KR20030095821A - A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same - Google Patents

A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same Download PDF

Info

Publication number
KR20030095821A
KR20030095821A KR1020020033395A KR20020033395A KR20030095821A KR 20030095821 A KR20030095821 A KR 20030095821A KR 1020020033395 A KR1020020033395 A KR 1020020033395A KR 20020033395 A KR20020033395 A KR 20020033395A KR 20030095821 A KR20030095821 A KR 20030095821A
Authority
KR
South Korea
Prior art keywords
gene
measuring
radiation
degree
irradiation
Prior art date
Application number
KR1020020033395A
Other languages
Korean (ko)
Other versions
KR100458364B1 (en
Inventor
이윤실
정두일
김경중
이수재
김태환
조철구
배상우
강창모
Original Assignee
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구소 filed Critical 한국원자력연구소
Priority to KR10-2002-0033395A priority Critical patent/KR100458364B1/en
Publication of KR20030095821A publication Critical patent/KR20030095821A/en
Application granted granted Critical
Publication of KR100458364B1 publication Critical patent/KR100458364B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2539/00Reactions characterised by analysis of gene expression or genome comparison
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/185Nucleic acid dedicated to use as a hidden marker/bar code, e.g. inclusion of nucleic acids to mark art objects or animals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same gene are provided, thereby improving the accuracy, sensitivity and time for measuring the degree of irradiation. CONSTITUTION: A gene for measuring the degree of irradiation is selected from the gene bank accession nos. af016266, 142176, m15796 and u53328. A method for measuring the degree of irradiation comprises measuring the expression increase of the gene selected from gene bank accession nos. af016266, 142176, m15796 and u53328 in a blood sample obtained from a person. The DNA chip contains one or more genes selected from gene bank accession nos. af016266, 142176, m15796 and u53328 as a biomarker.

Description

방사선 피폭 측정용 유전자, 이를 이용한 방사선 피폭 측정방법, 및 이를 함유한 DNA칩{A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same}Gene for measuring radiation exposure, method for measuring radiation exposure using same, and DNA chip containing same {A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same}

본 발명은 방사선 피폭 측정용 유전자, 이를 이용한 방사선 피폭 측정방법, 및 이를 바이오마커(biomarker)로서 함유하는 DNA 칩에 관한 것이며, 더욱 상세하게는 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 선택된 방사선 피폭 측정용 유전자, 이를 이용한 방사선 피폭 측정방법, 및 이를 바이오마커(biomarker)로서 함유하는 DNA 칩에 관한 것이다.The present invention relates to a gene for measuring radiation exposure, a method for measuring radiation exposure using the same, and a DNA chip containing the same as a biomarker, and more specifically, gene bank accession no. Af016266, 142176, m15796, and a gene for measuring radiation exposure selected from the group consisting of u53328, a method for measuring radiation exposure using the same, and a DNA chip containing the same as a biomarker.

암의 치료법은 수술, 방사선요법, 화학요법으로 크게 나눌 수 있는데 현재 암 환자 중 국내의 경우 약 35%, 미국의 경우 약 50% 정도가 방사선 치료를 받고 있으며 국내에서 방사선치료를 받는 암 환자의 수가 매년 증가하고 있는 추세여서 암 치료에 있어 방사선 치료의 중요성 또한 증가하고 있는 실정이다. 그러나, 화학요법과 마찬가지로 방사선요법의 가장 큰 부작용은 암세포 뿐 아니라 정상세포가 방사선에 의해 손상된다는 점이다. 그러므로, 방사선요법은 암세포의 사멸을 촉진하고 정상세포의 손상은 최소화하는 방향으로 치료가 이루어져야 하는 바, 방사선요법을 시행하는 동안 정상세포의 방사선 피폭정도를 모니터링 하는 것은 매우 중요하다.Cancer treatment can be divided into surgery, radiotherapy, and chemotherapy. Currently, about 35% of cancer patients in Korea and about 50% in the United States are receiving radiation therapy. Since the trend is increasing every year, the importance of radiation therapy in the treatment of cancer is also increasing. However, as with chemotherapy, the biggest side effect of radiation therapy is that not only cancer cells but also normal cells are damaged by radiation. Therefore, radiotherapy should be treated to promote the death of cancer cells and minimize damage to normal cells. Therefore, it is very important to monitor the radiation exposure of normal cells during radiation therapy.

정상세포의 방사선 피폭정도를 모니터링 하는 것은 방사선 요법에서 뿐만 아니라 방사선에 피폭될 위험이 있는 방사선 관련 작업 종사자들에 대한 방사선 피폭 진단과 치료를 위해서도 매우 중요하다.Monitoring the radiation exposure of normal cells is important not only in radiation therapy, but also for the diagnosis and treatment of radiation exposure in radiation-related workers who are at risk of radiation exposure.

암세포에 따른 방사선에 대한 감수성은 유전자 발현 패턴에 따라 다르며 이는 방사선 치료 시 가장 큰 문제점의 하나로 지적되고 있다. 따라서, 종양세포의 방사선 반응 유전자군을 발견하여 방사선 반응 유전자군의 방사선에 대한 반응을 모니터링하는 방법이 개발된 바 있다(Hanna E, Shrieve DC, Ratanatharathorn V, Xueqing X, Breau R, Suen J and Li S: A novel alternative approach for prediction of radiation response of squamous cell carcinoma of head and neck. Cancer Res, 61: 2376-2380, 2000; Achary MP, Jaggernauth W, Gross E, Alfieri A, Klinger HP, Vikram B: Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression. Cytogenet Cell Genet. 91(1-4):39-43, 2000; Galloway AM, Allalunis-Turner J: 4. cDNA expression array analysis of DNA repair genes in human glioma cells that lack or express DNA-PK. Radiat Res. 154(6):609-15, 2000). 방사선에 의한 손상 중 대표적인 것이 세포사 (apoptosis)로서, 이들 방법은 방사선 세포사를 유도하는 유전자를 DNA 칩 등을 이용하여 발굴하였다.The sensitivity to radiation according to cancer cells depends on the gene expression pattern, which is pointed out as one of the biggest problems in radiation therapy. Therefore, a method of monitoring the radiation response gene group of tumor cells and monitoring the radiation response gene group has been developed (Hanna E, Shrieve DC, Ratanatharathorn V, Xueqing X, Breau R, Suen J and Li). S: A novel alternative approach for prediction of radiation response of squamous cell carcinoma of head and neck.Cancer Res, 61: 2376-2380, 2000; Achary MP, Jaggernauth W, Gross E, Alfieri A, Klinger HP, Vikram B: Cell lines from the same cervical carcinoma but with different radiosensitivities exhibit different cDNA microarray patterns of gene expression.Cytogenet Cell Genet. 91 (1-4): 39-43, 2000; Galloway AM, Allalunis-Turner J: 4.cDNA expression array analysis of DNA repair genes in human glioma cells that lack or express DNA-PK.Radiat Res. 154 (6): 609-15, 2000). Among the damages caused by radiation is apoptosis, and these methods discovered a gene that induces radiation cell death using a DNA chip or the like.

현재, 방사선에 대한 종양세포의 반응성 차이 및 이를 측정하기 위한 노력들이 진행중에 있으나(Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, Fornace AJ Jr: Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res. 154(3):342-6, 2000; Bump EA, Braubhut SJ, Lalayoor ST, Medeiros D, Lai LL, Cerce BA, Langley RE and Coleman CN: Novel concepts in modification ofradiation sensitivity. Intl J Radiat Oncol Biol Phys, 29, 249-253, 1994; Hall EJ: Radiobiology for the radiologist. Lippincott, 3rd edition, p357-445, 1988), 정상세포의 방사선 피폭 정도를 측정하기 위한 노력들은 거의 이루어지고 있지 않은 실정이다.Currently, efforts are being made to determine the difference in tumor cell responsiveness to radiation and to determine it (Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, Fornace AJ Jr: Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation.Radiat Res. 154 (3): 342-6, 2000; Bump EA, Braubhut SJ, Lalayoor ST, Medeiros D, Lai LL, Cerce BA, Langley RE and Coleman CN: Novel concepts in modification of radiation sensitivity.Intl J Radiat Oncol Biol Phys, 29, 249-253, 1994; Hall EJ: Radiobiology for the radiologist. Lippincott, 3rd edition, p357-445, 1988), efforts to measure the degree of radiation exposure of normal cells. They are rarely done.

현재 방사선 감수성에 관여한다고 알려진 유전자는 H-Ras oncogene c-Myc, Thymidine kinase, Basic fibroblast growth factor, Insulin-like growth factor, p21, Bcl-2, p53, Acid Sphinigomyelinase 등이 알려져 있고, 골수(myeloid) 암세포를 대상으로 했을 때, p21WAF1 및 GADD45 유전자가 2-50 cGy 사이에서 반응함이 보고된 바 있다(FitxGerald TJ, Santucci MA, Das I, Kase K, Pierce JH and Greenberger JS: The v-abl, c-fms, or v-myc oncogene induces gamma radiation resistance of hematopoietic progenitor cell line at clinical low dose rate. Int J Radiat Oncol Biol Phys 21: 1203-1210, 1991; Riva C, Lavielli JP, Reyt E, Brambilla E, Lunardi J, Brambilla C: Differential c-myc, c-jun, c-far and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance. Eur J Cancer 31B: 384-391, 1995).Genes that are known to be involved in radiation sensitivity are known as H-Ras oncogene c-Myc, Thymidine kinase, Basic fibroblast growth factor, Insulin-like growth factor, p21, Bcl-2, p53, Acid Sphinigomyelinase, and myeloid In cancer cells, p21WAF1 and GADD45 genes have been reported to respond between 2-50 cGy (FitxGerald TJ, Santucci MA, Das I, Kase K, Pierce JH and Greenberger JS: The v-abl, c -fms, or v-myc oncogene induces gamma radiation resistance of hematopoietic progenitor cell line at clinical low dose rate.Int J Radiat Oncol Biol Phys 21: 1203-1210, 1991; Riva C, Lavielli JP, Reyt E, Brambilla E, Lunardi J, Brambilla C: Differential c-myc, c-jun, c-far and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance.Eur J Cancer 31B: 384-391, 1995).

한편, 방사선 피폭을 측정하는 방법으로는 혈액의 임파구를 분리하여 염색체 이상 확인, 소핵 형성도 측정, 적혈구에서 글라코포린 A (glycoporin A)의 돌연변이 측정, DNA 절단정도, 및 치아의 에나멜(enamel)을 이용한 EST (Electron Spin Resonance) 등의 방법에 의존하고 있으나, 개인에 따라 반응성의 다르고 저선량 방사선에 대해서는 측정이 거의 불가능하며 측정시간이 오래 걸린다는 단점이있다(Brooks A: Biomarkers of exposure, sensitivity and disease. Int J Radiat Biol, 75: 1481-1503, 1999; Amundson SA, Bittner M, Meltzer P, Trent J and Fornace AJ: Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat Res, 156: 657-661, 2001). 또한 생물학적 방사선 피폭을 측정하기 위해서는 단일 방법에 의한 피폭정도를 측정하는 것은 위험성이 크기 때문에 정확성을 높여줄 방법의 개발이 필요하다.On the other hand, the method of measuring the radiation exposure is to isolate the lymphocytes of blood to check for chromosomal abnormalities, to measure micronucleus formation, to measure the mutation of glycoporin A in red blood cells, the degree of DNA cleavage, and the enamel of the tooth. Depends on the method of EST (Electron Spin Resonance), etc., but there are disadvantages in that it is different in reactivity, and it is almost impossible to measure low dose radiation and takes a long time (Brooks A: Biomarkers of exposure, sensitivity and Int J Radiat Biol, 75: 1481-1503, 1999; Amundson SA, Bittner M, Meltzer P, Trent J and Fornace AJ: Induction of gene expression as a monitor of exposure to ionizing radiation.Radiat Res, 156: 657- 661, 2001). In addition, in order to measure the exposure of biological radiation, measuring the degree of exposure by a single method is dangerous, and therefore, a method for improving accuracy is required.

이에 본 발명자들은 정상세포에서 방사선에 대한 감수성 차이를 현저히 나타내는 유전자군을 선별함으로써 방사선 피폭정도를 측정하는 방법 및 이를 함유한 DNA 칩을 개발하여 본 발명을 완성하게 되었다.Therefore, the present inventors have completed the present invention by developing a method for measuring the degree of radiation exposure and a DNA chip containing the same by selecting a group of genes that show a significant difference in sensitivity to radiation in normal cells.

따라서, 본 발명의 목적은 방사선에 대한 감수성 차이를 현저히 나타내는 유전자군을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a group of genes that exhibit marked differences in sensitivity to radiation.

또한, 본 발명의 목적은 상기 유전자군의 발현증가 정도를 측정하는 단계를 포함하는 방사선 피폭 측정방법을 제공하는 것을 포함한다.It is also an object of the present invention to provide a method for measuring radiation exposure comprising the step of measuring the degree of expression increase of the gene group.

또한, 본 발명의 목적은 상기 유전자군을 바이오마커로서 포함하는 DNA 칩을 제공하는 것을 포함한다.It is also an object of the present invention to provide a DNA chip comprising the gene group as a biomarker.

도 1은 방사선에 노출되지 않은 대조군에 비해 2배 이상 발현이 증가하는 44개의 유전자군을 나타내며,1 shows 44 gene groups with increased expression more than two-fold compared to controls not exposed to radiation,

도 2a 및 도 2b는 실시예 1에서 발현이 증가한 44개 유전자를 대상으로 인체혈액 임파구의 방사선 반응성을 RT-PCR법에 의해 검사한 결과를 나타내며,Figure 2a and Figure 2b shows the results of the radioactivity of human blood lymphocytes tested by RT-PCR for 44 genes with increased expression in Example 1,

도 3은 방사선에 의해 발현이 증가하는 4개의 유전자에 대한 발현 정도를 나타내며,3 shows the expression level for four genes whose expression is increased by radiation,

도 4는 대상인의 수를 확대하여 방사선에 의해 발현이 증가하는 4개의 유전자에 대한 발현정도를 나타내며,4 shows the expression level of four genes whose expression is increased by radiation by expanding the number of subjects,

도 5a 및 도 5b는 방사선량 및 시간의 경과에 따른 4개 유전자의 발현정도에 대한 RT-PCR 분석 결과를 나타내며,5a and 5b show the results of RT-PCR analysis of the expression level of the four genes over time and the radiation dose,

도 6a 및 도 6b는 방사선에 피폭되지 않은 정상인을 대상으로 4개 유전자의 발현 정도에 대한 RT-PCR 분석 결과를 나타낸다.6a and 6b show the results of RT-PCR analysis of the expression level of the four genes in normal people who are not exposed to radiation.

상기 목적을 달성하기 위하여, 본 발명은 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 선택된 방사선 피폭 측정용 유전자를 제공한다.To achieve the above object, the present invention provides a gene for radiation exposure measurement selected from the group consisting of gene bank accession numbers af016266, 142176, m15796, and u53328.

또한, 본 발명은 정상인으로부터 채취한 혈액 중 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자의 발현증가 정도를 측정하는 단계를 포함하는 방사선 피폭 측정방법을 제공하며, 바람직하게는 상기 유전자의 발현증가 정도가 평균 발현수치의 약 2배 이상으로 검출될 경우, 방사선에 피폭된 것으로 판정하는 것을 특징으로 하는 방사선 피폭 측정방법을 제공한다.In addition, the present invention is a radiation exposure comprising the step of measuring the expression level of one or more genes selected from the group consisting of gene bank accession number (f016266, 142176, m15796, and u53328) of blood collected from normal people Provided is a measurement method, and preferably, when the degree of expression increase of the gene is detected to be at least about twice the mean expression value, it is determined that the radiation exposure measurement method characterized in that it is exposed to radiation.

또한, 본 발명은 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자를 바이오마커(biomarker)로서 포함하는 방사선 피폭 측정용 DNA 칩을 제공한다.The present invention also provides a DNA chip for measuring radiation exposure comprising a biomarker of at least one gene selected from the group consisting of gene bank accession nos af016266, 142176, m15796, and u53328.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 2400개 유전자칩을 이용하여, 건강한 성인으로부터 혈액임파구(Peripheral Blood Lymphocytes, PBL)를 분리하여 방사선을 조사한 후, 총 RNA를 분리하고 마이크로어레이(Microarray) 분석을 실시하여, 방사선을 조사하지 않은 세포에 비해 2배 이상 발현이 증가한 44개의 유전자를 선별하였다 (도1).Using 2400 gene chips, the present inventors separated and irradiated blood lymphocytes (PBLs) from healthy adults, and then total RNA was isolated and subjected to microarray analysis. Forty-four genes with more than two-fold increase in expression compared to unpopulated cells were selected (FIG. 1).

5사람의 임파구를 대상으로 44개의 유전자에 대한 RT-PCR (Reverse Transcription - Polymerase Chain Reaction) 분석을 수행하여 5사람 중 3사람이상에서 마이크로어레이와 같은 2배 이상의 발현증가를 보이는 4개의 유전자를 선별하였다(도2a 및 도2b). 또한, 30명 이상의 정상인을 대상으로 RT-PCR 분석을 수행한 결과, 상기 4개의 유전자가 89% 이상의 반응성을 나타냈다. 또한, 이들 유전자는 0.5Gy의 저선량 방사선에 의해서도 반응성을 나타내었고, 방사선 피폭 24시간까지반응성이 지속되었다.RT-PCR (Reverse Transcription-Polymerase Chain Reaction) analysis of 44 genes from five lymphocytes was performed to select four genes with more than double expression, such as microarray, in three or more of five humans. 2a and 2b. In addition, RT-PCR analysis of 30 or more normal subjects revealed that the four genes exhibited over 89% reactivity. In addition, these genes were also responsive by low dose radiation of 0.5 Gy, and the reactivity was continued until 24 hours of radiation exposure.

최종적으로 선별된 유전자는 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로서 각각 TRAIL-receptor2, DRAL, Cyclin protein gene, 및 Cyclin G로 알려진 유전자로서, 상기 유전자는 방사선 피폭 측정용 유전자로서의 기능을 가진다.The finally selected genes are gene bank accession nos af016266, 142176, m15796, and u53328, which are known genes as TRAIL-receptor2, DRAL, Cyclin protein gene, and Cyclin G, respectively. It has a function as a dragon gene.

따라서, 정상인으로부터 채취한 혈액 중 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자의 발현증가 정도를 측정함으로써, 방사선 피폭을 측정할 수 있으며, 바람직하게는 상기 유전자의 발현증가 정도가 평균 발현수치의 약 2배 이상으로 검출될 경우, 방사선에 피폭된 것으로 판정함으로써 용이하게 방사선 피폭을 측정할 수 있다.Therefore, radiation exposure can be measured by measuring the expression level of one or more genes selected from the group consisting of gene bank accession nos af016266, 142176, m15796, and u53328 in blood collected from normal individuals, Preferably, when the degree of expression increase of the gene is detected at least about twice the mean expression value, the radiation exposure can be easily measured by determining that it is exposed to radiation.

또한, 상기 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자는 방사선 피폭 측정용 DNA 칩 제조를 위한 바이오마커(biomarker)로서 이용될 수 있다. 상기 DNA 칩은 당업계에서 공지된 DNA칩 제조기술을 사용하고 본 발명에 따른 유전자를 바이오마커로서 사용하여 용이하게 제조할 수 있다.In addition, one or more genes selected from the group consisting of the gene bank accession numbers af016266, 142176, m15796, and u53328 may be used as biomarkers for preparing DNA chips for measuring radiation exposure. The DNA chip can be easily produced using a DNA chip manufacturing technique known in the art and using the gene according to the present invention as a biomarker.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited thereto.

(실시예)(Example)

실시예 1Example 1

마이크로어레이 분석Microarray Analysis

1. 사용 세포주의 선택1. Selection of cell lines used

건강한 성인으로부터 혈액 임파구(Peripheral Blood Lymphocytes, PBL)를 분리하여 사용하였다.Peripheral Blood Lymphocytes (PBLs) were isolated from healthy adults.

2. 방사선 조사2. Irradiation

PBL을 분리한 후 10cm 직경의 페트리 디쉬에 플레이팅(plating)한 후 2-4시간 동안 37℃에서 배양하였다. 이후 감마선137Cs (Atomic Energy of Canada, Ltd., Canada)을 3.81 Gy/분의 선량률로 조사하였다. 총 1Gy를 조사하였고 조사 12시간 후에 PBL에서 RNA를 분리하였다.PBLs were isolated and plated in 10 cm diameter Petri dishes and incubated at 37 ° C. for 2-4 hours. The gamma ray 137 Cs (Atomic Energy of Canada, Ltd., Canada) was then investigated at a dose rate of 3.81 Gy / min. A total of 1 Gy was irradiated and RNA was isolated from PBL after 12 hours of irradiation.

3. 총 RNA의 분리3. Isolation of Total RNA

총 RNA의 분리는 상품화된 TriazolTM(Life Technology, Inc; Gaithersburg, MD, USA)을 이용하였다. 100㎖ 혈액에서 분리한 PBL에서 추출한 총 RNA에서 mRNA를 분리하였으며, 올리고텍스 비드(oligotex bead) (Qiagen Co.; Santa Clarita, CA, USA)를 이용하였다.Isolation of total RNA was done using commercialized Triazol (Life Technology, Inc; Gaithersburg, MD, USA). MRNA was isolated from total RNA extracted from PBL isolated from 100 ml blood, and oligotex beads (Qiagen Co .; Santa Clarita, CA, USA) were used.

4. 마이크로어레이 분석4. Microarray Analysis

마이크로어레이 분석은 3 단계 즉, 라벨링, 혼성화(hybridization), 세척의 단계로 진행하였다.Microarray analysis proceeded in three steps: labeling, hybridization, and washing.

25㎕의 반응 혼합물을 이용하여 라벨링(labeling)을 실행하였다. 반응 혼합물의 구성은 2㎕ dNTP/프라이머 혼합 농축물, 2㎕ 비라벨 대조군 RNA, 20㎍(X㎕)총RNA 또는 mRNA, 13-X㎕ RNase-free water로 구성되었다. 반응 혼합물을 65℃에서 10분간, 25℃에서 5분간 처리한 후 4㎕ 시아닌 3-dUTP 또는 2㎕ 시아닌 5-dUTP를 첨가하였다. 그 후 42℃에서 3분간 처리한 후 2.5㎕ 10X 반응 혼합물 완충용액를 넣고 혼합하였다. 2㎕ AMV RT/RNase 억제제를 넣고 42℃에서 60 분간 배양한 후 다시 4℃에서 10분간 방치하였다. 2.5㎕의 0.5M EDTA를 넣어 반응을 중단시키고 2.5㎕의 1N NaOH을 넣어 가수분해를 시작하였다. 65℃에서 30분간, 4℃에서 5분간 배양하였는데 배양동안 6.2㎕의 1M 트리스 HCl(pH 7.5)를 넣어 중화시켰다. 만들어진 cDNA를 순수하게 분리하기 위해 스핀 컬럼(spin column, Millipore사; Bedford, MA)을 이용하였다. cDNA는 Cy-5 (붉은색)와 Cy-3 (초록색)로 라벨링하여 발현정도를 비교하였다.Labeling was performed using 25 μl of reaction mixture. The reaction mixture consisted of 2 μl dNTP / primer mixed concentrate, 2 μl non-labeled control RNA, 20 μg (X μl) total RNA or mRNA, 13-X μl RNase-free water. The reaction mixture was treated for 10 minutes at 65 ° C. and 5 minutes at 25 ° C. before addition of 4 μl cyanine 3-dUTP or 2 μl cyanine 5-dUTP. Thereafter, the mixture was treated at 42 ° C. for 3 minutes, and then mixed with 2.5 μl 10 × reaction mixture buffer. 2 μl AMV RT / RNase inhibitor was added and incubated at 42 ° C. for 60 minutes, and then left at 4 ° C. for 10 minutes. 2.5 μl of 0.5M EDTA was added to stop the reaction, and 2.5 μl of 1N NaOH was added to initiate hydrolysis. Incubated at 65 ° C. for 30 minutes and 4 ° C. for 5 minutes, and neutralized with 6.2 μl of 1M Tris HCl (pH 7.5). Spin column (Spin column, Millipore Co .; Bedford, MA) was used to purely separate the resulting cDNA. cDNA was labeled with Cy-5 (red) and Cy-3 (green) to compare expression levels.

5. 마이크로어레이 스캐닝 및 데이터 분석5. Microarray Scanning and Data Analysis

NEN MICROMAX cDNA 마이크로어레이를 이용하였고 NEN 웹 페이지 (www.nen.com)를 참고하였다. 플루오레센트 이미지(Fluorescent image)가 함유된 마이크로어레이는 PIX 4000 마이크로어레이 스캐너 (Axon Instruments)로 스캐닝 하였고 이미지 분석은 Gene PIX program에 의해 시행하였다. 방사선을 조사하지 않은 세포에 비해 2배 이상 발현이 증가했거나 감소한 유전자를 방사선에 반응하는 유전자로 간주하였다.A NEN MICROMAX cDNA microarray was used and the NEN web page (www.nen.com) was referenced. Microarrays containing fluorescent images were scanned with a PIX 4000 microarray scanner (Axon Instruments) and image analysis was performed by a Gene PIX program. Genes that increased or decreased expression more than two-fold compared to unirradiated cells were considered as genes that respond to radiation.

6. 실험결과6. Experimental Results

마이크로어레이 분석을 실시한 결과 방사선에 노출되지 않은 대조군에 비해 2배 이상 발현이 증가하는 44개의 유전자군을 도1에 나타내었다.As a result of performing microarray analysis, FIG. 1 shows 44 gene groups in which expression is increased more than two times compared to the control group not exposed to radiation.

각 유전자의 대표적인 기능을 살펴보면 세포사(Apoptosis), Signaling, 미코콘드리아 기능 등 다양한 기능에 가담하는 유전자의 발현이 증가하였다.Representative functions of each gene increased expression of genes involved in various functions such as apoptosis, signaling, and mycochondrial function.

실시예 2Example 2

RT-PCR 분석RT-PCR Analysis

상기 실시예 1에서 방사선에 노출되지 않은 대조군에 비해 2배 이상 발현이 증가하는 44개의 유전자군을 대상으로 다음의 실험을 수행하였다.In Example 1, the following experiment was performed on 44 gene groups in which expression was increased more than two times compared to the control group not exposed to radiation.

1. RT-PCR 분석1. RT-PCR Analysis

1Gy 방사선 조사 12시간 후에 PBL에서 총 RNA를 분리한 후 1.25㎍의 총 RNA를 사용하여 역전사(reverse transcription)을 수행하였다. 1.25 ㎍(X㎕) 총 RNA, 17-X ㎕ RNase-free water로 RNA를 준비한 후 65℃에서 5분간 반응시킨 다음, 반응 혼합물을 넣고 37℃에서 1시간 동안 cDNA를 합성하였고, 다시 95℃에서 5분간 역전사효소(Reverse Transcriptase)를 불활성화시켰다. 반응혼합물의 구성은 2.5㎕ 10X 완충용액, 2.5㎕ dNTP 혼합물(5 mM 각각), 1.25㎕ 올리고 dT 프라이머(500 ㎍/㎖), 1.25㎕ 역전사효소(4 U/㎕), 0.5 ㎕ RNasin(40 U/㎕)으로 구성되었다.After 12 hours of 1 Gy irradiation, total RNA was isolated from PBL, and reverse transcription was performed using 1.25 μg of total RNA. After preparing RNA with 1.25 μg (X μl) total RNA and 17-X μl RNase-free water, the reaction was performed at 65 ° C. for 5 minutes, the reaction mixture was added, and cDNA was synthesized at 37 ° C. for 1 hour. Reverse Transcriptase was inactivated for 5 minutes. The reaction mixture consisted of 2.5 μl 10 × buffer, 2.5 μl dNTP mixture (5 mM each), 1.25 μl oligo dT primer (500 μg / ml), 1.25 μl reverse transcriptase (4 U / μl), 0.5 μl RNasin (40 U / Μl).

이렇게 합성된 cDNA를 사용하여 PCR을 수행하였다. 각각의 프라이머들은 각각의 인체 유전자에 알맞도록 설계되었으며, 모두 58℃의 어닐링 온도를 갖도록 제작되었다. 각각 2 ㎕의 cDNA를 사용하였고, 반응혼합물을 넣고 95℃에서 5분 동안 변성(denaturation)시킨 후, 95℃ 1분(변성), 58℃ 1분(어닐링), 72℃ 1분(중합)으로 30 Cycle의 PCR을 수행한 후 다시 72℃에서 6분 동안 중합(polymerization)을 수행하였다. 반응혼합물의 구성은 2 ㎕ 10X 완충용액, 2.5 ㎕ dNTP 혼합물(2.5 mM각각), 1 ㎕ 정방향(forward) 프라이머, 1 ㎕ 역방향(reward) 프라이머, 0.1 ㎕ Taq DNA 폴리머라제 (TaKaRa 5 U/㎕), 11.4 ㎕ 증류수로 구성되었다.PCR was performed using the thus synthesized cDNA. Each primer was designed to suit each human gene, and all were designed to have an annealing temperature of 58 ° C. 2 μl of each cDNA was used, the reaction mixture was added and denatured at 95 ° C. for 5 minutes, followed by 95 ° C. 1 minute (denatured), 58 ° C. 1 minute (annealed), and 72 ° C. 1 minute (polymerization). After 30 cycles of PCR, polymerization was again performed at 72 ° C. for 6 minutes. The reaction mixture consisted of 2 μl 10X buffer, 2.5 μl dNTP mixture (2.5 mM each), 1 μl forward primer, 1 μl forward primer, 0.1 μl Taq DNA polymerase (TaKaRa 5 U / μl) , 11.4 μl distilled water.

2. 실험결과2. Experimental Results

44개의 유전자를 대상으로 정상인 5명의 혈액을 이용하여 RT-PCR로 1Gy 방사선에 대한 반응성을 확인한 결과, 44개 유전자중 4개의 유전자만이 3명 이상의 혈액에서 실시예 1과 동일한 결과가 나왔다. 4개의 유전자는 진 뱅크 수탁번호 (gene bank accession no) af016266 (TRAIL-receptor 2), 142176 (DRAL 유전자), m15796 (Cell cycle protein), 및 u53328 (Cylcin G)였으며, 트레일-수용체 2(TRAIL-receptor 2)의 경우 5명 모두에서, DRAL 유전자의 경우 5명중 3명, 세포주기 단백질(Cell cycle protein)의 경우 5명중 4명, 사이클린 G(Cylcin G) 유전자의 경우 5명 모두에서 실시예 1과 동일한 결과를 보여주었다(도 2a 및 도2b).As a result of confirming the responsiveness to 1Gy radiation by RT-PCR using 5 normal blood of 44 genes, only 4 genes among 44 genes showed the same result as Example 1 in 3 or more bloods. The four genes were gene bank accession no af016266 (TRAIL-receptor 2), 142176 (DRAL gene), m15796 (Cell cycle protein), and u53328 (Cylcin G), and trail-receptor 2 (TRAIL- In all five patients for receptor 2), three out of five for DRAL gene, four out of five for Cell cycle protein, and five for Cyclin G gene Example 1 Showed the same result as (FIGS. 2A and 2B).

또한 상기 4개의 유전자에 대한 발현 정도를 관찰한 결과 4개 유전자 모두는 방사선 조사하지 않은 대조군 임파구에 비해 2배 이상 발현이 증가하는 결과를 보여주었다(도 3). 따라서 방사선 피폭환자를 진단할 경우 2배 이상의 발현을 보이면 방사선 피폭으로 진단할 수 있을 것으로 사료된다.In addition, as a result of observing the expression level of the four genes, all four genes showed a two-fold increase in expression compared to control lymphocytes not irradiated (FIG. 3). Therefore, if the radiation exposure is diagnosed more than two times, it can be diagnosed as radiation exposure.

실시예 3Example 3

확대시험Extended test

대상 사람 수를 확대하여 실시예 2에서와 동일한 방법으로 RT-PCR 시험을 수행한 결과 트레일 수용체 2(Trail-receptor 2)는 총 32명중 29명 (91%)에서, DRAL의 경우는 총 44명중 39명 (89%)에서, 세포주기 단백질(Cell cycle protein) 및 사이클린 G(Cyclin G)의 경우 총 37명에서 34명 (92%)이 1Gy의 방사선에 의해 발현이 증가하여 마이크로어레이 분석결과와 같은 결과를 보여주었다 (도 4).The RT-PCR test was carried out in the same manner as in Example 2 by expanding the number of subjects. Trail-receptor 2 was found in 29 (32%) of the total 32, and in 44 in the case of DRAL. In 39 (89%), 37 to 34 (92%) of cell cycle protein and Cyclin G increased expression by 1 Gy of radiation, resulting in microarray analysis. The same result was shown (FIG. 4).

이상의 결과로 4개의 유전자는 1Gy의 방사선에 89%이상의 반응성을 보여주어 피폭진단을 위한 바이오마커(biomarker)로서 이용될 수 있다.As a result, the four genes can be used as a biomarker for diagnosing the exposure by showing 89% or more reactivity to 1Gy of radiation.

실시예 4Example 4

유전자의 발현시간 및 방사선의 용량의존성 측정Dose dependence of gene expression time and radiation dose

이상 4개의 마커 유전자를 대상으로 피폭 후 마커 유전자의 발현이 언제까지 지속되며 얼마나 적은 방사선 선량에 노출되었을 때까지 측정 가능한지를 확인하기 위해 방사선 피폭 후 12, 24 및 48시간에 RT-PCR을 시행하였고 방사선 선량은 0.5, 1, 2 및 4 Gy로 각각 조사하여 실시하였다.RT-PCR was performed at 12, 24 and 48 hours after radiation exposure to determine how long the expression of marker genes persisted after exposure and how long they could be measured until they were exposed to less radiation dose. Radiation doses were carried out with irradiation at 0.5, 1, 2 and 4 Gy, respectively.

상기 시험결과를 도 5a 및 도 5b에 나타내었다. 도 5a 및 도 5b에서 확인할 수 있는 바와 같이, 피폭 12시간의 경우 방사선 용량 반응성이 잘 나타났으나 24시간 후에는 사이클린 단백질(cyclin protein) 유전자 및 사이클린 G(Cyclin G)의 경우 용량 반응성이 나타났지만 트레일-수용체 2(TRAIL-receptor 2)의 경우에는 0,5Gy의 반응과 4Gy의 반응이 차이가 없었으며 DRAL의 경우에는 비교적 높은 용량 (2 및 4Gy)에서만 반응이 나타났다. 48시간 후에는 트레일-수용체 2(TRAIL-receptor 2) 및 DRAL의 경우는 반응의 차이가 보이지 않았으나 세포주기 단백질(Cell cycle protein) 및 사이클린 G(Cyclin G)의 경우는 반응성은 0.5Gy에서 보였지만 용량별 차이가 없었다.The test results are shown in FIGS. 5A and 5B. As can be seen in Figures 5a and 5b, the radiation dose reactivity was well seen in the 12 hours of exposure, but after 24 hours the dose reactivity was shown for the cyclin protein gene and Cyclin G Trail-receptor 2 showed no difference between 0 and 5Gy and 4Gy, and DRAL responded only at relatively high doses (2 and 4Gy). After 48 hours, there was no difference in response between TRAIL-receptor 2 and DRAL, but the response was 0.5 Gy for cell cycle protein and Cyclin G. There was no difference.

실시예 5Example 5

방사선 비피폭자들에서의 마커 유전자들의 발현차 측정Expression difference measurement of marker genes in non-irradiated people

방사선에 피폭되지 않은 12명을 대상으로 상기 4개의 마커 유전자의 발현 정도를 실시예2의 RT-PCR 방법을 이용하여 측정하였다.The expression level of the four marker genes was measured using the RT-PCR method of Example 2 in 12 people who were not exposed to radiation.

상기 결과를 도 6a 및 6b에 나타내었다. 2배 미만에서 개인별 변화의 차이를 보였으므로 4개의 마커(marker)가 방사선 피폭시 바이오마커(biomarker)로 사용할 수 있음을 알 수 있다. 방사선에 피폭되어 온 사람의 경우 피폭되지 않은 정상 혈액을 구할 수 없기 때문에, 방사선 피폭 마커로 사용하기 위해서는 방사선 피폭 전의 발현 정도가 개개인마다 차이가 없어야 한다. 그러므로, 2배 미만의 개인별 변화의 차이를 갖는 상기 결과는 대조군에 비해 2배 이상 발현되는 상기 4종류의 마커 유전자가 방사선의 피폭정도를 측정하는 지표로 쓰일 수 있도록 해준다.The results are shown in Figures 6a and 6b. Since the difference of the individual change was less than 2 times, it can be seen that four markers can be used as biomarkers upon radiation exposure. Since people who have been exposed to radiation cannot obtain normal blood without exposure, the level of expression before radiation exposure should not vary from person to person for use as a radiation exposure marker. Therefore, the above result with the difference of individual change of less than 2 times enables the four types of marker genes expressed more than 2 times compared to the control group can be used as an indicator for measuring the degree of radiation exposure.

상기 실시예들의 결과에 따르면 정상세포의 유전자 중 트레일-수용체 2(TRAIL-receptor 2), DRAL, 사이클린 단백질 (Cyclin protein) 유전자, 및 사이클린 G(Cyclin G)의 4개의 유전자로 이루이진 유전자군은 방사선에 노출시 2배 이상 발현이 증가하는 것으로 나타났으며, 방사선에 노출되지 않을 경우 개개인에 따른 발현의 차이가 2배가 넘지 않는 것으로 나타났다. 이러한 유전자군을 이용하여 방사선 피폭정도를 측정하는 방법은 종래의 다른 방법에 비하여 감도, 신속, 정확의 측면에서 보다 바람직하다고 보여진다.According to the results of the above embodiments, the gene group consisting of four genes of TRAIL-receptor 2, DRAL, Cyclin protein, and Cyclin G, When exposed to radiation, the expression increased more than two times, and when not exposed to radiation, the difference in expression by individual was not more than doubled. It is considered that the method of measuring the radiation exposure degree using such a gene group is more preferable in terms of sensitivity, speed, and accuracy than other conventional methods.

이상에서 설명한 바와 같이, 본 발명의 방사선 피폭 측정용 유전자를 이용한 방사선 피폭 측정방법에 따르면 보다 정확하고 저선량의 방사선에 대해서도 측정할수 있어 감도가 좋으며 측정시간이 짧게 걸려 편리하게 방사선의 피폭정도를 측정할 수 있다. 이로 인하여 암 치료시 부작용을 최소화하는데 도움을 주며 방사선 관련 종사자의 방사선 피폭정도를 보다 신속하고 민감하게 측정할 수 있어 건강유지에 도움을 줄 수 있다. 또한 본 발명의 유전자 칩을 사용하여 방사선 관련 사고 시 방사선에 대한 노출정도를 손쉽게 예측, 진단할 수 있다.As described above, according to the method of measuring radiation exposure using the gene for measuring radiation exposure of the present invention, it is possible to measure the radiation exposure of radiation more accurately and with low dose because the sensitivity is good and the measurement time is short. Can be. This helps to minimize side effects in the treatment of cancer and can help to maintain health by measuring radiation exposure of radiation workers more quickly and sensitively. In addition, using the gene chip of the present invention can easily predict and diagnose the degree of exposure to radiation in a radiation-related accident.

Claims (4)

진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 선택된 방사선 피폭 측정용 유전자.Gene bank accession no. Gene for radiation exposure measurement selected from the group consisting of af016266, 142176, m15796, and u53328. 정상인으로부터 채취한 혈액 중 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자의 발현증가 정도를 측정하는 단계를 포함하는 방사선 피폭 측정방법.16. A method of measuring radiation exposure comprising measuring the level of expression increase of one or more genes selected from the group consisting of gene bank accession nos af016266, 142176, m15796, and u53328 in blood taken from a normal person. 제2항에 있어서, 상기 유전자의 발현증가 정도가 평균 발현수치의 약 2배 이상으로 검출될 경우, 방사선에 피폭된 것으로 판정하는 것을 특징으로 하는 방사선 피폭 측정방법.The method of measuring radiation exposure according to claim 2, wherein when the increase in expression level of the gene is detected to be at least about twice the mean expression value, it is determined that the radiation is exposed to radiation. 진 뱅크 수탁번호 (gene bank accession no) af016266, 142176, m15796, 및 u53328로 이루어진 군으로부터 하나 이상 선택된 유전자를 바이오마커(biomarker)로서 포함하는 방사선 피폭 측정용 DNA 칩.Gene bank accession number (gene bank accession no) Af016266, 142176, m15796, and DNA chip for measuring radiation exposure comprising at least one gene selected from the group consisting of u53328 as a biomarker (biomarker).
KR10-2002-0033395A 2002-06-14 2002-06-14 A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same KR100458364B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033395A KR100458364B1 (en) 2002-06-14 2002-06-14 A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0033395A KR100458364B1 (en) 2002-06-14 2002-06-14 A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same

Publications (2)

Publication Number Publication Date
KR20030095821A true KR20030095821A (en) 2003-12-24
KR100458364B1 KR100458364B1 (en) 2004-11-26

Family

ID=32387111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0033395A KR100458364B1 (en) 2002-06-14 2002-06-14 A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same

Country Status (1)

Country Link
KR (1) KR100458364B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788035B1 (en) * 2006-07-04 2007-12-24 재단법인 한국원자력의학원 A composition or kit for diagnosing a cancer induced by radiation
KR101230781B1 (en) * 2012-10-26 2013-02-06 한국원자력의학원 Composition for enhancing radiation sensitivity comprising siRNA of ELAVL4 gene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358810B1 (en) 2011-12-30 2014-02-11 한국원자력의학원 IGFBP-5, a marker for diagnosing radiation exposure, a composition for diagnosing radiation exposure to measure the level of expression of the marker, a kit for diagnosing radiation exposure comprising the composition, and a method for diagnosing radiation exposure using the marker
KR101775336B1 (en) 2016-02-18 2017-09-11 충남대학교산학협력단 Method for diagnosing radiation exposure using expression change of BTBD3 gene in plant
KR101793381B1 (en) 2016-06-28 2017-11-21 충남대학교산학협력단 Kit for detection of radiation dose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032779A (en) * 2001-10-20 2003-04-26 (주)지노첵 Radiation-Responsive Gene and Screening method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788035B1 (en) * 2006-07-04 2007-12-24 재단법인 한국원자력의학원 A composition or kit for diagnosing a cancer induced by radiation
KR101230781B1 (en) * 2012-10-26 2013-02-06 한국원자력의학원 Composition for enhancing radiation sensitivity comprising siRNA of ELAVL4 gene

Also Published As

Publication number Publication date
KR100458364B1 (en) 2004-11-26

Similar Documents

Publication Publication Date Title
Ohira et al. Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas
EP3426796B1 (en) Biomarkers of traumatic brain injury
KR101885596B1 (en) Composition for diagnosing radiation exposure and method for diagnosing radiation exposure using the same
CN106978480A (en) Molecular diagnostic assay for cancer
WO2003081201A2 (en) Peripheral blood cell markers useful for diagnosing multiple sclerosis and methods and kits utilizing same
JP2004537261A (en) Gene expression profiling of primary breast cancer using an array of candidate genes
WO2002009573A2 (en) Prognostic classification of endometrial cancer
CA2464894A1 (en) Colorectal cancer prognostics
Nagahata et al. Expression profiling to predict postoperative prognosis for estrogen receptor‐negative breast cancers by analysis of 25,344 genes on a cDNA microarray
KR100458364B1 (en) A gene for measuring the degree of irradiation, a method for measuring the degree of irradiation using the same, and a DNA chip containing the same
CN104169434A (en) A method for the in vitro diagnosis or prognosis of ovarian cancer
US20230220483A1 (en) Biomarkers for predicting a patient's response to bcg therapy, methods and uses based thereon
US7601532B2 (en) Microarray for predicting the prognosis of neuroblastoma and method for predicting the prognosis of neuroblastoma
JP3771502B2 (en) Methods for analyzing nucleic acids that regulate genes whose expression levels change due to schizophrenia
CN104169435A (en) Method for the diagnosis or prognosis, in vitro, of lung cancer
KR100430397B1 (en) Method for detecting radiation response genes in cancer cell and the genes
CN105861735A (en) Application of RAP1B in coronary heart disease diagnosis
WO2000020575A1 (en) Pollinosis-associated gene
KR102548873B1 (en) A method for sorting colorectal cancer and advanced neoplasia and use of the same
CN109439743A (en) A kind of biomarker of severe asthma and its application
CN109576361A (en) A kind of biomarker relevant to ischemic cardiomyopathy occurrence and development
KR101683961B1 (en) Recurrence Marker for Diagnosis of Bladder Cancer
US20230212692A1 (en) Method for sorting colorectal cancer and advanced adenoma and use of the same
KR102325356B1 (en) Composition for diagnosis of malignancy of glioma using pseudogenes and use thereof
Wang et al. Biological Analysis of Gene Expression and Clinical Variables Suggest FZD1 as a Novel Biomarker for Patients with Kashin‐Beck Disease, an Endemic Osteoarthritis in China

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130808

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 18