KR20030082124A - Ferritic stainless steel for exhaust manifold with improved oxidation resistance - Google Patents

Ferritic stainless steel for exhaust manifold with improved oxidation resistance Download PDF

Info

Publication number
KR20030082124A
KR20030082124A KR1020020020687A KR20020020687A KR20030082124A KR 20030082124 A KR20030082124 A KR 20030082124A KR 1020020020687 A KR1020020020687 A KR 1020020020687A KR 20020020687 A KR20020020687 A KR 20020020687A KR 20030082124 A KR20030082124 A KR 20030082124A
Authority
KR
South Korea
Prior art keywords
stainless steel
ferritic stainless
oxidation resistance
exhaust manifold
alloy
Prior art date
Application number
KR1020020020687A
Other languages
Korean (ko)
Inventor
안장규
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020020020687A priority Critical patent/KR20030082124A/en
Publication of KR20030082124A publication Critical patent/KR20030082124A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE: A ferritic stainless steel alloy for exhaust manifold with improved oxidation resistance even at high temperature compared to existing ferritic stainless steel alloy is provided. CONSTITUTION: The ferritic stainless steel alloy for exhaust manifold comprises a principal constituent of iron (Fe), 14.0 to 16.0 wt.% of chromium (Cr), 0.5 to 4.0 wt.% of silicon (Si), 0.30 to 1.0 wt.% of niobium (Nb), 0 to 0.8 wt.% of copper (Cu), 0.05 to 0.06 wt.% of manganese (Mn), 0 to 0.2 wt.% of titanium (Ti), 0 to 0.03 wt.% of phosphorus (P), 0 to 0.02 wt.% of sulfur (S), 0 to 0.015 wt.% of carbon (C) and 0.05 to 0.5 wt.% of nitrogen (N).

Description

내산화성을 향상시킨 배기 매니폴드용 페라이트계 스테인리스 강{Ferritic stainless steel for exhaust manifold with improved oxidation resistance}Ferritic stainless steel for exhaust manifold with improved oxidation resistance

본 발명은 내산화성이 우수한 자동차 배기 매니폴드용 페라이트계 스테인리스 강(ferritic stainless alloy)에 관한 것으로서, 더욱 상세하게는 철(Fe)을 주성분으로 하여 크롬(Cr) 14.0 ∼ 16.0 wt%, 규소(Si) 0.5 ∼ 4.0 wt%, 니오븀(Nb) 0.30 ∼ 1.0 wt%, 구리(Cu) 0 ∼ 0.8 wt%, 망간(Mn) 0.05 ∼ 0.06 wt%, 티타늄(Ti) 0 ∼ 0.2 wt%, 인(P) 0 ∼ 0.03 wt%, 황(S) 0 ∼ 0.02 wt%, 탄소(C) 0 ∼ 0.015 wt%, 질소(N) 0.05 ∼ 0.5 wt%로 이루어진, 기존의 페라이트계 스테인리스 강에 비해 고온에서도 내산화성이 우수한 자동차 배기 매니폴드용 페라이트계 스테인리스 강에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless alloy for automobile exhaust manifolds having excellent oxidation resistance, and more specifically, 14.0 to 16.0 wt% of chromium (Cr) based on iron (Fe) and silicon (Si). ) 0.5 to 4.0 wt%, niobium (Nb) 0.30 to 1.0 wt%, copper (Cu) 0 to 0.8 wt%, manganese (Mn) 0.05 to 0.06 wt%, titanium (Ti) 0 to 0.2 wt%, phosphorus (P ) 0 to 0.03 wt%, sulfur (S) 0 to 0.02 wt%, carbon (C) 0 to 0.015 wt%, nitrogen (N) 0.05 to 0.5 wt%, resistant to high temperatures compared to conventional ferritic stainless steel A ferritic stainless steel for automobile exhaust manifolds having excellent oxidation resistance.

일반적으로 엔진의 실린더에서 연소된 배출가스는 엔진에 부착된 배기 매니폴드를 통해 외부로 방출된다. 연소된 후의 배출가스는 높은 온도의 기체이므로 이를 받아들이는 배기 매니폴드에는 필수적으로 고온에서의 내산화성이 필요하다. 기존의 엔진에 사용되는 배기 매니폴드 재료는 주철로서 약 800℃ 이하의 고온에서는 내산화성을 유지한다.In general, the exhaust gas combusted in the cylinder of the engine is discharged to the outside through an exhaust manifold attached to the engine. Since the exhaust gas after combustion is a gas of high temperature, the exhaust manifold which receives it is essentially required oxidation resistance at high temperature. Exhaust manifold material used in conventional engines is cast iron, which maintains oxidation resistance at high temperatures below about 800 ° C.

그러나, 연료효율을 위해 연료의 연소온도가 높아지고 최근 늘어나는 터보 차저(turbo charger) 장착 차량에서는 배기가스의 온도가 약 1000℃에 육박하는 등 배기 매니폴드에 가해지는 조건이 더욱 가혹해지면서 기존의 주철재료로는 고온에서의 내산화성을 확보할 수 없게 되었다.However, in the case of turbocharged vehicles, which have increased the combustion temperature of fuel for fuel efficiency and the recent increase in the temperature of the exhaust manifold such that the temperature of exhaust gas is about 1000 ° C, existing cast iron becomes more severe. As a material, it became impossible to secure oxidation resistance at high temperatures.

이에 대응하기 위하여, 최근에는 고온에서 Cr 산화층을 형성하여 내산화성이 우수한 스테인리스 재료를 재질로 한 배기 매니폴드가 제작되고 있는 바, 이 스테인리스 강은 고온 산화시 표면에 형성되는 Cr 산화층에 의해 고온의 배기가스 분위기에서도 뛰어난 내산화성을 보이지만, 높은 Cr 함량에 따른 가격 상승으로 경제성이 주철에 비해 떨어진다는 문제점을 안고 있다.In order to cope with this, an exhaust manifold made of a stainless steel material having a high oxidation resistance by forming a Cr oxide layer at a high temperature has recently been manufactured, and this stainless steel has a high temperature due to a Cr oxide layer formed on the surface during the high temperature oxidation. Although it shows excellent oxidation resistance even in the atmosphere of exhaust gas, there is a problem that economic efficiency is lower than that of cast iron due to the price increase due to high Cr content.

또한, 기존에 나와 있는 배기 매니폴드용 스테인리스 강(합금)은 약 16 ∼ 20 wt%의 Cr을 첨가한 Fe-Cr 계열 페라이트계 스테인리스 강이며, C의 함량을 줄인 합금의 경우 약 16 wt% 정도의 Cr을 첨가하고 추가로 Al 또는 Si를 1 wt% 미만 첨가한다[SUS 430J1L, POSCO]. 기존 스테인리스 강은 Cr이 산화되면서 합금으로부터 고갈되므로 이를 상쇄하기 위해 합금 내의 Cr 첨가량을 일정 수준(약 16 wt%) 이하로 낮추지 못하는 문제점이 있었다.In addition, the conventional stainless steel (alloy) for the exhaust manifold is a Fe-Cr-based ferritic stainless steel containing Cr of about 16 to 20 wt%, and about 16 wt% for an alloy having a reduced content of C. Cr is added and additionally less than 1 wt% of Al or Si [SUS 430J1L, POSCO]. Since the existing stainless steel is depleted from the alloy as Cr is oxidized, there is a problem in that the amount of Cr added in the alloy cannot be lowered below a predetermined level (about 16 wt%).

이에, 본원의 발명자 및 출원인은 Cr의 첨가량을 억제하면서도 내산화성을 유지할 수 있는 방법으로 Cr과 유사한 보호성 산화층을 생성하는 합금 원소를 첨가한 페라이트계 스테인리스 강을 특허 출원한 바 있다(특허출원번호 제2001-0081947호). 이는 Cr의 양을 14 ∼ 16 wt%로 줄이면서 고온에서 보호성 산화층을 형성하는 Al을 0.5 ∼ 2 wt%, Si를 0.5 ∼ 4 wt% 첨가하여 내산화성을 향상시킨 것이다. 그러나, 이들 합금 원소 중 Al은 산화성이 뛰어나 합금 제조시 수율이 나빠지므로 원하는 수준으로 첨가하는데 어려움이 있는 등 그 양을 조절하기가 어려운 문제점이 있다.Accordingly, the inventors and applicants of the present application have applied for a patent for a ferritic stainless steel containing an alloying element that produces a protective oxide layer similar to Cr in a manner that can suppress the addition amount of Cr and maintain oxidation resistance (Patent application number 2001-0081947). This is to improve the oxidation resistance by adding 0.5 to 2 wt% of Al and 0.5 to 4 wt% of Si, which forms a protective oxide layer at a high temperature while reducing the amount of Cr to 14 to 16 wt%. However, Al of these alloying elements are excellent in oxidizing properties, so that the yield is poor at the time of alloy production, there is a problem that it is difficult to control the amount, such as difficulty in adding to the desired level.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, Cr의 양을 14 ∼ 16 wt%로 줄이면서 Cr과 유사한 보호성 산화층을 생성하는 합금 원소인 Si는 첨가하되 Al은 삭제하고 대신 Si와의 질화물 형성으로 Cr 질화물 형성을 억제하는 N을 0.05 ∼ 0.5 wt% 첨가함으로써, 고온에서도 내산화성이 우수한 자동차 배기 매니폴드용 페라이트계 스테인리스 강을 제공하는데 그 목적이 있다.Therefore, the present invention was invented to solve the above problems, while reducing the amount of Cr to 14 to 16 wt%, an alloying element, which produces a protective oxide layer similar to Cr, is added but Al is removed. It is an object to provide ferritic stainless steel for automobile exhaust manifolds having excellent oxidation resistance even at high temperatures by adding 0.05 to 0.5 wt% of N, which suppresses Cr nitride formation by forming nitride with Si.

도 1은 본 발명에 따른 실시예 및 비교예의 내산화성 시험 결과를 나타낸 그래프이다.1 is a graph showing the results of the oxidation resistance test of Examples and Comparative Examples according to the present invention.

본 발명에 따른 내산화성을 향상시킨 배기 매니폴드용 페라이트계 스테인리스 강은 배기 매니폴드용 페라이트계 스테인리스 강에 있어서, 철(Fe)을 주성분으로 하여 크롬(Cr) 14.0 ∼ 16.0 wt%, 규소(Si) 0.5 ∼ 4.0 wt%, 니오븀(Nb) 0.30∼ 1.0 wt%, 구리(Cu) 0 ∼ 0.8 wt%, 망간(Mn) 0.05 ∼ 0.06 wt%, 티타늄(Ti) 0 ∼ 0.2 wt%, 인(P) 0 ∼ 0.03 wt%, 황(S) 0 ∼ 0.02 wt%, 탄소(C) 0 ∼ 0.015 wt%, 질소(N) 0.05 ∼ 0.5 wt%로 이루어진 것을 특징으로 한다.The ferritic stainless steel for exhaust manifold having improved oxidation resistance according to the present invention is a ferritic stainless steel for exhaust manifold, which is composed of iron (Fe) 14.0 to 16.0 wt% and silicon (Si). ) 0.5 to 4.0 wt%, niobium (Nb) 0.30 to 1.0 wt%, copper (Cu) 0 to 0.8 wt%, manganese (Mn) 0.05 to 0.06 wt%, titanium (Ti) 0 to 0.2 wt%, phosphorus (P ) 0 to 0.03 wt%, sulfur (S) 0 to 0.02 wt%, carbon (C) 0 to 0.015 wt%, nitrogen (N) 0.05 to 0.5 wt%.

본 발명의 내산화성이 향상된 페라이트계 스테인리스 강은 상기의 조성물을 아크용해로(arc melting furnace)를 이용하여 주괴(ingot)를 제조하고 이 주괴를 1050℃에서 8시간동안 균질화처리한 후 열간압연한 다음 물에 급냉하여 초내식성 페라이트계 스테인리스 강을 제조한다. 페라이트계 스테인리스 강은 열처리에 의한 강도 향상이 없으므로 용체화처리는 실시하지 않는다.Ferritic stainless steel with improved oxidation resistance of the present invention was prepared by ingot using the arc melting furnace (arc melting furnace) to produce an ingot (ingot) and homogenized the ingot for 8 hours at 1050 ℃ after hot rolling Quenching with water produces super corrosion-resistant ferritic stainless steel. Ferritic stainless steel does not undergo solution treatment because there is no strength improvement by heat treatment.

본 발명에 따른 페라이트계 스테인리스 강의 조성에 있어서, Cr의 양을 14.0 ∼ 16.0 wt%로 줄이면서 Si를 0.5 ∼ 4.0 wt%, N을 0.05 ∼ 0.5 wt% 첨가하면 다음과 같은 효과를 얻을 수 있다.In the composition of the ferritic stainless steel according to the present invention, the following effects can be obtained by adding 0.5 to 4.0 wt% of Si and 0.05 to 0.5 wt% of Si while reducing the amount of Cr to 14.0 to 16.0 wt%.

1) 주철 대비 내산화성 증가1) Increased oxidation resistance compared to cast iron

2) Cr과 유사한 보호성 산화층을 생성하는 Si의 첨가로, Cr 첨가량 축소에 따른 내산화성 저하 방지2) Prevents deterioration of oxidation resistance by reducing Cr content by adding Si, which forms a protective oxide layer similar to Cr.

3) Cr 첨가량 축소로 재료비 절감3) Material cost savings by reducing Cr content

4) N와 Si의 질화물 형성에 의한 Cr 질화물 형성 억제로, 입계 크롬 부족현상 억제 및 고온 산화시 규소 공급 역할4) Suppression of Cr nitride formation by nitride formation of N and Si, suppressing grain boundary chromium deficiency and supplying silicon during high temperature oxidation

5) Cr 초기 산화 후 Si의 2차 산화에 의한 내산화성 향상 및 크롬 산화 억제5) Improvement of oxidation resistance and inhibition of chromium oxidation by secondary oxidation of Si after initial Cr oxidation

이하, 실시예에 의거 본 발명을 더욱 상세히 설명하겠는 바, 본 발명이 다음의 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예Example

베이스 메탈(base metal)로 철(Fe)을 사용하고 크롬(Cr) 13.5 wt%, 규소(Si) 4wt%, 크롬 질화물(CrN) 0.5 wt%를 아크용해로에서 용해하여 무게 5kg의 주괴(ingot)로 제조한 후, 이를 1050℃에서 8시간동안 균질화처리하고 두께 4mm까지 열간압연한 다음 질화물 형성 억제 관찰을 위해 450℃에서 2시간 열처리하여 페라이트계 스테인리스 강 시편을 제조하였다.Iron (Fe) is used as the base metal, 13.5 wt% of chromium (Cr), 4 wt% of silicon (Si), and 0.5 wt% of chromium nitride (CrN) are dissolved in an arc melting furnace to weigh 5 kg of ingot. After the preparation, it was homogenized at 1050 ° C. for 8 hours, hot rolled to a thickness of 4 mm, and then heat treated at 450 ° C. for 2 hours to observe nitride formation inhibition to prepare ferritic stainless steel specimens.

비교예 1Comparative Example 1

베이스 메탈로 철(Fe)을 사용하고 크롬(Cr) 18 wt%, 니켈(Ni) 4 wt%를 함유시켜 상기 실시예와 동일한 방법으로 동일 규격의 스테인리스 강 시편을 제조하였다(SUS304).Iron (Fe) was used as the base metal, and 18 wt% of chromium (Cr) and 4 wt% of nickel (Ni) were used to prepare stainless steel specimens having the same specifications in the same manner as in the above example (SUS304).

비교예 2Comparative Example 2

POSCO에서 제조한 430J1L 페라이트계 스테인리스 강을 사용하여 상기 실시예와 동일한 규격의 시편을 제조하였다(SUS430J1L).Using the 430J1L ferritic stainless steel manufactured by POSCO to prepare a specimen of the same specifications as in the above embodiment (SUS430J1L).

시험예 : 내산화성 실험Test Example: Oxidation Resistance Experiment

상기 실시예와 비교예 1, 2의 합금을 사용하여 900℃의 대기 분위기에서 200시간(HR)동안 내산화성 시험을 실시한 결과를 첨부한 도 1과 다음의 표 1에 나타내었다.Using the alloys of Examples and Comparative Examples 1 and 2, the results of the oxidation resistance test for 200 hours (HR) in an air atmosphere of 900 ℃ is shown in Figure 1 and the following Table 1.

먼저, 첨부한 도 1에 나타낸 바와 같이, 100시간 이내의 산화 초기에서는 실시예와 비교예 2의 합금에서 산화되는 양이 비교예 1의 합금에서 산화되는 양에 비해 훨씬 적게 나타남을 알 수 있었고, 특히 비교예 2에 대하여 Cr의 첨가량을 줄인 실시예의 합금에서도 충분한 내산화성이 확보됨을 확인할 수 있었다. 한편, 실시예와 비교예 2의 합금에서 산화되는 양은 시간이 흐를수록 뚜렷한 차이가 나타남을 알 수 있었다. 즉, 상기 표 1에 나타낸 바와 같이, 100시간 경과시 산화되는 양은 실시예와 비교예 2의 합금에서 서로 비슷한 수준으로 나타나지만 시간이 흐를수록 실시예의 합금에서 산화되는 양이 비교예 2의 합금에 비해 약 15 ∼ 20% 정도 적게 나타나(200시간 경과시), Cr의 첨가량을 줄인 합금에서도 실시예 2보다 우수한 장시간 내산화성이 확보될 수 있음을 확인하였다. 또한, 실시예에서 N의 첨가에 따른 입계의 내산화성 감소는 나타나지 않음을 확인하였다.First, as shown in the accompanying Figure 1, it was found that the amount of oxidized in the alloy of Example and Comparative Example 2 is much less than the amount of oxidized in the alloy of Comparative Example 1 in the initial oxidation within 100 hours, In particular, it could be confirmed that sufficient oxidation resistance was ensured even in the alloy of the example in which the amount of Cr was reduced relative to Comparative Example 2. On the other hand, the amount of oxidation in the alloy of the Example and Comparative Example 2 was found to be a distinct difference over time. That is, as shown in Table 1, the amount of oxidation after 100 hours is shown to be similar to each other in the alloy of Example and Comparative Example 2, but the amount of oxidation in the alloy of Example compared to the alloy of Comparative Example 2 over time About 15 to 20% less (after 200 hours), it was confirmed that even in the alloy with the reduced amount of Cr can be secured longer oxidation resistance than Example 2. In addition, it was confirmed that the oxidation resistance of the grain boundary due to the addition of N did not appear in the Example.

이상에서 살펴본 바와 같이, Cr의 양을 14 ∼ 16 wt%로 줄이면서 Si와의 질화물 형성으로 Cr 질화물 형성을 억제하는 N을 0.05 ∼ 0.5 wt% 첨가함으로써, Cr과 유사한 보호성 산화층을 생성하는 합금 원소인 Si만으로도 기존 주철 및 페라이트계 스테인리스 강(SUS 430J1L)에 비해 내산화성이 우수한 배기 매니폴드용 페라이트계 스테인리스 강을 제공할 수 있고, Cr의 사용량 감소에 따른 배기 매니폴드의 재료비 절감이 가능하며, N-Si 화합물 형성에 의한 Cr 질화물 형성 억제와 이에 따른 입계 내산화성 감소 및 Si 공급 역할을 통해 추가적인 내산화성 증가가 기대된다. 또한, 용해 중 Al의 빠른 산화 및 이에 따른 회수율 감소와 조성변화로 합금 제조시 난제로 간주되던 Al 다량 첨가 단계가 삭제되면서 합금 조성 제어가 용이해지는 효과가 있다.As described above, an alloying element which produces a protective oxide layer similar to Cr by adding N at 0.05 to 0.5 wt% of N, which inhibits Cr nitride formation by forming nitride with Si while reducing the amount of Cr to 14 to 16 wt%. Phosphorus Si alone can provide ferritic stainless steel for exhaust manifolds with superior oxidation resistance compared to existing cast iron and ferritic stainless steels (SUS 430J1L), and material costs of the exhaust manifolds can be reduced by reducing the amount of Cr used. Further increase in oxidation resistance is expected through the inhibition of Cr nitride formation by N-Si compound formation, thereby reducing grain boundary oxidation resistance and Si supplying role. In addition, due to the rapid oxidation of Al during dissolution and the reduction of the recovery rate and the change in composition, the addition of a large amount of Al, which was regarded as a difficulty in manufacturing the alloy, is eliminated, thereby facilitating control of the alloy composition.

Claims (1)

배기 매니폴드용 페라이트계 스테인리스 강에 있어서, 철(Fe)을 주성분으로 하여 크롬(Cr) 14.0 ∼ 16.0 wt%, 규소(Si) 0.5 ∼ 4.0 wt%, 니오븀(Nb) 0.30 ∼ 1.0 wt%, 구리(Cu) 0 ∼ 0.8 wt%, 망간(Mn) 0.05 ∼ 0.06 wt%, 티타늄(Ti) 0 ∼ 0.2 wt%, 인(P) 0 ∼ 0.03 wt%, 황(S) 0 ∼ 0.02 wt%, 탄소(C) 0 ∼ 0.015 wt%, 질소(N) 0.05 ∼ 0.5 wt%로 이루어진 것을 특징으로 하는 내산화성을 향상시킨 배기 매니폴드용 페라이트계 스테인리스 강.In ferritic stainless steel for exhaust manifolds, chromium (Cr) 14.0 to 16.0 wt%, silicon (Si) 0.5 to 4.0 wt%, niobium (Nb) 0.30 to 1.0 wt%, mainly composed of iron (Fe) (Cu) 0 to 0.8 wt%, manganese (Mn) 0.05 to 0.06 wt%, titanium (Ti) 0 to 0.2 wt%, phosphorus (P) 0 to 0.03 wt%, sulfur (S) 0 to 0.02 wt%, carbon (C) 0 to 0.015 wt% and nitrogen (N) 0.05 to 0.5 wt%, ferritic stainless steel for exhaust manifold having improved oxidation resistance.
KR1020020020687A 2002-04-16 2002-04-16 Ferritic stainless steel for exhaust manifold with improved oxidation resistance KR20030082124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020020687A KR20030082124A (en) 2002-04-16 2002-04-16 Ferritic stainless steel for exhaust manifold with improved oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020020687A KR20030082124A (en) 2002-04-16 2002-04-16 Ferritic stainless steel for exhaust manifold with improved oxidation resistance

Publications (1)

Publication Number Publication Date
KR20030082124A true KR20030082124A (en) 2003-10-22

Family

ID=32379171

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020020687A KR20030082124A (en) 2002-04-16 2002-04-16 Ferritic stainless steel for exhaust manifold with improved oxidation resistance

Country Status (1)

Country Link
KR (1) KR20030082124A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860306A (en) * 1994-08-22 1996-03-05 Sumitomo Metal Ind Ltd Ferritic stainless steel for automobile exhaust system member
JPH08260107A (en) * 1995-03-20 1996-10-08 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in oxidation resistance and high temperature strength
KR19990035468A (en) * 1997-10-31 1999-05-15 정몽규 Stainless steel casting material for exhaust manifold
JPH11256287A (en) * 1993-04-27 1999-09-21 Nisshin Steel Co Ltd Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256287A (en) * 1993-04-27 1999-09-21 Nisshin Steel Co Ltd Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion
JPH0860306A (en) * 1994-08-22 1996-03-05 Sumitomo Metal Ind Ltd Ferritic stainless steel for automobile exhaust system member
JPH08260107A (en) * 1995-03-20 1996-10-08 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in oxidation resistance and high temperature strength
KR19990035468A (en) * 1997-10-31 1999-05-15 정몽규 Stainless steel casting material for exhaust manifold

Similar Documents

Publication Publication Date Title
JP6541869B2 (en) Austenitic stainless steel plate and turbocharger part for exhaust parts excellent in heat resistance and processability, and manufacturing method of austenitic stainless steel sheet for exhaust parts
EP3279359B1 (en) Exhaust system part having stainless steel sheet having excellent intermittent oxidation characteristics
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
US20180274055A1 (en) Austenitic stainless steel sheet
KR20040007764A (en) Ferritic stainless steel for member of exhaust gas flow passage
JP6796708B2 (en) Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JP2017088928A (en) Austenite-based stainless steel sheet excellent in heat resistance and processability and manufacturing method therefor and exhaust component made from stainless steel
JP6768929B2 (en) Ferritic stainless steel with excellent high-temperature wear resistance, manufacturing method of ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
JP6879877B2 (en) Austenitic stainless steel sheet with excellent heat resistance and its manufacturing method
CN111394640A (en) Iron-nickel gas valve alloy and preparation method thereof
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP7050520B2 (en) Manufacturing method of austenitic stainless steel sheet for exhaust parts and austenitic stainless steel sheet for exhaust parts and exhaust parts
JP4301638B2 (en) High purity ferritic stainless steel with excellent high temperature strength
JP6778621B2 (en) Austenitic stainless steel sheet for exhaust parts and its manufacturing method, and exhaust parts and their manufacturing method
KR100258128B1 (en) Ferritic stainless steel for exhaust system equipment of vehicle
JPH11236650A (en) Ferritic stainless steel for engine exhaust member excellent in workability, intergranular corrosion resistance and high temperature strength
KR20030082124A (en) Ferritic stainless steel for exhaust manifold with improved oxidation resistance
JPH06256908A (en) Heat resistant cast steel and exhaust system parts using the same
JPH04193932A (en) Heat resistant alloy for engine valve
JP2542778B2 (en) Exhaust system parts
KR20030051049A (en) Ferritic stainless steel for exhaust manifold with improved oxidation resistance
JPS6233744A (en) Heat-resistant cast steel
JPH04147949A (en) Heat-resistant alloy for engine valve
JP2024142069A (en) Ferritic Stainless Steel Sheet
JPH0548290B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application