KR20030091468A - Composition for flux in fused zinc galvanizing-coating - Google Patents

Composition for flux in fused zinc galvanizing-coating Download PDF

Info

Publication number
KR20030091468A
KR20030091468A KR1020020029528A KR20020029528A KR20030091468A KR 20030091468 A KR20030091468 A KR 20030091468A KR 1020020029528 A KR1020020029528 A KR 1020020029528A KR 20020029528 A KR20020029528 A KR 20020029528A KR 20030091468 A KR20030091468 A KR 20030091468A
Authority
KR
South Korea
Prior art keywords
chloride
flux
composition
flux composition
zinc
Prior art date
Application number
KR1020020029528A
Other languages
Korean (ko)
Inventor
김원찬
Original Assignee
(주)에이스-켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이스-켐 filed Critical (주)에이스-켐
Priority to KR1020020029528A priority Critical patent/KR20030091468A/en
Publication of KR20030091468A publication Critical patent/KR20030091468A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE: A flux composition for hot dip galvanizing is provided, which substantially reduces scattering and visible plume generated when the flux composition is dipped into hot dip galvanizing pot, and which is less influenced by inflow of acid so that the composition obtains superior performance compared to an existing flux composition. CONSTITUTION: The flux composition for hot dip galvanizing comprises 5 to 30 wt.% of zinc chloride (ZnCl2); 5 to 25 wt.% of potassium chloride; 1 to 3 wt.% of non-aromatic amine; and 50 to 70 wt.% of water, wherein the flux composition further comprises 4 to 6 wt.% of sodium chloride or a mixture in which sodium chloride is mixed with calcium chloride in a ratio of 1:1, and wherein the non-aromatic amine is one or more compounds selected from the group consisting of tricaprylyl methyl ammonium chloride, alkyl dimethyl ammonium chloride (where alkyl group is an alkyl group having 8 or less of carbon atoms) and trimethyl ammonium chloride.

Description

용융 아연 도금 플럭스 조성물{COMPOSITION FOR FLUX IN FUSED ZINC GALVANIZING-COATING}Hot dip galvanized flux composition {COMPOSITION FOR FLUX IN FUSED ZINC GALVANIZING-COATING}

본 발명은 철 구조물을 용융 아연 도금하는 데에 있어서, 철 구조물을 용융아연조에 침적하기 이전에 플럭스 처리하는 데에 사용되는 플럭스용 조성물에 관한 것이다.The present invention relates to a flux composition for hot dip galvanizing steel structures, which is used for flux treatment prior to depositing the steel structures in a molten zinc bath.

아연 도금 공정에 있어서, 도금 단계 이전에 통상 하기와 같은 단계를 거친다.In the zinc plating process, the following steps are usually performed before the plating step.

1: 피도금체 표면에 있는 기름, 먼지 등을 제거하는 탈지단계;1: degreasing step to remove oil, dust and the like on the surface of the plated body;

2: 탈지된 피도금체의 표면을 물로 세척하여 후속공정인 산세 용액에 불순물의 유입을 막는 제1 수세단계;2: a first washing step of washing the surface of the degreased plated body with water to prevent the introduction of impurities into the pickling solution, which is a subsequent process;

3: 황산 또는 염산 수용액을 이용하여 피도금체 표면의 산화층을 제거하는 산세 단계;3: pickling step of removing an oxide layer on the surface of the plated body by using an aqueous solution of sulfuric acid or hydrochloric acid;

4: 산세 단계를 거친 후 플럭스 용액에 산, 철염 등과 같은 불순물이 유입되는 것을 억제하기 위하여 산화층이 제거된 피도금체를 물로 세척하는 제2 수세단계;4: a second washing step of washing the plated body from which the oxide layer has been removed with water in order to suppress the introduction of impurities such as acid and iron salt into the flux solution after the pickling step;

5: 플럭스 용액을 이용하여 아연 도금 성능을 향상시키고, 피도금체 표면의 산화철 제거와 재산화를 방지시키기 위한 플럭스 단계를 거친 후, 용융 아연조에 침적 시켜 도금을 행한 후, 냉각 단계의 순으로 아연 도금 공정이 이루어 진다.5: Flux solution is used to improve the zinc plating performance, and after the flux step to prevent iron oxide removal and reoxidation of the surface of the plated body, it is deposited in a molten zinc bath to be plated, followed by zinc in the cooling step. The plating process takes place.

용융 아연조에 침적 하기 이전에 행하는 플럭스 처리에 사용되는 플럭스 용액은 염화암모늄의 복염이라고 부르기도 하며, 각각 하기와 같은 세가지 종류가 주로 사용된다.The flux solution used for the flux treatment performed before the deposition in the molten zinc bath is also called double salt of ammonium chloride, and three kinds are mainly used as follows.

ZnClZnCl 22 :NH: NH 44 Cl (몰비)Cl (molar ratio) ZnClZnCl 22 :NH: NH 44 Cl (중량비)Cl (weight ratio)

1: ZnCl2·NH4Cl 1:11:0.391: ZnCl 2 NH 4 Cl 1: 11: 0.39

2: ZnCl2·2NH4Cl 1:11:0.782: ZnCl 2 · 2NH 4 Cl 1: 11: 0.78

3: ZnCl2·3NH4Cl 1:11:1.173: ZnCl 2 · 3NH 4 Cl 1: 11: 1.17

이 중에서 염화암모늄은 열분해시 Nox, Cl-및 NH3가스를 발산하며, 백연을 발생시키는 주요 물질이다. 이러한 플럭스 용액이 가지고 있는 문제점으로는, 용융아연조에 침적시 발생되는 비산(飛散)의 문제와 유독가스 및 백연(白煙)의 발생이며, 특히, 백연의 발생으로 인하여 도금업계에서는 스크러버 또는 흡착탑 등의 대기오염 방지시설을 별도로 설치하거나 백연 흡입을 위한 진공펌프 등을 가동해야 하는 등의 환경적인 비용을 증대시켜야 하는 요인이 되고 있다.Among them, ammonium chloride emits Nox, Cl −, and NH 3 gas upon pyrolysis, and is the main substance generating white lead. Problems with such flux solutions include the problem of fugitives generated during deposition in molten zinc baths and the generation of toxic gases and white lead, especially in the plating industry due to the occurrence of white lead. It is becoming a factor to increase the environmental costs such as installing an air pollution prevention facility separately or operating a vacuum pump for suctioning white smoke.

따라서, 이러한 문제를 해결할 수 있도록 백연 및 비산의 발생을 억제할 수 있는 용융아연도금 플럭스 조성물의 개발이 시급한 실정이다.Therefore, it is urgent to develop a hot-dip galvanized flux composition that can suppress the generation of white lead and scattering to solve this problem.

상기한 바와 같은 문제점을 해결하기 위하여 본 발명은 비산 및 백연 발생을 억제시킬 수 있는 새로운 조성의 플럭스 용액을 제공하는 데에 그 목적이 있다.In order to solve the above problems, an object of the present invention is to provide a flux solution of a new composition which can suppress the generation of scattering and white smoke.

도 1은 본 발명에 따른 조성의 플럭스 용액 및 기존의 플럭스 용액에 있어서의 산 유입에 따른 피막형성 상태를 나타내는 그래프이다.1 is a graph showing the film formation state according to the acid inflow in the flux solution of the composition according to the present invention and the existing flux solution.

본 발명자는 상기와 같은 기술적 과제를 달성하기 위하여 예의 연구를 거듭한 결과, 염화암모늄 대신 염화칼륨을 사용하는 경우, 연기의 발생을 억제할 수 있고, 또한 비방향족 아민 계열의 계면활성제를 첨가함으로써, 비산의 발생을 억제시킬 수 있다는 데에 착안하여, 본 발명을 완성하게 되었다.As a result of intensive studies to achieve the above technical problem, the present inventors can suppress the generation of smoke when potassium chloride is used instead of ammonium chloride, and also by adding a non-aromatic amine-based surfactant, The present invention has been completed by focusing on being able to suppress the occurrence of.

본 발명에 따른 용융 아연도금 플럭스용 조성물은 염화아연(ZnCl2) 5 ~ 30 중량%; 염화칼륨 5 ~ 25 중량%; 비방향성 아민 1 ~ 3 중량%; 및 물 50 ~ 70 중량%를 포함하는 것을 특징으로 하고 있다. 염화칼륨의 양이 25중량%를 초과하는 경우에는 액의 투명성이 나빠져, 안정성을 지속적으로 유지할 수 없는 문제가 발생한다. 계면활성제로서 사용되는 비방향성 아민의 경우 가장 적절한 함량은 실험결과 2 ~ 3중량%임을 알 수 있었다.Composition for hot dip galvanizing flux according to the present invention is zinc chloride (ZnCl 2 ) 5 to 30% by weight; 5 to 25 weight percent potassium chloride; 1-3 weight percent of non-aromatic amine; And 50 to 70% by weight of water is characterized in that it comprises. If the amount of potassium chloride exceeds 25% by weight, the transparency of the liquid deteriorates, and a problem arises in that the stability cannot be maintained continuously. In the case of the non-aromatic amine used as the surfactant, the most suitable content was found to be 2 to 3% by weight.

본 발명에 따른 용융 아연 도금 플럭스용 조성물에 있어서, 염화나트륨 또는 염화나트륨과 염화칼슘의 1:1 혼합물을 4 ~ 6% 더 포함하는 조성을 가질 수도 있다. 염화나트륨을 단독으로 사용하거나, 염화칼슘과의 혼합물을 사용할 경우, 철강 표면에 도금시 발생된 아연재가 잘 이탈되어 도금 품질을 향상시킬 수 있다.In the composition for hot dip galvanizing flux according to the present invention, the composition may further comprise 4 to 6% of sodium chloride or a 1: 1 mixture of sodium chloride and calcium chloride. If sodium chloride is used alone or in combination with calcium chloride, the zinc material generated during plating on the steel surface is well separated, thereby improving plating quality.

또한 비방향성 아민으로서는 트리카프릴일 메틸 염화 암모늄, 알킬 디메틸 암모늄 클로라이드(여기서, 알킬기는 탄소수 8이하의 알킬기) 및 트리메틸 암모늄 클로라이드로 이루어진 그룹에서 선택된 하나 이상을 사용하는 것이 바람직하다.In addition, as the non-aromatic amine, it is preferable to use at least one selected from the group consisting of tricaprylyl methyl ammonium chloride, alkyl dimethyl ammonium chloride, wherein the alkyl group is an alkyl group having 8 or less carbon atoms, and trimethyl ammonium chloride.

비산은 염화아연 암모니아복염 용액(30%기준)의 표면장력이 약 50-55dyn/cm 정도로 철강의 표면에 도포되는 면적이 50~60% 정도이며, 그 복염의 치밀도가 낮아 건조성이 나쁘고, 표면에 많은 수분이 아연조(450℃)에 침적될 때까지 잔류하므로 수분의 급격한 팽창으로 아연이 동시에 폭발하여 외부로 비산되는 것이다. 따라서, 백연이 발생하지 않는 무기염의 복염 용액의 표면장력을 40이하로 조정하고, 복염과 상용성이 있는 계면활성제로써, 약산성하에서 복염액의 투명성을 향상시키고, 표면의수분을 복염피막으로 신속히 치환하는 능력을 가진 계면활성제를 선별하였다. 현재 실험실에서 합성 및 기초실험 결과, 양이온계와 양성계 계면활성제의 혼합물인 탄소수 8 이하의 암모늄 클로라이드 및 베타인의 혼합물이 가장 양호한 것으로 판명되었다.The fugitive acid has a surface tension of about 50-55 dyn / cm of zinc chloride ammonia double salt solution (30% standard), which is applied to the surface of steel by 50-60%. Since much water remains on the surface until it is deposited in the zinc bath (450 ° C), zinc is exploded and scattered to the outside due to rapid expansion of water. Therefore, the surface tension of the double salt solution of the inorganic salt which does not generate white lead is adjusted to 40 or less, and as a surfactant compatible with the double salt, the transparency of the double salt solution is improved under weak acidity, and the surface moisture is quickly replaced by the double salt film. Surfactants with the ability to do so were selected. Synthesis and basic experiments in the present laboratory have shown that a mixture of ammonium chloride and betaine having up to 8 carbon atoms, a mixture of cationic and amphoteric surfactants, is the best.

백연은 철강표면에 플럭스(복염피막)가 얇게 코팅되어, 용융아연조에 침적될때 플럭스로부터 발상되며, 특히 연화암모늄에 의하여 형성되는 것이다. 이를 해결하기 위하여 450 ~470℃에서 연소되지 않고, 기존의 염화암모늄의 역할인 산화알루미늄의 부착을 방지할 수 있으며, 도금 후 아연재와 함께 신속히 도금층 상부로 부유할 수 있는 무기염을 선택하게 되었으며, 이로써 본 발명에 따른 조성물을 완성하게 되었다.White lead is thinly coated with flux on the steel surface, and is formed from the flux when deposited in a molten zinc bath, especially formed by ammonium softening. In order to solve this problem, it is possible to prevent the adhesion of aluminum oxide, which does not burn at 450 ~ 470 ℃, and is a role of conventional ammonium chloride. This completes the composition according to the present invention.

하기에서 실시예를 통하여 본 발명의 구성을 좀 더 상세히 살펴본다. 하기 실시예는 본 발명의 일례를 나타내는 것으로 실시예에 의하여 본 발명의 범위가 제한되는 것은 아니다.Through the following examples look at the configuration of the present invention in more detail. The following examples show one example of the present invention, and the scope of the present invention is not limited by the examples.

비교 실시예 1Comparative Example 1

염화암모늄(NH4Cl) 23.4 중량%, 염화아연(ZnCl2) 20.0 중량%을 혼합하여 종래에 사용하는 조성과 동일한 플럭스 조성물을 제조하였다. 외관은 무색투명하였으며, pH 는 4.5이고, 비중은 1.218이었다. 합금층은 양호하게 형성되었으며, 도금의 균일성 또한 양호하였다. 본 발명의 실시예에서와 연기발생의 정도 및 아연 비산의 발생 정도를 비교하기 위하여 비교 실시예에서의 연기 발생 및 아연 비산 발생 정도를 100으로 하여 기준으로 삼았다.23.4 wt% of ammonium chloride (NH 4 Cl) and 20.0 wt% of zinc chloride (ZnCl 2 ) were mixed to prepare the same flux composition as the composition used conventionally. Its appearance was colorless and transparent, pH was 4.5 and specific gravity was 1.218. The alloy layer was well formed and the uniformity of the plating was also good. In order to compare the degree of smoke generation and the degree of zinc scattering with respect to the embodiment of the present invention, the degree of smoke generation and zinc scattering in the comparative example was set as 100.

실시예 1Example 1

염화아연(ZnCl2) 20.3 중량%, 염화칼륨(KCl) 10.9 중량%, 용수 65.8중량% 및 트리카프릴일 메틸 암모늄 3중량% 를 혼합하여 플럭스 조성물로 사용하였다. 외관은 무색투면하였으며, pH 는 4.5, 비중은 1.226 이었고, 합금층 형성 및 도금 균일성은 비교 실시예의 경우와 비교할때 동일한 정도의 양호함을 나타내었다. 연기발생은 비교 실시예의 경우를 100으로 할때, 0.1 로, 99.9% 감소율을 보였다. 연기 발생은 육안 판단법에 의한 것으로, 백연의 발생이 비교 실시예 1과 동일한 경우에는 0% 감소, 백연이 발생하기는 하나 상당히 감소되었다고 관찰되는 상태인 경우 70 ~ 80% 감소, 백연의 발생이 보이지 않는 상태를 100% 감소한 것으로 볼 수 있는데, 실시예 1의 경우 백연의 발생이 거의 보이지 않았으나, 100% 감소한 것으로 볼 수는 없으므로, 99.9% 감소한 것으로 판단하였다.20.3 wt% zinc chloride (ZnCl 2 ), 10.9 wt% potassium chloride (KCl), 65.8 wt% water, and 3 wt% tricaprylyl methyl ammonium were used as the flux composition. The appearance was colorless and translucent, pH was 4.5, specific gravity was 1.226, and the alloy layer formation and plating uniformity were about the same as compared with the case of the comparative example. Smoke generation was 0.1, 99.9% reduction when the comparative example was set to 100. The smoke generation is based on visual judgment, and when smoke generation is the same as Comparative Example 1, it is reduced by 0%. It can be seen that the state is not reduced by 100%, in the case of Example 1 almost no occurrence of white smoke, but was not seen to be reduced by 100%, it was determined that 99.9% decreased.

아연 비산 발생정도는 비교 실시예의 경우와 비교할 때, 80%가 감소하였다.The degree of zinc scattering was reduced by 80% compared with that of the comparative example.

비산상태는 비교 실시예의 경우, 아연이 비산되는 거리가 10 ~ 20m 였으므로, 비산 거리가 이와 동일한 경우, 0% 감소, 아연의 비산 거리가 5 ~ 10m 인 경우에는 50% 감소한 것으로 보았으며, 본 실시예의 경우, 아연이 비산 거리가 1m 이내로 작업자가 비산의 위험을 느끼지 않는 상태였으므로, 80% 감소한 것으로 판단하였다.In the case of the comparative example, the distance from which zinc is scattered was 10 to 20 m in the comparative example, and thus, when the scattering distance was the same, it was seen to decrease by 0%, and by 50% when the scattering distance of zinc was 5 to 10 m. In the case of the example, since the operator was not feeling the risk of scattering within 1m of the zinc scattering distance, it was determined that the reduction of 80%.

실시예 1의 경우와 비교 실시예 1의 산 유입에 따른 플럭스의 pH 변화 및 플럭스 피막 형성 상태를 비교하여 하기 표 1에 나타내었다.Compared to the case of Example 1 and the pH change of the flux according to the acid inflow of Example 1 and the flux film forming state is shown in Table 1 below.

산유입량(%)Acid inflow (%) pH 변화pH change 피막형성상태Film formation state 비교 실시예 1Comparative Example 1 실시예 1Example 1 비교 실시예 1Comparative Example 1 실시예 1Example 1 0.20.2 4.474.47 4.504.50 양호Good 양호Good 0.40.4 4.414.41 4.494.49 양호Good 양호Good 0.70.7 4.354.35 4.464.46 양호Good 양호Good 1.01.0 4.124.12 4.414.41 양호Good 양호Good 1.21.2 3.923.92 4.374.37 양호Good 양호Good 1.51.5 3.763.76 4.324.32 불량Bad 양호Good 2.02.0 3.293.29 4.264.26 불량Bad 양호Good 3.03.0 2.872.87 4.134.13 불량Bad 양호Good 5.05.0 2.122.12 3.673.67 불량Bad 불량Bad 7.07.0 2.032.03 3.223.22 불량Bad 불량Bad 10.010.0 1.001.00 2.312.31 불량Bad 불량Bad

종래기술에 따라 암모늄이 포함된 비교 실시예 1의 플럭스 조성물의 경우, 산유입량이 1.5%이상이 되면, pH가 3.76 이하가 되면서 피막형성이 불량해 지는 것에 반하여, 본 발명에 따른 플럭스 조성물의 경우에는 산유입량이 3.0%가 될 때까지 pH가 4.13가 되어 피막 형성이 양호하다. 결과 그래프를 도 1에 첨부하였다.In the flux composition of Comparative Example 1 containing ammonium according to the prior art, when the acid inflow amount is 1.5% or more, whereas the film formation is poor while the pH is 3.76 or less, in the case of the flux composition according to the present invention The pH is 4.13 until the acid inflow is 3.0%, which results in good film formation. The resulting graph is attached to FIG. 1.

피막 형성의 상태를 파악하는 방법으로서는, 미도금된 부분이 있는지, 보수로 가능한 정도인지, 재도금하여야 하는지를 판단하였다. 또한 탈락되지 않은 아연재가 붙어 있는지, 간단히 탈락될 수 있는 정도인지, 심하여 재도금해야 하는 상태인지를 판단하였다. 또한 밀착도를 위하여 망치로 두드려 강도를 판단하였다.As a method of grasping the state of film formation, it was judged whether there was an unplated part, whether it is possible to repair, and whether it should be replated. In addition, it was determined whether the zinc material that was not dropped out was attached, the degree to which it could simply be dropped, and whether it was necessary to replat. In addition, the strength was judged by tapping with a hammer for adhesion.

이것은 본 발명에 따른 조성물의 경우, 기존의 제품보다 산세조(酸洗槽)에서 유입되는 산의 영향을 적게 받아 플럭스의 피막 형성 지속성이 훨씬 양호함을 나타내는 것이다.This indicates that the composition according to the present invention is much less affected by the acid flowing in the pickling bath than the conventional products, and thus, the film formation sustainability of the flux is much better.

실시예 2Example 2

염화칼륨 15중량%, 염화아연 15중량%, 염화나트륨 및 염화칼슘의 1:1 혼합물 4중량%, 용수 64중량%, 트리카프릴일 메틸 암모늄 2중량%를 혼합하여 플럭스 용액을 제조하였다. 실시예 1과 동일한 결과를 얻었다.A flux solution was prepared by mixing 15 wt% potassium chloride, 15 wt% zinc chloride, 4 wt% 1: 1 mixture of sodium chloride and calcium chloride, 64 wt% water, and 2 wt% tricaprylyl methyl ammonium. The same result as in Example 1 was obtained.

실시예 3Example 3

염화칼륨 20중량%, 염화아연 10중량%, 염화나트륨 및 염화칼슘의 1:1 혼합물 5중량%, 용수 62중량%, 트리카프릴일 메틸 암모늄 3중량%를 혼합하여 플럭스 용액을 제조하였다. 실시예 1과 동일한 결과를 얻었다.A flux solution was prepared by mixing 20 wt% potassium chloride, 10 wt% zinc chloride, 5 wt% 1: 1 mixture of sodium chloride and calcium chloride, 62 wt% water, and 3 wt% tricaprylyl methyl ammonium. The same result as in Example 1 was obtained.

실시예 4Example 4

염화칼륨 25중량%, 염화아연 5중량%, 염화나트륨 및 염화칼슘의 1:1 혼합물 6중량%, 용수 62중량%, 트리카프릴일 메틸 암모늄 2중량%를 혼합하여 플럭스 용액을 제조하였다. 실시예 1과 동일한 결과를 얻었으나, 액이 약간 흐려짐을 관찰하였다. 함량 중 염화칼륨의 비율이 25%를 초과하는 경우에 이러한 문제점이 발생함을 알 수 있었다. 플럭스 조성물로서의 사용에는 문제가 없었다.A flux solution was prepared by mixing 25 wt% potassium chloride, 5 wt% zinc chloride, 6 wt% 1: 1 mixture of sodium chloride and calcium chloride, 62 wt% water, and 2 wt% tricaprylyl methyl ammonium. The same result as in Example 1 was obtained, but the liquid was slightly clouded. This problem occurs when the proportion of potassium chloride in the content exceeds 25%. There was no problem in use as the flux composition.

실시예 2 ~ 4의 각 성분 조성을 하기 표 2에 나타내었다.Each component composition of Examples 2-4 is shown in Table 2 below.

실시예2Example 2 실시예3Example 3 실시예4Example 4 염화칼륨Potassium chloride 15%15% 20%20% 25%25% 염화아연Zinc chloride 15%15% 10%10% 5%5% 염화나트륨과 염화칼슘의1:1 혼합물1: 1 mixture of sodium chloride and calcium chloride 4%4% 5%5% 6%6% 용수water 64%64% 62%62% 62%62% 트리카프릴일 메틸 암모늄Tricaprylyl Methyl Ammonium 2%2% 3%3% 2%2%

상기한 바와 같이 본 발명에 따른 조성물은 용융 아연조에의 침적시 발생되는 비산 및 백연의 발생을 현저히 감소시키며, 또한 산 유입에 의한 영향을 적게 받아 기존의 플럭스 조성물에 비하여 그 성능이 월등하다.As described above, the composition according to the present invention significantly reduces the generation of fugitive and white smoke generated upon deposition in the molten zinc bath, and is less affected by acid inflow, and thus, its performance is superior to conventional flux compositions.

Claims (3)

염화아연(ZnCl2) 5 ~ 30 중량%;Zinc chloride (ZnCl 2 ) 5-30% by weight; 염화칼륨 5 ~ 25 중량%;5 to 25 weight percent potassium chloride; 비방향성 아민 1 ~ 3 중량%; 및1-3 weight percent of non-aromatic amine; And 물 50 ~ 70 중량%를 포함하는 것을 특징으로 하는 용융아연 도금 플럭스 조성물.Hot-dip galvanizing flux composition comprising 50 to 70% by weight of water. 제1 항에 있어서,According to claim 1, 염화나트륨, 또는 염화나트륨과 염화칼슘의 1:1 혼합물을 4 ~ 6 중량% 더 포함하는 것을 특징으로 하는Sodium chloride, or a mixture of sodium chloride and calcium chloride 1: 1 to 4 to 6% by weight further characterized in that it comprises 조성물.Composition. 제1 항에 있어서,According to claim 1, 상기 비방향성 아민으로서, 트리카프릴일 메틸 염화 암모늄, 알킬 디메틸 암모늄 클로라이드(여기서, 알킬기는 탄소수 8이하의 알킬기) 및 트리메틸 암모늄 클로라이드로 이루어진 그룹에서 선택된 하나 이상을 사용하는 사용하는 것을 특징으로 하는As the non-aromatic amine, it is used to use at least one selected from the group consisting of tricaprylyl methyl ammonium chloride, alkyl dimethyl ammonium chloride (where the alkyl group is an alkyl group having 8 or less carbon atoms) and trimethyl ammonium chloride 용융아연 도금 플럭스 조성물.Hot dip galvanized flux composition.
KR1020020029528A 2002-05-28 2002-05-28 Composition for flux in fused zinc galvanizing-coating KR20030091468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020029528A KR20030091468A (en) 2002-05-28 2002-05-28 Composition for flux in fused zinc galvanizing-coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020029528A KR20030091468A (en) 2002-05-28 2002-05-28 Composition for flux in fused zinc galvanizing-coating

Publications (1)

Publication Number Publication Date
KR20030091468A true KR20030091468A (en) 2003-12-03

Family

ID=32384652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020029528A KR20030091468A (en) 2002-05-28 2002-05-28 Composition for flux in fused zinc galvanizing-coating

Country Status (1)

Country Link
KR (1) KR20030091468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120370A1 (en) * 2012-10-25 2014-05-01 Fontaine Holdings Nv CONTINUOUS SINGLE-DIP PROCESS FOR GALVANIZATION OF STEEL LONG PRODUCTS INTO Zn-Al-Mg ALLOYS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140821A (en) * 1976-03-05 1979-02-20 International Lead Zinc Research Organization, Inc. Process for preheating and preparing ferrous metal for galvanizing
JPS60125361A (en) * 1984-09-14 1985-07-04 Nippon Soda Co Ltd Flux composition for zinc alloy hot dipping
JPH04176855A (en) * 1990-11-09 1992-06-24 Tokyo Seiko Co Ltd Flux composition for hot-dip zinc-aluminum alloy coating for iron and steel linear material
JPH07224369A (en) * 1994-05-23 1995-08-22 Tokyo Seiko Co Ltd Method for hot-dip coating steel wire with zinc-aluminum alloy
KR20030031635A (en) * 2001-10-15 2003-04-23 박준하 Flux compositions for hot dip galvanizing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140821A (en) * 1976-03-05 1979-02-20 International Lead Zinc Research Organization, Inc. Process for preheating and preparing ferrous metal for galvanizing
JPS60125361A (en) * 1984-09-14 1985-07-04 Nippon Soda Co Ltd Flux composition for zinc alloy hot dipping
JPH04176855A (en) * 1990-11-09 1992-06-24 Tokyo Seiko Co Ltd Flux composition for hot-dip zinc-aluminum alloy coating for iron and steel linear material
JPH07224369A (en) * 1994-05-23 1995-08-22 Tokyo Seiko Co Ltd Method for hot-dip coating steel wire with zinc-aluminum alloy
KR20030031635A (en) * 2001-10-15 2003-04-23 박준하 Flux compositions for hot dip galvanizing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120370A1 (en) * 2012-10-25 2014-05-01 Fontaine Holdings Nv CONTINUOUS SINGLE-DIP PROCESS FOR GALVANIZATION OF STEEL LONG PRODUCTS INTO Zn-Al-Mg ALLOYS
US10745792B2 (en) * 2012-10-25 2020-08-18 Fontaine Holdings Nv Continuous single-dip process for galvanization of steel long products into Zn—Al—Mg alloys

Similar Documents

Publication Publication Date Title
SG140451A1 (en) A method for partially stripping a coating from the surface of a subtrate, and related articles and compositions
EP0259385B1 (en) Fluoride-free flux compositions for the hot galvanizing in aluminium-containing zinc baths
JP4067103B2 (en) Degreasing and chemical conversion treatment agent and surface-treated metal
CN110257750A (en) A kind of hot-dip aluminizing alloy layer and its hot dip coating method
CN104480419A (en) Plating method of low-aluminum hot-dipped Zn-Al-Mg-Si alloy coating
CN1826429A (en) Method and solution for coating metal surfaces with a phosphating solution containing water peroxide, produced metal object and use of said object
CN105648377A (en) Long-ageing reusable plating assistant agent for zinc-aluminum-magnesium alloy for hot dipping
JPS60187695A (en) Silver plating solution and method
KR100392565B1 (en) Molten metal plating flux by dry flux method and manufacturing method of molten metal plating steel using this flux
JP5621398B2 (en) Smokeless flux for hot dip galvanizing and hot dip galvanizing method using the flux
US6054037A (en) Halogen additives for alkaline copper use for plating zinc die castings
KR20030091468A (en) Composition for flux in fused zinc galvanizing-coating
KR940010457B1 (en) Method of treating metal surface with zinc phosphate
CN110172658A (en) Heat zinc coating auxiliary agent and hot dip galvanizing process method
JP4586349B2 (en) Zinc-based plated steel surface treatment solution, treated steel plate, and treatment method
KR100413376B1 (en) Flux compositions for hot dip galvanizing
US9435047B2 (en) Process for corrosion protection of iron containing materials
JP2924894B2 (en) Hot-dip zinc-aluminum alloy plating method for steel
JP3479702B2 (en) Surface coating material by tin and tin-lead alloy plating, and electronic parts using the coating material
KR102610159B1 (en) Flux compositions for hot-dip galvanizing of zinc, aluminium and magnesium
CN103924228A (en) Metal material with excellent corrosion resistance
US4911764A (en) Galvanizing fluxes
US5137589A (en) Method and composition for depositing heavy iron phosphate coatings
JP2017008414A (en) Chemical conversion coating agent for metallic material, metal surface treatment method, and surface treatment metallic material
US5258078A (en) Method and composition for depositing heavy iron phosphate coatings

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee