KR200303605Y1 - Seawater flow on and exchange equipment of the erect breakwater - Google Patents

Seawater flow on and exchange equipment of the erect breakwater Download PDF

Info

Publication number
KR200303605Y1
KR200303605Y1 KR20-2002-0032601U KR20020032601U KR200303605Y1 KR 200303605 Y1 KR200303605 Y1 KR 200303605Y1 KR 20020032601 U KR20020032601 U KR 20020032601U KR 200303605 Y1 KR200303605 Y1 KR 200303605Y1
Authority
KR
South Korea
Prior art keywords
seawater
sea
caisson
breakwater
rectangular
Prior art date
Application number
KR20-2002-0032601U
Other languages
Korean (ko)
Inventor
원 회 양
Original Assignee
원 회 양
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원 회 양 filed Critical 원 회 양
Priority to KR20-2002-0032601U priority Critical patent/KR200303605Y1/en
Application granted granted Critical
Publication of KR200303605Y1 publication Critical patent/KR200303605Y1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B2201/00Devices, constructional details or methods of hydraulic engineering not otherwise provided for
    • E02B2201/50Devices for sequentially discharging constant liquid quantities, e.g. into different irrigation channels

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Abstract

본 고안은 직립식 방파제를 구축함에 있어, 방파제를 구축하므로써 방파제를 기준으로 내해와 외해의 해수가 차단되어 조수간만에 의한 자연적인 해수가 교환되지 못하여 장기간이 지날 경우 내해의 해수수질이 악화되므로 외해로부터 밀려오는 파랑은 차단하여 내해의 해수를 정온되게 하므로써 항내의 정박 중인 선박 및 각종 항만시설은 보호되게 하면서도 외해의 해수가 내해로 유입되게 하는 방파제체들이 제시되고 있는 바, 본 고안은 외해의 해수가 방파제의 상단부 선단 내부로 월류하여 유입되게 하고 유입된 해수는 내해의 수면하의 수중으로 유출되게 하므로써 내해와 외해의 해수는 교환되면서도 항내의 수면정온을 유지할 수 있도록 한 고안에 대한 것이다.In the construction of an upright breakwater, the seawater of the inland sea and the open sea is blocked by building the breakwater, so that the natural seawater cannot be exchanged only by tidal waters. By blocking the incoming blue waves to keep the seawater calm, the berth ships and various port facilities are protected while the seawater of the open sea is introduced into the inland sea. It is designed to allow the inflow of seawater in the sea and the inland sea to be maintained while maintaining the water temperature in the harbor by allowing the inflow of the seawater to flow into the top end of the breakwater and the inflow of seawater into the water under the surface of the inland sea.

Description

직립식 방파제의 해수월류교환시설 {Seawater flow on and exchange equipment of the erect breakwater}Seawater flow exchange facility of upright breakwater {Seawater flow on and exchange equipment of the erect breakwater}

본 고안은 케이슨을 사용하여서 구축되는 직립식 방파제에 있어서, 방파제체의 상부로 해수가 월류하여 내해로 유입되게 하되 내해의 수면 하로 유도되게 하므로써 내해의 해수면이 정온을 유지하면서 유입되게 하여 내해의 해수와 혼합되게 하므로써 내해의 해수수질을 항상 청정상태로 유지할 수 있는 기능을 가지는 직립식 방파제의 구조에 대한 고안으로서, 종래에는 수심이 깊고 파랑의 규모가 비교적 큰 지역에 구축되는 방파제체는 주로 케이슨을 이용한 직립식 방파제를 구축하게 되는 바, 직립식 방파제는 해저면으로부터 해수면 상측으로 돌출되도록 방파제체를 구축하게 되므로 반사파가 크고 해류의 흐름을 완전히 차단하여 내해측 항내 해수면의 정온을 유지하게 된다.The present invention is an upright breakwater constructed by using caisson, the seawater flows into the inland sea to the upper part of the breakwater body to be introduced under the surface of the inland sea, so that the sea level of the inland sea is introduced while maintaining a constant temperature, the seawater of the inland sea It is designed for the structure of the upright breakwater which has the function to keep the seawater quality in the sea always clean by mixing with the water. In the past, the breakwater body which is constructed in the deep water and the relatively large wave size is mainly the caisson. As the upright breakwater is used, the upright breakwater is constructed so that the breakwater protrudes from the bottom of the sea to the upper side of the sea, so that the reflected wave is large and the flow of the current is completely blocked to maintain the constant temperature of the sea level in the inner sea port.

상기와 같이 케이슨을 사용한 직립식 방파제는 외해로부터 밀려오는 파랑을 차단하여 항내의 해수면 정온을 유지하므로 정박 중인 선박의 안전 및 각종 항만시설을 파랑으로부터 보호하게되지만 방파제에 의하여 파랑이 차단되므로 방파제를 기준으로 내해의 해수와 외해의 해수가 전혀 교환되지 못하므로 내해의 해수는 정체되어 부패되기 때문에 해수의 오염이 심각한 것이 현실이다.As described above, the upright breakwater using caissons keeps the sea level calm in the harbor by blocking the blue waves coming from the open sea, thus protecting the safety of ships and various port facilities from the blue, but the blue waves are blocked by the breakwater. As the seawater of the inland sea and the seawater of the offshore sea cannot be exchanged at all, the seawater of the inland sea is stagnant and decayed.

도1은 본 고안상으로 실시구성되는 직립식 방파제의 해수월류교환시설의 단위구조체 부분절결 분해사시도.1 is an exploded perspective view of a partial structure of a unit structure of a seawater current exchange facility of an upright breakwater configured according to the present invention;

도2는 본 고안 방파제에 조적되는 사각해수통수관로만의 종단면도.Figure 2 is a longitudinal cross-sectional view of the rectangular sea water pipe line only to be integrated into the breakwater of the present invention.

도3은 도1에서의 조립완료되었을 시의 A-A'선 단면도.3 is a cross-sectional view along the line A-A 'when the assembly is completed in FIG.

도4는 조립완료되었을 시의 단위구조체 정면도.Figure 4 is a front view of the unit structure when the assembly is completed.

< 도면의 주요부분에 대한 부호설명 ><Explanation of Signs of Major Parts of Drawings>

1. 직립식 방파제 10. 케이슨 11. 케이슨 전면벽 12, 12a. 세로격벽1. Upright breakwater 10. caisson 11. caisson front wall 12, 12a. Vertical bulkhead

13, 13a. 가로격벽 14. 해저면 15, 15a. 사석 16. 기초단13, 13a. Transverse bulkheads 14. Bottom 15, 15a. Baptism 16. Foundation

17. 케이슨 배면벽 18, 18a. 요입부 20. 사각해수통수관로17. Caison rear wall 18, 18a. Concave inlet 20. Square seawater pipe

20a. 유입구 21. 숫키 22. 차단벽 23. 해수유도공20a. Inlet 21. Male 22. Barrier 23. Seawater induction

24. 소블럭 25. 해수유도로 26. 해수유출구 30. 해수24. Small blocks 25. Seawater route 26. Seawater outlet 30. Seawater

40. 캡콘크리트40. Cap Concrete

본 고안은 소규모의 파랑진입시 파랑을 방파제체 상측으로 월유시켜 내해의 해수면 수중으로 유도되게 하여 해수교환을 하도록 한 고안으로서 이를 첨부한 도면에 의거하여 상술하면 다음과 같다.The present invention is to devise a wave to the sea surface of the inland sea when the small wave to enter the wave breaker body to the sea surface of the inland sea to exchange seawater as described in detail based on the accompanying drawings as follows.

본 고안상으로 실시되는 직립식 방파제(1)의 구조는 내부에 전면벽(11)의 배면에 직각으로 연설되는 2기의 세로격벽(12)(12a)과 가로격벽(13)(13a)을 격자형태로 입설하여 구획된 일정한 크기의 단위 케이슨(10)을 해저면(14) 상면의 사석(15)으로 되는 기초단(16) 상면에 거치하되, 케이슨 전면벽(11)과 배면벽(17), 그리고 2개의 가로격벽(13)(13a) 상단부에 동일한 소정폭과 깊이로 3개의 요입부(18)를 요입형성하고 이 전면벽(11)과 배면벽(17) 및 가로격벽(13)(13a) 상단에 요입된 요입부(18)에 전체높이의 절반이 삽입되는 높이와 전면벽(11)과 배면벽(17) 사이의 거리와 동일한 길이를 가지는 내부가 연통된 사각해수통수관로(20)를 삽입설치하고 나머지 케이슨(10) 내부의 공간에는 사석(15a)을 충전하되 사각해수통수관로(20) 상면에는 2기의 숫키(21)를 일정간격으로 이격하여 돌설하고 해수가 유입되는 유입구(20a)가 연통된 사각해수통수관로(20)의 내해측 선단은 차단벽(22)으로 차단되고 사각해수통수관로(20) 내해측 저면(20b)에는 해수유도공(23)이 구비되며 이러한 사각해수통수관로(20)가 조립될 시 케이슨(10)의 배면벽(17)과 가로격벽(13a) 사이에 충전되는 사석(15a)은 높이를 낮게하여 사석(15a) 상면에 3개의 소블럭(24)을 "L"자 형으로 쌓아서 해수유도로(25)를 형성되게 하여 케이슨(10) 상측으로 유입된 해수(30)가 케이슨(10) 상단부의 사각해수통수관로(20)로 유입되어 해수유도공(23)을경유하여 해수유도로(25)를 통하여 케이슨(10) 배면벽(17)에 천설된 해수유출구(26) 외부의 내해측 해수면 하로 조용히 유출되도록 하고 이러한 구조로 케이슨(10) 상측부에 조립된 사각해수통수관로(20) 상면에 캡콘크리트(40)를 현장타설하되 캡콘크리트(40) 저면에 2기의 사각해수통수관로(20) 상면에 돌설된 숫키(21)가 매입 고착되므로 캡콘크리트(40)와 일체로 되며 캡콘크리트(40) 저면에도 사각해수통수관로(20) 상부의 절반이 삽입되는 요입부(18a)를 요입형성하여 이들을 조립하므로써 본 고안상으로 실시되는 직립식 방파제의 해수월류교환시설의 구조가 구성된다. 도면 중 미설명 부호 (41)은 캡콘크리트를 현장타설 함에 따라 형성되는 캡콘크리트 저면 형상을 나타낸다.The structure of the upright breakwater (1) implemented according to the present invention comprises two longitudinal bulkheads (12) (12a) and a horizontal bulkhead (13) (13a), which are oriented at right angles to the rear surface of the front wall (11). Mount the unit caisson 10 of the predetermined size partitioned in a grid form on the upper surface of the base end 16, which is a stone stone 15 of the upper surface of the sea bottom 14, the caisson front wall 11 and the rear wall 17 And three concave indentations 18 having the same predetermined width and depth at the upper ends of the two horizontal bulkheads 13 and 13a, and the front wall 11 and the rear wall 17 and the horizontal bulkhead 13 (13a) A rectangular seawater canal pipe having an interior in communication with a height equal to the height between which the half of the entire height is inserted into the concave inlet 18 inserted into the upper end and the distance between the front wall 11 and the rear wall 17. Insert and install the (20) and filling the dead stone (15a) in the space inside the remaining caisson (10) spaced apart two male keys (21) on the top surface of the square sea water pipe (20) at regular intervals The inner sea front end of the rectangular sea water channel 20 through which the inlet port 20a protrudes and communicates with the seawater is blocked by the blocking wall 22 and the sea water bottom 20b on the inner sea side 20b of the rectangular sea water channel 20. Induction hole 23 is provided and when the rectangular seawater channel 20 is assembled, the seating stone 15a filled between the rear wall 17 of the caisson 10 and the transverse bulkhead 13a has a low height. (15a) Three small blocks 24 on the upper surface are stacked in an “L” shape to form a seawater inflow path 25 so that the seawater 30 introduced into the caisson 10 above the square of the upper part of the caisson 10 is It flows into the seawater channel 20 and quietly down to the inner sea side of the seawater outlet 26 outside the seawater outlet 26 formed on the back wall 17 of the caisson 10 via the seawater induction pipe 23. In this case, the cap concrete 40 is placed on the top surface of the square sea water pipe 20 assembled in the upper portion of the caisson 10 with this structure. Since the male key 21 protruding from the upper surface of the two rectangular sea water channel 20 on the bottom of the trough 40 is fixed to the buried concrete, the cap concrete 40 is integrally formed and the square sea water canal is also formed on the bottom of the cap concrete 40. (20) The structure of the seawater moon current exchange facility of an upright breakwater implemented according to the present invention is constituted by forming the indentation portion 18a into which the upper half is inserted and assembling them. In the figure, reference numeral 41 denotes a cap concrete bottom shape formed by site-casting cap concrete.

상기와 같이 구성된, 본 고안상으로 실시구성되는 직립식 방파제의 해수월류교환시설은 소규모의 파랑시 파랑을 월류시켜 항내의 수면 하로 유입되게 하여 해수교환을 할 수 있도록 하되 평상시에 밀려오는 파랑으로 해수가 교환될 수 있도록 한 구조로서 구조가 매우 간단명료하여 시공이 용이하고 케이슨 상면과 상치콘크리트 사이에 각각 요입형성된 요입부(18)(18a)에 사각해수통수관로(20)를 삽입하여 제체를 조립식으로 시공하므로써 공사기간이 단축되는 등의 효과가 있다.The seawater overflow exchange facility of the upright breakwater configured as described above, which is constructed as described above, allows the seawater to be exchanged by overflowing a small amount of blue waves and flowing into the water surface in the harbor, but the seawater is normally pushed by the blue water. The structure is very simple and easy to install because the structure can be exchanged, and the body is inserted by inserting the rectangular sea water channel 20 into the recessed portions 18 and 18a respectively formed between the upper surface of the caisson and the upper concrete. It is effective to shorten the construction period by prefabricated construction.

Claims (3)

직립식 방파제의 해수월류교환시설을 구성함에 있어서, 내부에 전면벽(11)의 배면에 직각으로 연설되는 2기의 세로격벽(12)(12a)과 가로격벽(13)(13a)을 격자형태로 입설하여 구획된 일정한 크기의 단위 케이슨(10)을 해저면(14) 상면의 사석(15)으로 되는 기초단(16) 상면에 거치하되, 케이슨 전면벽(11)과 배면벽(17), 그리고 2개의 가로격벽(13)(13a) 상단부에 동일한 소정폭과 깊이로 3개의 요입부(18)를 요입형성하고 이 전면벽(11)과 배면벽(17) 및 가로격벽(13)(13a) 상단에 요입된 요입부(18)에 전체높이의 절반이 삽입되는 폭과 전면벽(11)과 배면벽(17) 사이의 거리와 동일한 길이를 가지는 내부가 연통된 사각해수통수관로(20)를 삽입설치하고 나머지 케이슨(10) 내부의 공간에는 사석(15a)을 충전하되 사각해수통수관로(20) 상면에는 2기의 숫키(21)를 일정간격으로 이격하여 돌설하고 해수가 유입되는 유입구(20a)가 연통된 사각해수통수관로(20)의 내해측 선단은 차단벽(22)으로 차단되고 사각해수통수관로(20) 내해측 저면에는 해수유도공(23)이 구비되게 함을 특징으로 하는 직립식 방파제의 해수월류교환시설.In constructing a seawater current exchange facility of an upright breakwater, two vertical bulkheads 12, 12a and horizontal bulkheads 13, 13a, which are erected at right angles to the rear surface of the front wall 11, are formed in a lattice form. The unit caisson 10 of a predetermined size partitioned by the installation is mounted on the upper surface of the base end 16, which is the rock stone 15 on the upper surface of the sea bottom 14, but the caisson front wall 11 and the rear wall 17, Three concave portions 18 are formed in the upper ends of the two horizontal bulkheads 13 and 13a with the same predetermined width and depth, and the front wall 11 and the rear wall 17 and the horizontal bulkhead 13 and 13a are formed. (2) A rectangular seawater channel (20) having an inner surface having a width equal to a distance between the front wall (11) and the rear wall (17) inserted into the recessed part (18) inserted into the upper part and the same length as the distance between the front wall (11) and the rear wall (17). Insert and install) and fill the remaining stone (15a) in the space inside the caisson (10) but spaced apart two male keys (21) at regular intervals on the upper surface of the square sea water pipe (20) The tip of the inner sea side of the rectangular seawater channel 20 through which the inlet port 20a is inclined and the seawater is introduced is blocked by the blocking wall 22, and the seawater induction seam is formed at the bottom of the inner sea side of the rectangular seawater channel 20. 23) Seawater moon current exchange facility of an upright breakwater, characterized in that it is provided. 제 1 항에 있어서, 사각해수통수관로(20)가 조립될 시 케이슨(10)의 배면벽(17)과 가로격벽(13a) 사이에 충전되는 사석(15a)은 높이를 낮게하여사석(15a) 상면에 3개의 소블럭(24)을 "L"자 형으로 쌓아서 해수유도로(25)를 형성되게 하여 케이슨(10) 상측으로 유입된 해수(30)가 케이슨(10) 상단부의 사각해수통수관로(20)로 유입되어 해수유도공(23)을 경유하여 해수유도로(25)를 통하여 케이슨(10) 배면벽(17)에 천설된 해수유출구(26) 외부의 내해측 해수면 하로 유출되도록 하여서 됨을 특징으로 하는 직립식 방파제의 해수월류교환시설.According to claim 1, when the rectangular seawater channel 20 is assembled, the seating stone (15a) is filled between the rear wall 17 and the transverse bulkhead (13a) of the caisson 10 to lower the height of the seating stone (15a) ) Three small blocks 24 on the upper surface are stacked in an "L" shape to form a seawater inflow path 25 so that the seawater 30 introduced into the caisson 10 upper side is a square water container at the top of the caisson 10. Inflow into the water pipe (20) and through the seawater induction (23) through the seawater induction (25) through the seawater outlet (26) installed in the back wall (17) of the caisson (10) to the bottom of the inner sea surface Seawater moon current exchange facility of an upright breakwater characterized by the fact that. 제 1 항에 있어서, 케이슨(10) 상측부에 조립된 사각해수통수관로(20) 상면에 캡콘크리트(40)를 현장타설하되 캡콘크리트(40) 저면에 2기의 사각해수통수관로(20) 상면에 돌설된 숫키(21)가 매입 고착되므로 캡콘크리트(40)와 일체로 되며 캡콘크리트(40) 저면에도 사각해수통수관로(20) 상부의 절반이 삽입되는 요입부(18a)를 요입형성하여 이들을 조립하여서 됨을 특징으로 하는 직립식 방파제의 해수월류교환시설.According to claim 1, wherein the cap concrete 40 is placed on the top surface of the rectangular sea water pipe (20) assembled in the upper portion of the caisson 10, but the two square sea water pipes ( 20) Since the male key 21 protruding from the upper surface is fixed to the purchase, it is integrated with the cap concrete 40 and the indentation portion 18a into which the upper half of the rectangular seawater channel 20 is inserted into the bottom of the cap concrete 40. Seawater overflow exchange facility of an upright breakwater, characterized in that by forming a concave indentation.
KR20-2002-0032601U 2002-10-31 2002-10-31 Seawater flow on and exchange equipment of the erect breakwater KR200303605Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20-2002-0032601U KR200303605Y1 (en) 2002-10-31 2002-10-31 Seawater flow on and exchange equipment of the erect breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20-2002-0032601U KR200303605Y1 (en) 2002-10-31 2002-10-31 Seawater flow on and exchange equipment of the erect breakwater

Publications (1)

Publication Number Publication Date
KR200303605Y1 true KR200303605Y1 (en) 2003-02-11

Family

ID=49400450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20-2002-0032601U KR200303605Y1 (en) 2002-10-31 2002-10-31 Seawater flow on and exchange equipment of the erect breakwater

Country Status (1)

Country Link
KR (1) KR200303605Y1 (en)

Similar Documents

Publication Publication Date Title
KR100684072B1 (en) Assembly type breakwater
US9085864B2 (en) Flood barrier
KR200303605Y1 (en) Seawater flow on and exchange equipment of the erect breakwater
KR100923147B1 (en) Buoyancy type cut-off wall
KR100521900B1 (en) The water supply and the drain equipment of swimming pool of the coastal area that use water level
KR101656071B1 (en) Floating Pontoon Module Having Fish Housing
KR101257798B1 (en) Flower bed type flood wall
ES2369416T3 (en) PORT STRUCTURE AND CONSTRUCTION PROCEDURE OF THIS STRUCTURE.
KR100521903B1 (en) Seawater exchange structure of caisson breakwater
KR200297243Y1 (en) Seawater exchange structure of caisson breakwater
KR200330345Y1 (en) A vertical style overflow breakwater for seawater exchange
JP2001336133A (en) Sea water circulation type break water
KR100374176B1 (en) Breakwater exchanging seawater
KR100394342B1 (en) Breakwater exchanging seawater using of buoyancy pontoon
KR200235677Y1 (en) Breakwater exchanging seawater using of buoyancy pontoon
KR100554612B1 (en) Bank protection structure
KR100586636B1 (en) Breakwater exchanging seawater
KR100374181B1 (en) The breakwater which tide stream can go in and out
KR200306401Y1 (en) The seawater exchange equipment of waves prevention revetment
KR20080107144A (en) Ship comesalongside the pier
KR200306394Y1 (en) Breakwater frame structure for overflow cut-off and seawater exchange
ES2549367B1 (en) Manufacturing procedure and implementation of a modular floating platform and modular floating platform to carry out the procedure
KR100479453B1 (en) A vertical breakwater which has a moulding arts and a removing wave
KR200317703Y1 (en) A vertical breakwater which has a seawater exchange and a removing wave
KR100491111B1 (en) Breakwater for seawater exchange

Legal Events

Date Code Title Description
REGI Registration of establishment
T201 Request for technology evaluation of utility model
T701 Written decision to grant on technology evaluation
FPAY Annual fee payment

Payment date: 20040629

Year of fee payment: 3

LAPS Lapse due to unpaid annual fee