorbent formed by the heat treatment.

일반적으로 흡착제는 다음과 같은 구비 조건을 갖추어야 한다. 즉 첫째, 단위 무게당 흡착력이 우수하여야 한다. 둘째, 물에 용해되지 않으면서 내산성, 내 알칼리성이어야 한다. 셋째, 재생이 가능하여야 한다. 넷째, 다공질이며 입경(부피)에 대해 비표면적이 커야 한다. 다섯째, 액체상이나 기체상에서 유독물질을 발생하지 않아야 한다. 여섯째, 입도분포가 균일하여야 한다. 일곱째, 구입이 용이하고 가격이 저렴하여야 한다.In general, the adsorbent should have the following conditions: That is, first, the adsorption force per unit weight should be excellent. Second, it must be acid and alkali resistant without dissolving in water. Third, playback should be possible. Fourth, it must be porous and have a large specific surface area for the particle size (volume). Fifth, it should not generate toxic substances in liquid or gas phase. Sixth, the particle size distribution should be uniform. Seventh, it should be easy to purchase and low price.

상기 혼합물은 비산재와 첨가제인 황산나트륨과 물은 4 : 0.5~1.5 : 5~6 중량비로 혼합하는 것이 바람직한데, 황산나트륨의 중량비가 하한값인 0.5 중량비 미만일 경우는 만족할만한 흡착제의 성능, 즉 양이온 교환 능력(Cation Exchange Capacity)값을 충분히 얻을 수가 없으며, 상한값인 1.5 중량비를 초과하는 경우에는 중금속 용출량이 기준용출량 이상으로 나타나는 문제가 발생한다.The mixture is preferably a mixture of fly ash and additives, sodium sulfate and water in a weight ratio of 4: 0.5 to 1.5: 5 to 6, when the weight ratio of sodium sulfate is less than 0.5 weight ratio of the lower limit, satisfactory performance of the adsorbent, that is, cation exchange capacity ( Cation Exchange Capacity) cannot be obtained sufficiently, and when the upper limit of 1.5 weight ratio is exceeded, a problem occurs that the heavy metal leaching amount is higher than the standard leaching amount.

그리고, 상기 성형체는 단면이 원형, 다각형의 실린더타입(cylinder type) 또는 구형의 형상을 갖는 것이 바람직하다. 이 경우 상기 성형된 성형체는 실린더 타입인 경우 직경 3±0.5㎜, 길이 2.5~7㎜가 바람직한데, 그 이유는, 성형체의 길이가 2.5㎜ 미만일 경우에는 입상이 너무 작아 강도가 낮게되므로 성형체의 형상유지가 어렵고, 길이가 7㎜를 초과하면 열처리 시에 휘발성물질 및 수분이 빠른 시간내에 기화되지 못하여 결국, 공극을 만들지 못하므로 CEC값이 저하되기 때문이다.In addition, the molded body preferably has a circular, polygonal cylinder type or spherical shape in cross section. In this case, the molded article is preferably a cylinder type of 3 ± 0.5 mm in diameter and 2.5 to 7 mm in length. The reason for this is that when the length of the molded article is less than 2.5 mm, the granules are too small and the strength is low. This is because it is difficult to maintain, and if the length exceeds 7 mm, the volatiles and moisture during the heat treatment are not evaporated in a short time, and thus the CEC value is lowered because voids are not formed.

또한, 상기 성형된 성형체는 700∼900℃에서 공기를 이용하여 1L/min으로 열처리하는 것이 바람직한데, 그 이유는, 열처리 온도가 700℃ 미만이거나 900℃를 초과하면 중금속이 안정화되지 않고 상기 성형체의 형태가 유지되지 못하기 때문이다.In addition, the molded body is preferably heat-treated at 700 to 900 ° C with air at 1 L / min, because, when the heat treatment temperature is less than 700 ° C or more than 900 ° C heavy metals are not stabilized and the Because form is not maintained.

본 발명은 상기한 조건을 충족시키는 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법에 관한 것으로서 첨부한 도면을 참조하여 본 발명을 더욱 상세히 설명하고자 한다.The present invention relates to a heavy metal stabilization of incineration fly ash using an additive that satisfies the above conditions and to a method for preparing an adsorbent, with reference to the accompanying drawings.

도 1은 본 발명에 따른 소각 비산재로부터 흡착제를 제조하는 방법을 나타내는 공정흐름도이다.1 is a process flow diagram illustrating a method for preparing an adsorbent from an incineration fly ash according to the present invention.

본 발명에 의한 도 1의 공정흐름도에 나타난 바와 같이 우선 소각 비산재에 일정량의 물과 첨가제를 첨가하여 일정크기와 형상으로 성형하여 열처리함에 따라 흡착제를 제조한다. 즉, 소각 비산재에 물과 첨가제를 첨가하여 혼합기에서 잘 혼합한 후 예를들어, 직경 3㎜, 길이 7㎜의 실린더 형태로 성형한다. 상기의 성형체는 700∼900℃에서 공기조건으로 1∼2L/min으로 1시간동안 열처리한 후 건조기에서 60℃ 이하로 건조시킨다.As shown in the process flow diagram of FIG. 1 according to the present invention, first, a predetermined amount of water and an additive are added to an incineration fly ash to form a predetermined size and shape, and thus an adsorbent is prepared. That is, water and additives are added to the incineration fly ash and mixed well in a mixer, and then molded into, for example, a cylinder having a diameter of 3 mm and a length of 7 mm. The molded body is heat-treated at 700 to 900 ° C. for 1 hour under air conditions at 1 to 2 L / min, and then dried to 60 ° C. or less in a dryer.

본 발명에서는 흡착제의 성능을 양이온 교환 능력(CEC)으로 측정하였으며, 양이온 교환 능력(Cation Exchange Capacity)은 어떤 한 이온이 다른 이온을 어느 정도 치환할 수 있는 정도를 측정하는 것으로 흡착제로의 가능성을 알아보기 위한 간접적인 수치로 이용되어 지고 있다.In the present invention, the performance of the adsorbent was measured by the cation exchange capacity (CEC), and the cation exchange capacity (Cation Exchange Capacity) is a measure of the degree to which one ion can substitute for another ion to find out the possibility of the adsorbent. It is used as an indirect figure for viewing.

본 발명에 의한 흡착제는 알칼리성이고, 다수의 미세공을 가지고 있으며, 표면적이 크고, 흡착력이 크며, 각종의 용도로 사용될 수 있는 것으로 나타났다. 또한 본 발명의 흡착제는 연속식 처리시스템에서 종래에 분말 흡착제의 사용시 발생하였던 압력강하가 발생하지 않고 일정한 유량과 유속이 보장되었으며, 사용이 용이하고 흡착능력이 우수한 일정한 크기와 강도를 가지는 입상으로 제조 가능하였다.The adsorbent according to the present invention is alkaline, has a large number of micropores, has a large surface area, a high adsorption force, and can be used for various purposes. In addition, the adsorbent of the present invention is manufactured in a granule having a constant size and strength, which is easy to use and has excellent adsorption ability, without guaranteeing a constant flow rate and flow rate without generating a pressure drop that has conventionally occurred when using a powder adsorbent in a continuous processing system. It was possible.

(실시예)(Example)

본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 한정되는 것은 아니다.If the present invention will be described in detail based on the Examples as follows, the present invention is not limited to the Examples.

<종래예 1><Prior Example 1>

종래예 1은 소각장에서 배출된 소각 비산재(ash)를 열처리만 수행하여 분말 형태의 시료를 얻었고 이 시료에 대하여 흡착능력을 평가할 수 있는 CEC의 값을 측정하여 하기 표 1에 나타내었다.Conventional Example 1 obtained only a powder form sample by heat treatment of the incineration fly ash (ash) discharged from the incinerator, and measured by the value of CEC that can evaluate the adsorption capacity for this sample is shown in Table 1 below.

<비교예 1~2, 실시예 3~4><Comparative Examples 1-2, Examples 3-4>

비교예 1~2 및 실시예 3~4는 강도유지와 흡착능력을 증진시키기 위해 물의 첨가량에 따른 영향을 나타낸 것으로 잘 건조한 소각 비산재에 물의 첨가량을 변화시켜 실린더 타입으로 성형한 후 700℃에서 공기1L/min의 조건에서 열처리 한 후 60℃ 이하로 건조하여 CEC 값을 측정하여 표 1에 나타낸 것이다.Comparative Examples 1 to 2 and Examples 3 to 4 show the effect of the addition of water to maintain strength and adsorption capacity, and change the amount of water in well-dried incineration fly ash to be molded into a cylinder type and then air 1L at 700 ° C. After heat treatment at the condition of / min and dried to 60 ℃ or less is shown in Table 1 by measuring the CEC value.

반응조건Reaction condition CEC(meq/100g)CEC (meq / 100g) 종래예 1Conventional Example 1 열처리 ashHeat treatment ash 4.64.6 비교예 1Comparative Example 1 ash/water(4:3)ash / water (4: 3) 4.64.6 비교예 2Comparative Example 2 ash/water(4:4)ash / water (4: 4) 5.95.9 실시예 1Example 1 ash/water(4:5)ash / water (4: 5) 8.48.4 실시예 2Example 2 ash/water(4:6)ash / water (4: 6) 8.48.4

표 1에 나타난 것과 같이 종래예 1은 소각장에서 배출된 소각 비산재를 열처리만 수행한 경우의 CEC의 값이 4.6meq/100g 정도이며, 비교예 1~2에서는 소각 비산재의 양을 고정하고 물의 첨가량을 3~4㎖로, 실시예 1~2는 물의 첨가량을 5~6㎖로 첨가한 것으로 CEC 값이 물의 첨가량을 5~6㎖로 첨가한 본 발명에 의한 실시예 1~2가 8.4(meq/100g)로 가장 좋은 흡착효율을 보였다.As shown in Table 1, the conventional example 1 has a CEC value of about 4.6 meq / 100 g when only the incineration fly ash discharged from the incineration plant is heat-treated.In Comparative Examples 1 and 2, the amount of incineration fly ash is fixed and the amount of water added is increased. 3 to 4 mL, Examples 1 to 2 added 5 to 6 mL of water, and CEC values of Examples 1 to 2 according to the present invention added 5 to 6 mL of water were 8.4 (meq / 100g) showed the best adsorption efficiency.

<실시예 3~5, 비교예 3~5><Examples 3-5, Comparative Examples 3-5>

실시예 3~5 및 비교예 3~5는 비산재가 함유하고 있는 중금속의 양을 저감하고 흡착능력을 증진시키기 위해 비산재 및 물의 첨가량은 고정하고 첨가제인 황산나트륨의 첨가량을 변화시켜 열처리 온도 800℃에서 1L/min 공기의 조건에서 열처리 한 후 60℃ 이하로 건조하여 첨가제의 농도에 따른 중금속 용출량과 CEC 값을 측정하여 표 2에 나타내었다.In Examples 3 to 5 and Comparative Examples 3 to 5, the amount of fly ash and water was fixed and the amount of additive sodium sulfate was changed to reduce the amount of heavy metals contained in the fly ash and to enhance the adsorption capacity. After heat treatment at / min air condition and dried to 60 ℃ or less, the heavy metal elution amount and CEC value according to the concentration of the additive is measured and shown in Table 2.

반응조건Reaction condition CEC(meq/100g)CEC (meq / 100g) Pb 용출량(mg/L)Pb elution amount (mg / L) 실시예 3Example 3 ash 4g+0.5g Na2SO4+water 5mLash 4g + 0.5g Na 2 SO 4 + water 5mL 15.715.7 1.81.8 실시예 4Example 4 ash 4g+1.25g Na2SO4+water 5mLash 4g + 1.25g Na 2 SO 4 + water 5mL 25.125.1 1.91.9 실시예 5Example 5 ash 4g+1.5g Na2SO4+water 5mLash 4g + 1.5g Na 2 SO 4 + water 5mL 36.636.6 2.42.4 비교예 3Comparative Example 3 ash 4g+1.75g Na2SO4+water 5mLash 4g + 1.75g Na 2 SO 4 + water 5mL 54.254.2 4.24.2 비교예 4Comparative Example 4 ash 4g+2.0g Na2SO4+water 5mLash 4g + 2.0g Na 2 SO 4 + water 5mL 47.147.1 6.36.3 비교예 5Comparative Example 5 ash 4g+2.5g Na2SO4+water 5mLash 4g + 2.5g Na 2 SO 4 + water 5mL 15.615.6 3.93.9

표 2에서 보는 바와 같이, 실시예 3~5 및 비교예 3~5는 첨가제인 황산나트륨의 첨가량을 변화하여 실험한 것으로, 최고의 흡착 조건과 낮은 중금속 용출량을 나타내는 최적의 조건은 실시예 5에 따른 비산재의 양 4g에 1.5g Na2SO4를 물 5mL에 혼합하여 첨가하였을 때 최고의 흡착효율을 나타내었다.As shown in Table 2, Examples 3 to 5 and Comparative Examples 3 to 5 were experiments by varying the amount of sodium sulfate as an additive, and the optimum conditions showing the best adsorption conditions and low heavy metal elution amount were scattered according to Example 5. The highest adsorption efficiency was obtained when 1.5 g Na 2 SO 4 was added to 5 mL of water in 4 g of.

만일, 상기 첨가제인 황산나트륨의 첨가량이 0.5 중량비 미만일 경우는 만족할만한 흡착제의 성능, 즉 양이온 교환 능력(Cation Exchange Capacity)값을 충분히 얻을 수가 없으며, 상한값인 1.5중량비를 초과하는 경우에는 비교예 3~5에 나타난 것과 같이 중금속 용출량이 기준 용출량(국내 용출 기준치(3mg/L)) 이상으로 나타나는 문제가 있음을 알 수 있다.If the additive amount of sodium sulfate, which is the additive, is less than 0.5 weight ratio, satisfactory adsorbent performance, that is, the Cation Exchange Capacity value cannot be sufficiently obtained, and when the upper limit is 1.5 weight ratio, Comparative Examples 3 to 5 As shown in FIG. 2, it can be seen that there is a problem that the heavy metal elution amount is higher than the standard elution amount (domestic elution standard value (3 mg / L)).

<실시예 6, 비교예 6~10><Example 6, Comparative Examples 6-10>

실시예 6은 및 비교예 6~10은 적합한 첨가제를 확인하기 위하여 표 3과 같이 비산재와, 첨가제 및 물을 각각 4 : 0.5 : 5의 중량비로 각각 다른 첨가제를 혼합하여 열처리 온도 700℃에서 1L/min 공기의 조건에서 열처리 한 후 60℃ 이하로 건조하여 첨가제의 종류에 따른 중금속 용출량과 CEC 값을 측정하여 표 3에 나타내었다.Example 6 and Comparative Examples 6 to 10 are mixed with each other additives in a weight ratio of 4: 0.5: 5 fly ash, additives and water, respectively, as shown in Table 3 in order to identify a suitable additive 1L / at a heat treatment temperature of 700 ℃ After heat treatment at min air condition and dried to 60 ℃ or less, the heavy metal elution amount and CEC value according to the type of additives were measured and shown in Table 3.

첨가제additive CEC(meq/100g)CEC (meq / 100g) Pb 용출량(mg/L)Pb elution amount (mg / L) 실시예 6Example 6 Na2SO4 Na 2 SO 4 18.018.0 1.91.9 비교예 6Comparative Example 6 MgCO3 MgCO 3 9.59.5 25.425.4 비교예 7Comparative Example 7 PVAPVA 9.89.8 9.79.7 비교예 8Comparative Example 8 NAOHNAOH 12.812.8 27.027.0 비교예 9Comparative Example 9 NaC1NaC1 12.612.6 18.018.0 비교예 10Comparative Example 10 MgC12MgC12 23.623.6 10.110.1

표 3에서 보는 바와 같이 Na2SO4는 다른 첨가제와 달리 중금속의 용출량을 가장 낮게 만들고 그리고 흡착능도 증가시키는 것으로 나타났다. MgCl2가 24meq/100g으로 최고의 CEC 값을 나타내었지만 중금속 용출량이 10mg/L 정도로 국내 용출 기준치(3mg/L)를 초과하는 문제가 발생하는 것으로 나타났다. MgCO3, PVA, NaOH, NaCl을 첨가제로 사용한 경우는 서로 유사한 CEC 값을 나타내었지만 중금속 용출량에 대해서는 서로 다른 값을 나타내었다. 네 첨가제 모두가 중금속 용출량이 기준 용출량(3mg/L) 이상으로 나타내어 소각 비산재의 첨가제로는 적당하지 않는 것으로 나타났다.As shown in Table 3, unlike other additives, Na 2 SO 4 was found to have the lowest elution of heavy metals and increase the adsorption capacity. MgCl 2 showed the highest CEC value of 24 meq / 100 g, but the heavy metal elution amount was about 10 mg / L, which exceeded the domestic dissolution standard (3 mg / L). When MgCO 3 , PVA, NaOH, and NaCl were used as additives, they showed similar CEC values but different values for heavy metal leaching amounts. All four additives showed heavy metal elution above the standard elution (3 mg / L), indicating that it was not suitable as an additive for incineration fly ash.

석탄재나 소각재 등의 용융온도를 낮추어 부피를 줄이고 용출율을 낮추거나 나트륨 중심의 결정을 만드는데 활용되고 있는 나트륨 화합물인 Na2SO4를 첨가제로 사용한 경우는 Na성분이 낮은 온도에서 용융점이 높은 물질과 결합을 잘 하기 때문에 쉽게 비산재 속의 중금속을 안정화하는 것으로 나타났고 CEC 값도 높은 값을 나타내었다.When Na 2 SO 4 is used as an additive to reduce the volume by reducing the melting temperature of coal ash or incineration ash, and to lower the dissolution rate or to make sodium-based crystals, the Na component is combined with the high melting point material at low temperature. Because it is good to stabilize the heavy metals in fly ash easily appeared and showed a high CEC value.

또한 나트륨 화합물은 염소와의 결합성이 뛰어나기 때문에 물에 용출되기 쉬운 염화물 형태의 화합물을 산화물 형태로 바꾸어 용출을 방지하는 역할을 할 수 있으며 물과 함께 열처리할 경우 수소와 반응을 먼저 하기 때문에 염화수소의 발생을 억제할 수 있을 것으로 판단된다. 그리고 나트륨화합물 중 황성분은 고온에서 쉽게 다른 중금속과 안정한 형태의 화합물을 형성하여 중금속의 안정화 및 휘발을 방지하게 된다.In addition, since sodium compounds have excellent binding to chlorine, they can convert chloride-type compounds, which are easily eluted into water, into oxides to prevent elution, and when reacted with water, they react with hydrogen first. It is judged that the occurrence of can be suppressed. In the sodium compound, the sulfur component easily forms a stable compound with other heavy metals at high temperature, thereby preventing the stabilization and volatilization of the heavy metals.

상술한 바와 같이, 본 발명에 의해 앞으로 증가될 소각 비산재에 첨가제를 첨가하여 열처리함으로써 비산재 중에 함유되어 있는 유해물질을 안정화시키고, 안정화된 비산재를 흡착능이 우수하고 경제적인 흡착제로 재활용함으로써 자원을 유용하게 이용할 수 있을 뿐만 아니라 도시 고형폐기물의 소각재 문제를 해결하는 유력한 방법으로 활용될 수 있다.As described above, the present invention stabilizes the harmful substances contained in the fly ash by adding an additive to the incineration fly ash which will be increased in the future, and recycles the stabilized fly ash as an adsorbent having excellent adsorption capacity and economical efficiency. Not only can it be used, it can be used as a viable way to solve the problem of incineration of municipal solid waste.

따라서, 본 발명에 의한 흡착제는 축산폐수, 염료, 제철, 필름제조, 합금공장, 광산의 오폐수 처리 등에서 뿐 만 아니라, 중금속에 오염된 오염지의 개량 등에도 효과적으로 사용할 수 있다. 또한 본 발명의 흡착제는 부가가치가 낮은 무한한 자원을 이용하고, 폐수중의 중금속을 흡착제에 흡착시킨 뒤 흡착제를 분리하여 일정한 장소에 매립하거나, 흡착제에 흡착된 중금속을 강한 무기산 용액으로 추출한 후 재사용할 수 있으므로 경제적이다.Therefore, the adsorbent according to the present invention can be effectively used not only for livestock wastewater, dye, steelmaking, film production, alloy plant, wastewater treatment of mines, but also for improving contaminated paper contaminated with heavy metals. In addition, the adsorbent of the present invention can use infinite resources with low added value, adsorb heavy metals in the waste water to the adsorbent, separate the adsorbents and bury them in a fixed place, or extract the heavy metals adsorbed on the adsorbent with a strong inorganic acid solution and reuse it. It is economical.

Claims (3)

소각장의 집진장치에서 포집된 비산재와 황산나트륨과 물을 4 : 0.5~1.5 : 5~6 중량비로 혼합하는 단계와,Mixing the fly ash collected in the dust collector of the incinerator, sodium sulfate and water in a weight ratio of 4: 0.5 to 1.5: 5 to 6, 상기 혼합된 혼합물을 소정 형상의 입상으로 성형하는 단계와,Shaping the mixed mixture into granules of a predetermined shape; 상기 성형된 성형체를 열처리하는 단계와,Heat-treating the molded body, 상기 열처리하여 형성된 흡착제를 냉각시키는 단계를 포함하는 것을 특징으로 하는 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법.Method for producing a heavy metal stabilization and adsorbent of incineration fly ash using an additive comprising the step of cooling the adsorbent formed by the heat treatment. 제 1항에 있어서, 상기 성형된 성형체는 원형, 다각형의 실린더타입(cylinder type)과 구형 중 어느 하나로 이루어지고, 원형 실린더 입상은 직경 3±0.5㎜, 길이 2.5~7㎜로 이루어지는 것을 특징으로 하는 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법.According to claim 1, wherein the molded body is formed of any one of a circular, polygonal cylinder type (cylinder type) and a sphere, the circular cylinder granularity is characterized in that the diameter of 3 ± 0.5mm, 2.5 ~ 7mm in length Method for preparing heavy metals and adsorbents for incineration fly ash using additives. 제 1항에 있어서, 상기 성형된 성형체는 700∼900℃의 온도와 1L/min의 공기조건에서 열처리하는 것을 특징으로 하는 첨가제를 이용한 소각 비산재의 중금속 안정화 및 흡착제 제조방법.The method of claim 1, wherein the molded body is heat treated at a temperature of 700 ~ 900 ℃ and air conditions of 1L / min using heavy additives stabilization and adsorbent manufacturing method of the incineration fly ash.
KR10-2002-0035076A 2002-06-21 2002-06-21 Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture KR100527036B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0035076A KR100527036B1 (en) 2002-06-21 2002-06-21 Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0035076A KR100527036B1 (en) 2002-06-21 2002-06-21 Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture

Publications (2)

Publication Number Publication Date
KR20040000585A true KR20040000585A (en) 2004-01-07
KR100527036B1 KR100527036B1 (en) 2005-11-09

Family

ID=37312423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0035076A KR100527036B1 (en) 2002-06-21 2002-06-21 Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture

Country Status (1)

Country Link
KR (1) KR100527036B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454555B1 (en) 2020-04-21 2022-10-13 주식회사 포스코건설 Stabilizing agents of heavy metals in fly ash and method for stabilizing heavy metals in fly ash using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254839A (en) * 1986-04-30 1987-11-06 Taguchi Kenkyusho:Kk Adsorbent for metallic ion and odor
JP3438545B2 (en) * 1997-08-07 2003-08-18 三浦工業株式会社 Adsorbent for exhaust gas treatment and method for treating the adsorbent
JP3420081B2 (en) * 1998-10-02 2003-06-23 三重県 Method for producing adsorbent from refuse incineration ash
KR100421469B1 (en) * 2000-12-11 2004-03-09 한국에너지기술연구원 Manufacturing Method of Phillipsite Type Zeolite for Removing Ammonia from Waste Water Using Fly Ash
KR100425780B1 (en) * 2001-07-19 2004-04-03 이우근 The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash

Also Published As

Publication number Publication date
KR100527036B1 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
Bayat Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel (II), copper (II) and zinc (II)
Apak et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes)
Bouzid et al. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes
Yan et al. Removal of phosphate from wastewater using alkaline residue
Çoruh et al. Adsorption of copper (II) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies
CN110698174A (en) Lightweight sludge ceramsite, and preparation method and application thereof
Carvalheiras et al. Metakaolin/red mud-derived geopolymer monoliths: Novel bulk-type sorbents for lead removal from wastewaters
Li et al. Investigation of the adsorption characteristics of Cr (VI) onto fly ash, pine nut shells, and modified bentonite
Wajima et al. Removal of fluoride ions using calcined paper sludge
Gu et al. Phosphorus and Nitrogen Removal Using Novel Porous Bricks Incorporated with Wastes and Minerals.
Ren et al. Study on the mechanism of removing fluoride from wastewater by oxalic acid modified aluminum ash-carbon slag-carbon black doped composite
KR101235251B1 (en) Cement using waterworks sludge and mathod for manufacturing the same
KR100527036B1 (en) Method for Manufacturing Absorbent Capable of Absorbing Heavy Metal Using MSWI Fly Ash and Admixture
Zahar et al. Treatment of acid mine drainage (AMD) using industrial by-product: sorption behavior of steel slag for metal-rich mine water
Duan et al. Simultaneous Removal of NH4+ and PO43‐at Low Concentrations from Aqueous Solution by Modified Converter Slag
KR100425780B1 (en) The manufacture method of adsorbent by hydrothermal reaction of MSWI fly ash
KR20140081952A (en) Adsorbent of organic compounds in waste water by using coal fly ash and preparation method thereof
KR100333184B1 (en) Preparing method of an absorbent for sulfur oxide in low temperature.
JP3724062B2 (en) Waste treatment material and waste treatment method
Wang et al. Preparation and assessment of granular substrate from wastewater post-coagulation sludge towards maximum phosphate adsorption and erosion wear resistance
CN112108110A (en) Nitrogen and phosphorus removal granular material based on natural zeolite and preparation method thereof
CN105771883A (en) Forsterite adsorbent for sewage treatment and preparation method thereof
JP2000051645A (en) Method for treating exhaust gas and fly ash
JP2008259942A (en) Boron adsorbent material and method for manufacturing the same
KR0182996B1 (en) Absorbent for treating heavy metal using clay mineral

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131204

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141014

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150827

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170823

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190910

Year of fee payment: 15