KR20030096980A - Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis - Google Patents

Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis Download PDF

Info

Publication number
KR20030096980A
KR20030096980A KR1020020034094A KR20020034094A KR20030096980A KR 20030096980 A KR20030096980 A KR 20030096980A KR 1020020034094 A KR1020020034094 A KR 1020020034094A KR 20020034094 A KR20020034094 A KR 20020034094A KR 20030096980 A KR20030096980 A KR 20030096980A
Authority
KR
South Korea
Prior art keywords
vector
pmmh1
plasmid
edible
pps
Prior art date
Application number
KR1020020034094A
Other languages
Korean (ko)
Inventor
서주원
양영열
이인형
이승수
Original Assignee
서주원
(주) 비엔씨바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서주원, (주) 비엔씨바이오팜 filed Critical 서주원
Priority to KR1020020034094A priority Critical patent/KR20030096980A/en
Priority to AU2003244231A priority patent/AU2003244231A1/en
Priority to PCT/KR2003/001170 priority patent/WO2003106686A1/en
Publication of KR20030096980A publication Critical patent/KR20030096980A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: An edible vector comprising Pst I-Spe I restriction sites of plasmid pMMH1 isolated from Bacillus mesentericus KCTC 0750BP is provided, thereby easily supplying bio-stimulating material such as vitamins and proteins to food. CONSTITUTION: An edible vector comprises a 2.3 kb fragment obtained by digesting a plasmid pMMH1 isolated from Bacillus mesentericus KCTC 0750BP with restriction enzymes Pst I and Spe I. The edible vector pPS is constructed by inserting the 2.3 kb fragment obtained by digesting the plasmid pMMH1 isolated from Bacillus mesentericus KCTC 0750BP with restriction enzymes Pst I and Spe I into a plasmid pGEM5zf(+).

Description

바실러스 메센테리쿠스(Bacillus mesentericus) (KCTC 0750BP)에서 분리된 pMMH1 플라스미드의 PstⅠ-SpeⅠ절단부위를 함유한 식용 벡터{Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis}Food grade vector comprising Pst I-Spe I fragment of pMMH1 plasmid derived from Bacillus mesentericus (JPC 0750 PF)

본 발명은 식용벡터에 관한 것으로 더욱 상세하게는 야생종 바실러스 메센테리쿠스(Bacillus mesentericus)에서 분리된 플라스미드 pMMH1의 절단 절편을 함유하는 식용벡터에 관한 것이다.The present invention relates to an edible vector, and more particularly, to an edible vector containing a cleavage fragment of plasmid pMMH1 isolated from the wild species Bacillus mesentericus .

식용 벡터 개발을 위한 노력과 연구는 지금까지 활발하게 진행되어 온 것은 아니고 단지 낙농업을 많이 하는 유럽에서 종종 보고되어 왔다. 이는 인체에 무해한 벡터의 선별이 쉽지 않고, 적당한 선별 표지(selection marker)의 선택, 안정성 있는 적합한 크기의 벡터의 선택이 쉽지 않기 때문에 소극저인 시도가 진행 되어왔다. 이러한 과거의 연구개발 성과들은 식용 벡터의 개발이 쉽지 않다는 것을 보여준다. 현재는 락토바실러스 (Lactobacillus), 락토코커스 락티스 (Lactococcus lactis) 등에서 분리된 플라스미드를 이용하여 식용 벡터의 개발이 진행되고 있다. 그러나 아직은 사람보다는 동물용 식용 벡터에 그치고 있다.Efforts and research for the development of edible vectors have not been actively carried out to date and have often been reported in Europe, where only a large number of dairy farmers are involved. This is because it is not easy to select a vector harmless to the human body, it is difficult to select a suitable selection marker (selection marker), the selection of a vector of a suitable size stable, has been tried to be a very low. These past R & D achievements show that the development of food vectors is not easy. Currently, the development of food vectors is underway using plasmids isolated from Lactobacillus , Lactococcus lactis , and the like. However, it is still more of an animal food vector than a human.

pMMH1은 콩유래 발효식품의 주 발효균주로서 오랫동안 식용되어 국제적으로 그 안전성이 공인된 균주인 바실러스(Bacillus subtilis및 그 유사균주)에서 분리된 플라스미드로서 섭취 시 인체에 무해하다. 이런 장점을 바탕으로 본 발명은 식용 벡터 기법을 개발하기 위해 pMMH1 이용하여 여러 벡터를 구축하고, 이렇게 구축된 벡터 중에서 pMMH1의 가장 작은 부분을 포함하면서 안정성 있는 부분을 찾고 여기에 생리적으로 유용한 물질을 생산 할 수 있는 분비 시스템을 구축하고자 하였다.pMMH1 is a plasmid isolated from Bacillus ( Bacillus subtilis and its similar strains), which has been edible for a long time as a major fermentation strain of soybean-derived fermented foods and is internationally recognized for its safety. Based on these advantages, the present invention constructs several vectors using pMMH1 to develop an edible vector technique, finds the stable part while including the smallest part of pMMH1, and produces a physiologically useful substance therefrom. We tried to establish a secretion system that can

따라서, 본 발명은 전통적으로 섭취해 온 장류식품에 서식하는 야생 바실러스에서 분리된 플라스미드를 이용하여 사람이 섭취 할 수 있는 식용 벡터를 제공하는데 목적이 있다.Therefore, an object of the present invention is to provide an edible vector that can be ingested by humans using a plasmid isolated from wild Bacillus inhabiting traditionally ingested food products.

상기 본 발명의 목적은 바실러스 메센테리쿠스(KCTC 0750BP)에서 플라스미드 pMMH1을 분리하고, 분리된 플라스미드가 식용 벡터로 사용하기에 적합한지 확인하기 위해 pMMH1의 각 부분을 하나씩 제거하고 여기에 대장균 플라스미드 pGEM5z(+)를 연결하여 바실러스와 대장균에서 모두 이용할 수 있는 벡터를 구축하고 구축된 벡터의 숙주인 바실러스에 형질전환 하여 항생제가 없는 조건에서 100세대까지 연속적으로 회분 배양하여 안정성을 확인하여 pMMH1의 2.3kb DNA 단편(PstI-SpeI)이 식용 벡터로 개발하기에 가장 적합하다는 것을 확인함으로써 달성되었다.The object of the present invention is to isolate plasmid pMMH1 from Bacillus mesentericus (KCTC 0750BP), remove each part of pMMH1 one by one to confirm that the isolated plasmid is suitable for use as an edible vector, and to E. coli plasmid pGEM5z ( Connect +) to construct a vector that can be used by both Bacillus and Escherichia coli, transform it into Bacillus, a host of the constructed vector, and continuously culture it for up to 100 generations in the absence of antibiotics to confirm stability. This was achieved by confirming that the fragment ( Pst I- Spe I) is best suited for development as an edible vector.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1은 식용 벡터를 구축하기 위해 pMMH1의 각 부분을 제거하여 벡터를 구축한 결과를 보여주는 모식도이다.1 is a schematic diagram showing the result of constructing a vector by removing each part of pMMH1 to construct an edible vector.

도 2는 본발명에 사용된 박테리아와 플라스미드를 나열한 도표이다.Figure 2 is a table listing the bacteria and plasmids used in the present invention.

도 3은 pMMH1의 2.3kb DNA 단편 (PstI-SpeI)만을 포함하여 구축된 벡터 pPS를 나타내는 모식도이다.3 is a schematic diagram showing a vector pPS constructed including only 2.3 kb DNA fragment ( Pst I- Spe I) of pMMH1.

도 4는 pJSN 벡터 제작의 모식도 이다.4 is a schematic diagram of pJSN vector production.

도 5는 퓨젼(fusion)위치의 핵산 및 아미노산 서열을 나타내는 모식도 이다.Figure 5 is a schematic diagram showing the nucleic acid and amino acid sequence of the fusion (fusion) position.

도 6은 CPGY 배지에서 배양된 세포의 성장을 보여주는 그래프이다.6 is a graph showing the growth of cells cultured in CPGY medium.

도 7은 매 3시간 마다 측정된 베타-글루코시다제의 활성을 보여주는 그래프이다.7 is a graph showing the activity of beta-glucosidase measured every 3 hours.

도 8은 pJSN 벡터를 함유하는 바실러스 서브틸리스(Bacillus subtilis) DB104로부터 생산된 귀리 베타-글루코시다제의 SDS-PAGE 분석을 보여주는 사진도이다.FIG. 8 is a photograph showing SDS-PAGE analysis of oat beta-glucosidase produced from Bacillus subtilis DB104 containing pJSN vector.

본 발명은 바실러스 메센테리쿠스(KCTC 0750BP)에서 분리된 pMMH1 플라스미드를 이용하여 식용 벡터 기법 개발을 목적으로 pMMH1 DNA 시퀀싱 결과 확인된 5개의 부분 중 복제기원점 부분을 제외한 나머지를 하나씩 제거하여 벡터를 구축하는 단계, 구축된 벡터를 대상으로 식용 벡터로 사용하기에 안정성 있는 부분 탐색 단계로 구성된다.The present invention constructs a vector by constructing a vector by removing one of the five portions identified as a result of pMMH1 DNA sequencing for the purpose of developing an edible vector technique using pMMH1 plasmid isolated from Bacillus mesentericus (KCTC 0750BP). It consists of a partial search step that is stable to use as an edible vector for the constructed vector.

벡터 구축는 하기와 같은 과정에 의해 수행되었다.Vector construction was performed by the following procedure.

어떤 지역이 높은 복제수를 가지는 안정한 벡터유지를 위해 필요한지 알아보기 위하여 pMMH1 플라스미드의 일부분들이 절단되었다. 편리한 DNA 조작을 위해, the pMMH1를 pGEM5zf(+) 벡터(Promega, U.S.A.)의NcoI 위치로 삽입하어 pMMG를 제조하였다.Portions of the pMMH1 plasmid were cut to determine which regions are needed for stable vector maintenance with high copy numbers. For convenient DNA manipulation, the pMMH1 was inserted into the Nco I position of the pGEM5zf (+) vector (Promega, USA) to prepare pMMG.

한편, 바실러스(Bacillus)에서 선택마커로 사용되는 cat(chloramphenicol acetyltransferase) 유전자의 1.4 kbSalI 절편이 pGEM5zf(+)의SalⅠ위치에 클론되어 pGEMC를 구축하였다.Meanwhile, 1.4 kb Sal I fragment of cat (chloramphenicol acetyltransferase) gene, which is used as a selection marker in Bacillus , was cloned at Sal I position of pGEM5zf (+) to construct pGEMC.

pGEMC의EcoRV-NcoI 절편이 pMMH1의PvuII-NcoI 절편에 삽입되어 pEN을 구축하였다.NdeI로 pEN이 절단되고 그 결과물인 DNA 결합 단백질 코팅 지역(DNA binding protein coding region), 복제원점(replication origin), 그리고 분비 단백질 코딩 지역(secretion protein coding region)을 함유하는 4.0 kb 절편을 pGEM5zf(+)에 결합시켜 pMN을 구축하였다.EcoRI에 의해 pEN의 DNA 결합 단백질 코딩 지역(DNA binding protein coding region)을 절단한 후 자기결합시켜 pME를 제조하였다.The EcoR V- Nco I fragment of pGEMC was inserted into the Pvu II- Nco I fragment of pMMH1 to construct pEN. PEN was cleaved with Nde I and a 4.0 kb fragment containing the resulting DNA binding protein coding region, replication origin, and secretion protein coding region was prepared using pGEM5zf ( PMN was constructed by binding to +). PME was prepared by cleaving DNA binding protein coding region of pEN by EcoR I and then self-bonding.

한편, pMMH1의 복제원점(replication region)을 함유하는 2.4 kbPstI-PstⅠ 절편과 2.3 kbPstI-SpeI 절편이 pGEMC로부터 분리되었고 각각 pGEM5zf(+) 속으로 삽입되어 되어 pPP와 pPS가 구축되었다.Meanwhile, 2.4 kb Pst I- Pst I fragments and 2.3 kb Pst I- Spe I fragments containing the replication region of pMMH1 were isolated from pGEMC and inserted into pGEM5zf (+), respectively, to construct pPP and pPS. It became.

바실러스 메센테리쿠스(B. mesentericus)로 부터 분리된 RCR 플라스미드 pMMH1은 비선택적 조건에 있어 매우 안정하기 때문에, 그것을 바실러스 안의 안정한 벡터로 개발하기 위해 노력하였다. 시퀀스 분석은 pMMH1이 복제원점(replication origin), γ-GTP의 2개의 오픈 리딩 프레임(open reading frames; ORFs), 타입 Ⅰ 시그날 펩티다제(type I signal peptidase; sipP)를 가지고 있음을 나타냈다. pMMH1 벡터의 안정성에 필요한 지역을 확인하고자, pMMH1에서 각각의 지역이 제거되었다. 그 결과 다섯 개의 벡터(pPS, pPP, pEN, pMN, pME)가 바실러스 서브틸리스(B. subtilis)-에스세리시아 콜라이(E. coli) 셔틀벡터(shuttle vectors)로 제조되었다. γ-GTP 코딩 시퀀스가 제거된 pEN은 100세대가 지나도록 98%이상의 안정성을 보였으며 이는 γ-GTP 코딩 시퀀가 플라스미도 안정성에 불필요하다는 것을 암시한다. ORF2 (pME) 또는 γ-GTP 코딩 시퀀스에 더하여 타입 Ⅰ 시그날 펩티다제(type I signal peptidase; pMN) 또한 플라스미드의 안정성에 결정적으로 영향을 미치지는 않았다. pPP 와 pPS 둘 다에 있어서, γ-GTP 코딩시퀀스, ORF1, ORF2, 타입 Ⅰ 시그날 펩티다제(type I signal peptidase)는 완전히 제거되었으나, ORF1는 pPP 보다 pPS에서 더 많이 제거되었다. 그리하여 pPS가 pMMH1 플라스미디의 2.3 kb를 가지는 가장 작은 벡터였다.Since the RCR plasmid pMMH1 isolated from B. mesentericus is very stable under nonselective conditions, efforts have been made to develop it as a stable vector in Bacillus. Sequence analysis showed that pMMH1 had a replication origin, two open reading frames (ORFs) of γ-GTP, and a type I signal peptidase (sipP). To identify the regions necessary for the stability of the pMMH1 vector, each region was removed from pMMH1. As a result, five vectors (pPS, pPP, pEN, pMN, pME) were prepared with B. subtilis- E. Coli shuttle vectors. The pEN from which the γ-GTP coding sequence was removed showed more than 98% stability over 100 generations, suggesting that the γ-GTP coding sequence is unnecessary for plasmid stability. In addition to ORF2 (pME) or γ-GTP coding sequences, type I signal peptidase (pMN) also did not critically affect the stability of the plasmid. For both pPP and pPS, the γ-GTP coding sequence, ORF1, ORF2, type I signal peptidase was completely eliminated, but ORF1 was more removed from pPS than pPP. Thus pPS was the smallest vector with 2.3 kb of pMMH1 plasmid.

구축된 모든 플라스미드들이 100세대를 지나서도 90%이상의 안정성을 보였다. γ-GTP 코딩 시퀀스, ORF1, ORF2, 타입 Ⅰ 시그날 펩티다제(type I signal peptidase)의 제거는 플라스미드의 안정성에 중대하게 영향을 미치지 않았고, 복제원점과 ORF2 사이의 SSO (single strand origin)이 플라스미드의 안정상에 있어 가장 중요하게 보였다.All the constructed plasmids showed over 90% stability even after 100 generations. Removal of the γ-GTP coding sequence, ORF1, ORF2, type I signal peptidase did not significantly affect the stability of the plasmid, and the single strand origin (SSO) between the origin of replication and ORF2 did not affect the plasmid. It seemed most important in terms of stability.

pMMH1 플라스미드의 타입 Ⅰ 시그날 펩티다제(type I signal peptidase)는 바실러스(Bacillus)에서 안정성을 위해 중요하다. 바실러스 서브틸리스(B. subtilis)는 잘 발전된 세포외 분비 시스템을 가지고 있고 타입 Ⅰ 시그날 펩티다제(type I signal peptidase; type I SPases)는 트랜스로카제(translocase)를 통한 분비 또는 수많은 내부 분자들의 가공에 있어 중요한 역할을 한다. 타입 Ⅰ 시그날 펩티다제(type I signal peptidases)는 염색체(SipS, SipT, SipU, SipV, SipW)와 플라스미드(SipP)에 존재한다. 이것들 중 SipS, SipT 는 프리프로틴(preprotein) 가공과 활성에 있어 매우 중요하다. SipP는 손상된 SipS and SipT를 기능적으로 대체할 수 있기 때문에 또한 매우 중요하다.Type I signal peptidase of the pMMH1 plasmid is important for stability in Bacillus . B. subtilis has a well-developed extracellular secretion system and type I signal peptidase (type I SPases) is a secretion via translocase or numerous internal molecules. Plays an important role in processing Type I signal peptidases are present on chromosomes (SipS, SipT, SipU, SipV, SipW) and plasmids (SipP). Of these, SipS and SipT are very important for preprotein processing and activity. SipP is also very important because it can functionally replace damaged SipS and SipT.

그러나 본 발명에 있어서는, 타입 Ⅰ 시그날 펩티다제(type I signal peptidase)의 삭제가 플라스미드의 안정성에 영향을 미치지 않았다. 이는 이것이 안정성에 필요한 요소가 아니라는 것을 나타낸다.However, in the present invention, deletion of the type I signal peptidase did not affect the stability of the plasmid. This indicates that this is not a necessary factor for stability.

따라서, 이상에서 본와 같이 벡터로서 크기가 커지면 세포내에서 불안정하므로, 세포내에서 안정하게 복제하는데 있어 불필요한 부분이 삭제되고 안정하게 복제하는데 꼭 필요한 부분, pMMH1의 2.3kb DNA 단편(PstI-SpeI)을 포함하고 있는 pPS가 상기의 여러 벡터 보다 식용 벡터로 사용하기에 가장 적합하다.Therefore, as described above, as the size of the vector increases in size, it is unstable in the cell. Therefore, the unnecessary portion for the stable replication in the cell is deleted and the necessary portion for the stable replication, 2.3 kb DNA fragment of pMMH1 ( Pst I- Spe I PPS containing) is more suitable for use as an edible vector than the above-mentioned vectors.

상기 pPS를 통해 외래단백질이 발현되는지를 확인 하고자 발현벡터 pJSN을제조하였는데 발현벡터 pJSN는 상기 플라스미드들 중 가장 작고 안정한 pPS와 알파-아밀라제 프로모터-시그날 시퀀스(α-amylase promoter-signal sequence)를 사용하여 구축되었다(도 3). 알파-아밀라제 프로모터-시그날 시퀀스(α-amylase promoter-signal sequence)의 조절하에 있는 베타-글루코시다제(β-glucosidase) 유전자(1.5 kb)를 위치시키고자, 베타-글루코시다제(β-glucosidase) 유전자가 pET24-Glu1로부터 PCR에 의해 증폭되었고, p8A1의BamHI andSalI 위치에 클론되어 p8A1-α25을 구축하였다. 정방향 프라이머(forward primer; 5'-GGATCCGAATCTCGCGCTTGAAAGT-3')는 쉬운 클로닝을 위하여BamHI 위치(밑줄로 표기)를 함유하도록 고안되었고, 하나의 핵산 C(밑줄로 표시)는 알파-아밀라제 시그날 시퀀스(α-amylase signal sequence) 와 베타-글루코시다제 메쳐 유전자(β-glucosidase mature gene)의 N-terminus 사이의 인-프레임(in-frame) 퓨젼(fusion)을 위하여 고안되었다. 역방?? 프라이머(reverse primer ; 5'-CTGCAGCTCGAGTCATCACGCGGT-3')는XhoI 위치(밑줄로 표시) 와 임의의 TGA 스탑코돈(stop codons; 밑줄로 표시)을 포함하도록 고안되었다. p8A1-α25는EcoRI-HindIII로 절단되었고 알파-아밀라제 프로모토-시그날 시퀀스-베타-글루코시다제(α-amylase promoter-signal sequence-β-glucosidase)를 함유하는 2.5 kb-절편은 pKS-α25을 구축하기 위하여 같은 위치의 pBluescript II KS (+)로 서브클론되었다. 최종적으로, pKS-α25이SacII-ApaI로 절단되었고 그 후 pPS 벡터의 같은 위치로 삽입되어 pJSN 발현벡터를 구축하였다.The expression vector pJSN was prepared to confirm whether the foreign protein is expressed through the pPS. The expression vector pJSN is the smallest and most stable pPS among the plasmids, and an alpha-amylase promoter-signal sequence is used. Was constructed (FIG. 3). Β-glucosidase to locate the beta-glucosidase gene (1.5 kb) under the control of the alpha-amylase promoter-signal sequence. The gene was amplified by PCR from pET24-Glu1 and cloned into the BamH I and Sal I positions of p8A1 to construct p8A1-α25. Forward primer (forward primer; 5'- GGATCC GAAT TCGCGCTTGAAAGT C-3 ') is for the easy cloning was designed to contain a BamH I position (shown in underline), a nucleic acid C (underlined), the alpha-amylase signal It was designed for in-frame fusion between the α-amylase signal sequence and the N-terminus of the beta-glucosidase mature gene. Reverse Bang ?? The reverse primer (5'-CTGCAG CTCGAGTCATCA CGCGGT-3 ') is designed to include the Xho I position (underlined) and any TGA stop codons (underlined). p8A1-α25 was digested with EcoR I- Hind III and the 2.5 kb-fragment containing alpha-amylase promoter-signal sequence-β-glucosidase was pKS-α25 Subclones were constructed with pBluescript II KS (+) at the same location. Finally, pKS-α25 was cleaved with Sac II- Apa I and then inserted into the same position of the pPS vector to construct a pJSN expression vector.

귀리의 β-glucosidase 유전자가 삽입되었을 때, 베타-글루코시다제(β-glucosidase)는 성공적으로 분비되었다. 상등액 중의 베타-글루코시다제(β-glucosidase)의 활성은 15 시간 후에 꾸준이 증가되었고 27 시간째에 최고였다. 상등액에 있는 단백질의 SDS-PAGE 분석에서, 예상되어 지는 60kD 정도의 크기를 갖는 베타-글루코시다제(β-glucosidase)는 발현/분비벡터를 함유하는 형질전환로부터 단지 발견되었다. 이는 베타-글루코시다제(β-glucosidase)가 분비되었음을 확인시켜 준다.When the β-glucosidase gene of oats was inserted, β-glucosidase was secreted successfully. The activity of β-glucosidase in the supernatant increased steadily after 15 hours and peaked at 27 hours. In SDS-PAGE analysis of the proteins in the supernatant, beta-glucosidase with an expected size of about 60 kD was found only from transformations containing expression / secretion vectors. This confirms that beta-glucosidase is secreted.

이하, 본 발명의 구성을 실시예를 들어 더욱 상세히 설명하지만 본 발명을 권리범위가 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited only to the following Examples.

실시예 1: 바실러스 메센테리쿠스(Example 1 Bacillus mesentericus Bacillus mesentericusBacillus mesentericus )에서 분리된 pMMH1 플라스미드를 이용한 벡터 구축Vector construction using pMMH1 plasmid isolated from

생명공학연구소에서 분양받은 바실러스 메센테리쿠스(Bacillus mentericus) (KCTC 0750BP)를 LB 배지에 하룻밤 배양하여 pMMH1 플라스미드를 분리하고, 이 플라스미드를 제한 효소NcoI으로 절단한 다음 대장균 플라스미드 pGEM5zf(+)를 같은 효소로 절단하여 연결하였다. 이를 pMMG라하고 이를 기준으로 pMMH1에 포함된 5개 부분 즉, 복제 기원점(replication origin), 오픈 리딩 프레임 1(orf1), 타입 I 시그널 펩티데이즈(type I signal peptidase), 감마 지티피 (gamma-GTP), 분비 단백질 암호화 지역(secretion protein coding region) 중 복제 기원점만 제외하고 하나씩 제거하는 방법으로 플라스미드의 크기를 줄여 5개(pEN, pMN, pME, pPS, pPP) 벡터를 구축하였다(도 1, 2). Bacillus mentericus (KCTC 0750BP), obtained from the Biotechnology Research Institute, was incubated overnight in LB medium to isolate the pMMH1 plasmid, cleaved this plasmid with restriction enzyme Nco I, and then the E. coli plasmid pGEM5zf (+). Enzyme cleavage was linked. This is called pMMG and based on this, the five parts contained in pMMH1 are: replication origin, open reading frame 1 (orf1), type I signal peptidase, and gamma-tipi. GTP), secretion protein coding region (5) (pEN, pMN, pME, pPS, pPP) vector was constructed by reducing the size of the plasmid by removing one by one except for the replication origin. , 2).

더욱 상세한 벡터 구축는 하기와 같은 과정에 의해 수행되었다.More detailed vector construction was performed by the following procedure.

어떤 지역이 높은 복제수를 가지는 안정한 벡터유지를 위해 필요한지 알아보기 위하여 pMMH1 플라스미드의 일부분들이 절단되었다. 편리한 DNA 조작을 위해, pMMH1를 pGEM5zf(+) 벡터(Promega, U.S.A.)의NcoI 위치로 삽입하어 pMMG를 제조하였다. 바실러스(Bacillus)에서 선택마커로 사용되는 cat(chloramphenicol acetyltransferase) 유전자의 1.4 kbSalI 절편이 pGEM5zf(+)의SalⅠ에 클론되어 pGEMC이 구축되었다. pGEMC의EcoRV-NcoI 절편이 pMMH1의PvuII-NcoI 절편에 삽입되어 pEN이 구축되었다.Portions of the pMMH1 plasmid were cut to determine which regions are needed for stable vector maintenance with high copy numbers. For convenient DNA manipulation, pMMH1 was inserted into the Nco I position of the pGEM5zf (+) vector (Promega, USA) to prepare pMMG. A 1.4 kb Sal I fragment of the cat (chloramphenicol acetyltransferase) gene used as a selection marker in Bacillus was cloned into Sal I of pGEM5zf (+) to construct pGEMC. The EcoR V- Nco I fragment of pGEMC was inserted into the Pvu II- Nco I fragment of pMMH1 to construct pEN.

NdeI로 pEN이 절단되고 그 결과물인 DNA 결합 단백질 코팅 지역(DNA binding protein coding region), 복제원점(replication origin), 분비 단백질 코딩 지역(secretion protein coding region)을 함유하는 4.0 kb 절편을 pGEM5zf(+)에 결합시켜 pMN을 구축하였다.EcoRI에 의해 pEN의 DNA 결합 단백질 코딩 지역(DNA binding protein coding region)을 절단하고 그 후 자기결합시켜 pME을 제조하였다.PEN was cleaved with Nde I and a 4.0 kb fragment containing the resulting DNA binding protein coding region, replication origin and secretion protein coding region was prepared using pGEM5zf (+ ) To construct pMN. PME was prepared by cleaving the DNA binding protein coding region of pEN by EcoR I and then self-bonding.

한편, pMMH1의 복제원점(replication region)을 함유하는 2.4 kbPstI-PstⅠ 절편과 2.3 kbPstI-SpeI 절편이 pGEMC으로부터 분리되었고 각각 pGEM5zf(+) 속으로 삽입되어 pPP and pPS을 구축하였다Meanwhile, 2.4 kb containing the replication region of pMMH1PstI-PstI intercept and 2.3 kbPstI-SpeI segment was isolated from pGEMC and each Inserted into pGEM5zf (+) to construct pPP and pPS

실시예 2: 구축된 벡터를 대상으로 가장 안정성 있는 부분 탐색Example 2: searching for the most stable part of the constructed vector

상기 실시예 1에서 구축한 벡터를 대상으로 안정성 여부를 조사하고 식용 플라스미드로 사용할 부분을 찾기 위해 pMMH1의 각 부분으로 구성된 플라스미드를 바실러스에 형질전환시키고 이 형질전환체를 3 ml LB 액체 배지에 접종하여 37℃에서 하룻밤 배양기에서 배양한 다음 50 ml LB 액체 배지가 포함된 250 ml 삼각 플라스크에 2% (1 ml) 접종하였다. 이 후 20 세대까지 새 배지로 옮겨 배양하였다. 그런 후 미리 따뜻하게 만든 배지에 계대하여 같은 조건에서 연속으로 100 세대까지 항생제가 없는 배지에서 연속으로 회분 배양했다. 배양은 20세대마다 새로운 배지로 옮겼다. 100세대 후 50 ml 배양액 중에서 약 200㎕만 취하여 항생제 없는 배지로 도말하여 하룻밤 배양하였다. 이후 여기서 자란 균체 (colony)를 항생제(클로람페니콜)가 포함된 배지로 약 200개 균체를 따서 옮겨 다시 하룻밤 배양하였다. 최종적으로 항생제가 포함된 배지에서 몇 개의 균체가 살아남는지 여부를 보고 플라스미드의 안정성 여부를 확인하였다. 구축된 벡터는 모두 90% 이상의 높은 안정성은 나타냈다(표 1).In order to investigate the stability of the vector constructed in Example 1 and find a part to be used as an edible plasmid, a plasmid consisting of each part of pMMH1 was transformed into Bacillus, and the transformant was inoculated in 3 ml LB liquid medium. Incubated overnight at 37 ° C. incubator and then inoculated 2% (1 ml) in a 250 ml Erlenmeyer flask containing 50 ml LB liquid medium. Thereafter, up to 20 generations were transferred to fresh medium and cultured. Subsequently, they were batch-cultured in a medium free of antibiotics for up to 100 generations under the same conditions, passaged in a previously warmed medium. Cultures were transferred to fresh medium every 20 generations. After 100 generations, only 200 μl of 50 ml culture was taken and plated with antibiotic-free medium and incubated overnight. Then, the cells grown here (colony) were transferred to a medium containing antibiotics (chloramphenicol), and about 200 cells were collected and cultured again overnight. Finally, the stability of the plasmid was confirmed by looking at how many cells survived in the medium containing antibiotics. The constructed vectors all exhibited high stability of at least 90% (Table 1).

pMMH1을 바탕으로 구축된 플라스미드들의 안정성을 나타낸 결과Results showing stability of plasmids constructed based on pMMH1 구축된 벡터Built vector 안정성 테스트 결과Stability Test Results pPSpPS 98%98% pPPpPP 94%94% pMEpME 97%97% pMNpMN 98%98% pENpEN 95%95%

이중 pMMH1의 2.3kb DNA 단편(PstI-SpeI)은 안정성에도 문제가 없으면서pMMH1에서 가장 작은 부분을 포함하고 있으므로 식용 벡터로 사용하기에 적합하다고 판단된다. 안정한 벡터로서 작은 것이 유용한 이유는 벡터에 이어 그 크기가 커지면 세포내에서 불안정하기 때문이다. 그리고 벡터내에 목적으로 하는 유전자를 삽입할 경우 필요 이상으로 벡터가 커지게 되며 이는 벡터가 수용 할 수 있는 크기를 넘어서게 되어 결국 안정성을 잃게 된다.Dual pMMH1 the 2.3kb DNA fragment (Pst I- Spe I) are eopeumyeonseo a problem in stability because it contains the smallest part of the pMMH1 it is determined to be suitable for use as a food vector. The reason why small ones are useful as stable vectors is that they become unstable intracellularly after their size. In addition, when the target gene is inserted into the vector, the vector becomes larger than necessary, which exceeds the size that the vector can accommodate and eventually loses stability.

따라서 세포내에서 안정하게 복제하는데 있어 불필요한 부분을 그냥 남길 필요가 없다. 그래서 안정하게 복제하는데 꼭 필요한 부분을 이용하여 안정성을 확인한 후 2.3 kb PstI-SpeI 절편을 선택하여 pGEM5zf(+)에 삽입시켜 벡터 pPS를 구축하였다(도 3).Therefore, there is no need to leave unnecessary parts for stable replication in the cell. So, after confirming the stability using the necessary part for stable replication, 2.3 kb PstI-SpeI fragment was selected and inserted into pGEM5zf (+) to construct the vector pPS (FIG. 3).

실시예 3: 구축된 벡터를 이용하여 재조합유전자의 발현여부 확인Example 3 Confirmation of Expression of Recombinant Gene Using Constructed Vector

발현벡터 pJSN는 가장 작고 가장 안정한 pPS와 알파-아밀라제 프로모토-시그날 시퀀스(α-amylase promoter-signal sequence)를 사용하여 구축되었다(도 4). 알파-아밀라제 프로모터-시그날 시퀀스(α-amylase promoter-signal sequence)의 조절하에 있는 베타-글루코시다제 유전자(β-glucosidase gene; 1.5 kb)을 위치시키고자, 베타-글루코시다제 유전자(β-glucosidase gene)가 pET24-Glu1로부터 PCR에 의해 증폭되었고, p8A1의BamHI과SalI 위치에 클론되어 p8A1-α25을 구축하였다. 정방향 프라이머(forward primer; 5'-GGATCCGAATCTCGCGCTTGAAAGT-3')는 쉬운 클로닝을 위하여BamHI 위치(밑줄로 표기)를 함유하도록 고안되었고, 하나의 핵산 C(밑줄로 표시)는 알파-아밀라제 시그날 시퀀스(α-amylase signal sequence) 와베타-글루코시다제 메쳐 유전자(β-glucosidase mature gene)의 N-terminus 사이의 인-프레임(in-frame) 퓨젼(fusion)을 위하여 고안되었다(도 5). 역방?? 프라이머(reverse primer ; 5'-CTGCAGCTCGAGTCATCACGCGGT-3')는XhoI 위치(밑줄로 표시) 와 임의의 TGA 스탑코돈(stop codons; 밑줄로 표시)을 포함하도록 고안되었다. p8A1-α25는EcoRI-HindIII로 절단되었고 알파-아밀라제 프로모토-시그날 시퀀스-베타-글루코시다제(α-amylase promoter-signal sequence-β-glucosidase)를 함유하는 2.5 kb-절편은 pKS-α25을 구축하기 위하여 같은 위치의 pBluescript II KS (+)로 서브클론되었다. 최종적으로, pKS-α25이SacII-ApaI로 절단되었고 그 후 pPS 벡터의 같은 위치로 삽입되어 pJSN 발현벡터를 구축하였다.Expression vector pJSN was constructed using the smallest and most stable pPS and α-amylase promoter-signal sequence (FIG. 4). Β-glucosidase gene (β-glucosidase gene; 1.5 kb) under the control of the alpha-amylase promoter-signal sequence to locate the beta-glucosidase gene (β-glucosidase gene) gene) was amplified by PCR from pET24-Glu1 and cloned into BamH I and Sal I positions of p8A1 to construct p8A1-α25. Forward primer (forward primer; 5'- GGATCC GAAT TCGCGCTTGAAAGT C-3 ') is for the easy cloning was designed to contain a BamH I position (shown in underline), a nucleic acid C (underlined), the alpha-amylase signal It was designed for in-frame fusion between the α-amylase signal sequence and the N-terminus of the β-glucosidase mature gene (FIG. 5). Reverse Bang ?? The reverse primer (5'-CTGCAG CTCGAGTCATCA CGCGGT-3 ') is designed to include the Xho I position (underlined) and any TGA stop codons (underlined). p8A1-α25 was digested with EcoR I- Hind III and the 2.5 kb-fragment containing alpha-amylase promoter-signal sequence-β-glucosidase was pKS-α25 Subclones were constructed with pBluescript II KS (+) at the same location. Finally, pKS-α25 was cleaved with Sac II- Apa I and then inserted into the same position of the pPS vector to construct a pJSN expression vector.

β-글루코시다제 활성은 파라니트로페닐-베타-디-글루코피라노사이드 (paranitrophenyl-β-D-glucopyranoside; pNPG)로부터 유리된 p-니트로페놀(p-NP)을 측정함으로써 조사되었다. pJSN 벡터가 구축된 형질전환 바실러스 서브틸리스(B. subtilis) DB104는 클로로앰피니콜(chloramphenicol) 10 ㎍/ml을 함유하는 3 ml의 LB 배지에서 하룻밤 전배양되었다. 그 후 3 ml의 전배양 배지는 250 ml 플라스크 안에 있는 50 ml의 CPGY 배지로 옮겨졌다. 그리고 37℃, 30℃와 25℃의 서로 다른 성장온도에서 200 rpm으로 진탕배양하였다. 1 ml의 배양액을 15000 rpm 으로 20 분 동안 원심분리시켰다. 배양액의 상등액 50㎕는 10 mM pNPG 용액 450㎕가 용해되어 있는 20 mM 의 포타시움 포스페이트 버퍼에 혼합되었다. (KH2PO4, pH 5.5). 반응은 37℃에서 15 분 동안 수행되었고 정지용액(2 M Na2CO3용액)을 부가함으로써 멈춰졌다. 유리된 pNP는 A405를 읽음으로써 측정되었다. 1 unit는 37℃에서 분당 1 nmol의 pNP를 가수분해시키는 효소의 양으로 정의되었다.β-glucosidase activity was investigated by measuring p-nitrophenol (p-NP) liberated from paranitrophenyl-beta-di-glucopyranoside (pNPG). Transformed B. subtilis DB104 constructing the pJSN vector was precultured overnight in 3 ml of LB medium containing 10 μg / ml of chloroamphenicol. 3 ml of preculture medium was then transferred to 50 ml of CPGY medium in a 250 ml flask. And shaking culture at 200 rpm at different growth temperatures of 37 ℃, 30 ℃ and 25 ℃. 1 ml of culture was centrifuged at 15000 rpm for 20 minutes. 50 µl of the supernatant of the culture was mixed in 20 mM potassium phosphate buffer in which 450 µl of 10 mM pNPG solution was dissolved. (KH 2 PO 4 , pH 5.5). The reaction was carried out at 37 ° C. for 15 minutes and stopped by adding a stop solution (2 M Na 2 CO 3 solution). Free pNP was measured by reading A 405 . One unit was defined as the amount of enzyme that hydrolyzes 1 nmol of pNP per minute at 37 ° C.

배지 상등액에 있는 단백질의 프로파일(profile)은 SDS-PAGE로 분석되었다. 배지에 있는 단백질은 최종 농도가 10% (w/v)가 되는 트리클로로아세트산 (trichloroacetic acid)을 사용하여 침전시켰다. 침전은 0.1 N NaOH의 50㎕ 안에서 중지되었다. 10 ㎕ 의 5 X sample buffer를 첨가한 후 , 샘플들은 5 분 동안 끓였고 10%의 SDA-폴리아크릴아마이드(SDS-polyacrylamide) 겔에 로딩(loading)하였다.The profile of the protein in the media supernatant was analyzed by SDS-PAGE. Proteins in the medium were precipitated using trichloroacetic acid with a final concentration of 10% (w / v). Precipitation was stopped in 50 μl of 0.1 N NaOH. After addition of 10 μl of 5 × sample buffer, the samples were boiled for 5 minutes and loaded onto 10% SDA-polyacrylamide gel.

pPS가 안정하고 가장 작기(6.8 kb) 때문에, 분비 벡터의 구축을 위해 선택되었고, pPS는 에스세리시아 콜라이(E. coli)의 상업용 클로닝 벡터 pGEM5zf(+)(Promega, U.S.A.)와 pMMH1의 일부분 그리고 cat(chloramphenicol acetyltransferase) 유전자의 하이브리드이다. 그러므로 pPS는 에스세리시아 콜라이(E. coli)와 바실러스 서브틸리스(B. subtilis)에서 둘 다 작용을 한다.Because pPS is stable and smallest (6.8 kb), pPS was chosen for the construction of secretion vectors, pPS was selected from the commercial cloning vectors pGEM5zf (+) (Promega, USA) and pMMH1 from E. coli and It is a hybrid of the cat (chloramphenicol acetyltransferase) gene. Thus, pPS acts in both E. coli and B. subtilis .

발현과 분비를 위하여 바실러스 서브틸리스(Bacillus subtilis)의 알파-아밀라제 프로모터-시그날 시퀀스(α-amylase promoter-signal sequence) 시스템 (1 kb)이 사용되었는데 귀리의 β-glucosidase 유전자가 삽입되었을 때, 베타-글루코시다제(β-glucosidase)는 성공적으로 분비되었다. 상등액 중의 베타-글루코시다제(β-glucosidase)의 활성은 15 시간 후에 꾸준이 증가되었고 27 시간째에 최고였다(도 6, 7). 상등액에 있는 단백질의 SDS-PAGE 분석에서, 예상되어 지는 60kD 정도의 크기를 갖는 베타-글루코시다제(β-glucosidase)는 발현/분비벡터를 함유하는 형질전환로부터 단지 발견되었다. 이는 베타-글루코시다제(β-glucosidase)가 분비되었음을 확인시켜 준다(도 8).For expression and secretion, the alpha-amylase promoter-signal sequence system (1 kb) of Bacillus subtilis was used. When oats β-glucosidase gene was inserted, beta Glucosidase was successfully secreted. The activity of beta-glucosidase in the supernatant increased steadily after 15 hours and peaked at 27 hours (FIGS. 6, 7). In SDS-PAGE analysis of the proteins in the supernatant, beta-glucosidase with an expected size of about 60 kD was found only from transformations containing expression / secretion vectors. This confirms the secretion of beta-glucosidase (β-glucosidase) (FIG. 8).

이상, 상기 실시예를 통하여 설명한 바와 같이 본 발명은 안정성이 있으면서도 외래유전자의 생산이 용이한 식용벡터 pPS를 이용하면 식품에 부족하기 쉬운 비타민이나 단백질 등의 생리적으로 유용한 물질을 보충할 수 있으므로 식품 및 의약품산업상 매우 유용한 발명인 것이다.As described above, the present invention can supplement foods with physiologically useful substances such as vitamins and proteins that are easily lacking in foods by using an edible vector pPS that is stable and easy to produce foreign genes. It is a very useful invention in the pharmaceutical industry.

Claims (2)

바실러스 메센테리쿠스(Bacillus mesentericus) (KCTC 0750BP) 유래 pMMMH1를 제한효소 PstⅠ 과 제한효소 SpeⅠ에 의해 절단하여 획득되는 2.3Kb 단편을 함유하는 것을 특징으로 하는 벡터.A vector comprising a 2.3Kb fragment obtained by cleaving pMMMH1 derived from Bacillus mesentericus (KCTC 0750BP) by restriction enzymes PstI and restriction enzyme SpeI. 바실러스 메센테리쿠스(Bacillus mesentericus) (KCTC 0750BP) 유래 pMMMH1를 제한효소 PstⅠ 과 제한효소 SpeⅠ에 의해 절단하여 획득되는 2.3Kb 단편을 pGEM5zf(+)에 삽입하여 제조되는 벡터 pPS.Vector pPS prepared by inserting a 2.3Kb fragment obtained by cleaving pMMMH1 derived from Bacillus mesentericus (KCTC 0750BP) by restriction enzymes PstI and restriction enzyme SpeI into pGEM5zf (+).
KR1020020034094A 2002-06-18 2002-06-18 Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis KR20030096980A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020020034094A KR20030096980A (en) 2002-06-18 2002-06-18 Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis
AU2003244231A AU2003244231A1 (en) 2002-06-18 2003-06-16 Food grade vector comprising psti-spei fragment of pmmh1 plasmid derived from wild-type bacillus
PCT/KR2003/001170 WO2003106686A1 (en) 2002-06-18 2003-06-16 Food grade vector comprising psti-spei fragment of pmmh1 plasmid derived from wild-type bacillus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020034094A KR20030096980A (en) 2002-06-18 2002-06-18 Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis

Publications (1)

Publication Number Publication Date
KR20030096980A true KR20030096980A (en) 2003-12-31

Family

ID=29728698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020034094A KR20030096980A (en) 2002-06-18 2002-06-18 Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis

Country Status (3)

Country Link
KR (1) KR20030096980A (en)
AU (1) AU2003244231A1 (en)
WO (1) WO2003106686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662600B1 (en) * 2004-08-24 2006-12-28 서주원 PS An edible pPS vector from Bacillus pumilus
KR101990067B1 (en) 2017-12-14 2019-06-17 (주)삼열에너지 A Roll manufacturing Method with Excellent Anti-wearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002789A (en) * 1990-07-10 1992-02-28 김만경 Carriage vector in Bacillus, preparation method thereof and use
KR20010090312A (en) * 2000-03-24 2001-10-18 서주원 Plasmid pMMH1 isolated from Bacillus mesentericus KCTC 0750BP

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002789A (en) * 1990-07-10 1992-02-28 김만경 Carriage vector in Bacillus, preparation method thereof and use
KR20010090312A (en) * 2000-03-24 2001-10-18 서주원 Plasmid pMMH1 isolated from Bacillus mesentericus KCTC 0750BP

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Characterization of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides ssp. mesenteroides FR52, and its use as a food grade vector. FEMS Microbiol Lett. 1999 Oct 15;179(2):375-83 *
Establishment of a host-vector system in Lactobacillus helveticus with beta-galactosidase activity as a selection marker. Biosci Biotechnol Biochem. 1992 Feb;56(2):190-4 *
Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol. 2000 Nov;66(11):4822-8 *
Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol. 2001 Apr;67(4):1700-9 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662600B1 (en) * 2004-08-24 2006-12-28 서주원 PS An edible pPS vector from Bacillus pumilus
KR101990067B1 (en) 2017-12-14 2019-06-17 (주)삼열에너지 A Roll manufacturing Method with Excellent Anti-wearing

Also Published As

Publication number Publication date
AU2003244231A1 (en) 2003-12-31
WO2003106686A1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
KR102375732B1 (en) Compositions and methods for increasing protein production in Bacillus licheniformis
Gilbert et al. Production and secretion of proteins by streptomycetes
JP4571304B2 (en) Production of polypeptides in Bacillus cells
CN105992817B (en) Improved bacillus host
JP2014236730A (en) Novel expression-regulating sequence and expression products in the field of filamentous fungi
US5232841A (en) Expression vectors containing a bacillus brevis signal sequence
KR20000068934A (en) Improved Expression Vectors
Yang et al. Codon optimized Thermobifida fusca hydrolase secreted by Bacillus megaterium
EP1187925B1 (en) Pectate lyase fusion for expression and secretion of polypeptides
US9029519B2 (en) Modified promoter
US6100063A (en) Procaryotic cell comprising at least two copies of a gene
EP0196375B1 (en) Gene coding for signal peptides and utilization thereof
KR20030096980A (en) Food grade vector comprising PstⅠ-SpeⅠ fragment of pMMH1 plasmid derived from wild-type Bacillis
Fischer et al. Physiological consequence of expression of soluble and active hen egg white lysozyme in Escherichia coli
Hemilä et al. Improving the production of E. coli β-lactamase in Bacillus subtilis: the effect of glucose, pH and temperature on the production level
KR101222889B1 (en) Expression System Comprising Dual Promoters And Overexpression of Foreign Genes Using The Same
Nisole et al. Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity
KR100662600B1 (en) PS An edible pPS vector from Bacillus pumilus
KR100814313B1 (en) Plasmid to be used in chromosome recombination of escherichia coli
JP3340164B2 (en) Novel calcium regulation promoter PO438
KR100497204B1 (en) Novel secretion signal isolated from the lactic acid bacteria
Kim et al. Overproduction and Secretion of $\beta $-Glucosidase in Bacillus subtilis
FI120155B (en) Process and system for increased production of commercially important exoproteins in gram-positive bacteria
Suh et al. Stable Secretion Vector Derived from the RCR (rolling-circle replication) Plasmid of Bacillus mesentericus
CA2156425C (en) Method and system for enhanced production of commercially important exoproteins in gram-positive bacteria

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
WITB Written withdrawal of application