KR20030075336A - Purification method of 2,6-dimethylnaphthalene - Google Patents

Purification method of 2,6-dimethylnaphthalene Download PDF

Info

Publication number
KR20030075336A
KR20030075336A KR1020020014499A KR20020014499A KR20030075336A KR 20030075336 A KR20030075336 A KR 20030075336A KR 1020020014499 A KR1020020014499 A KR 1020020014499A KR 20020014499 A KR20020014499 A KR 20020014499A KR 20030075336 A KR20030075336 A KR 20030075336A
Authority
KR
South Korea
Prior art keywords
dimethylnaphthalene
crystallization
dmn
separation
mixture
Prior art date
Application number
KR1020020014499A
Other languages
Korean (ko)
Other versions
KR100463076B1 (en
Inventor
김광주
김철웅
천양호
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2002-0014499A priority Critical patent/KR100463076B1/en
Publication of KR20030075336A publication Critical patent/KR20030075336A/en
Application granted granted Critical
Publication of KR100463076B1 publication Critical patent/KR100463076B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/14Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for separating and purifying 2,6-dimethylnaphthalene is provided, to obtain 2,6-dimethylnaphthalene from naphtha cracking raffinate with a high purity and a high production yield. CONSTITUTION: The method comprises the steps of selectively separating a mixture of dimethylnaphthalene isomers containing 2,6-dimethylnaphthalene from a mixture of naphtha cracking raffinate and dimethylnaphthalene isomers by melting crystallization; and separating highly pure 2,6-dimethylnaphthalene from the mixture of dimethylnaphthalene isomers containing 2,6-dimethylnaphthalene by extraction crystallization. Preferably the first step is carried out at a cooling temperature of 60 to -40 deg.C and a cooling velocity of 0.1-10 K/min; and the second step is carried out at a cooling temperature of 100 to -6 deg.C, and the extraction solvent in the second step is selected from the group consisting of an alcohol of C1-C6, acetone, toluene, p-xylene, o-xylene, hexane, heptane, octane, decane, dodecane, cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, cyclooctane, methylcyclooctane, ether, tetrahydrofuran and tetrahydrofuran methanol.

Description

2,6-디메틸나프탈렌의 분리정제방법{Purification method of 2,6-dimethylnaphthalene}Purification method of 2,6-dimethylnaphthalene {Purification method of 2,6-dimethylnaphthalene}

본 발명은 2,6-디메틸나프탈렌의 분리정제방법에 관한 것으로서, 더욱 상세하게는 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법 및 추출결정화방법을 조합하여 고순도의 2,6-디메틸나프탈렌(이하 '2,6-DMN'라 한다)을 분리함으로써, 고순도, 고수율로 2,6-디메틸나프탈렌을 얻을 수 있는 분리정제방법에 관한 것이다.The present invention relates to a separation and purification method of 2,6-dimethylnaphthalene, and more specifically, to a high purity 2,6-dimethylnaphthalene (a combination of melt crystallization and extraction crystallization from naphtha cracking residue oil and dimethylnaphthalene isomeric mixture) The present invention relates to a separation and purification method in which 2,6-dimethylnaphthalene can be obtained with high purity and high yield by separating '2,6-DMN').

폴리에틸렌 나프탈레이트 섬유나 필름 등의 제조에 사용된 고성능 폴리에스테르의 원료로서의 2,6-나프탈렌 디카르복실산은 고순도의 것이 필요하며, 따라서 상기 2,6-나프날렌 디카르복실산의 원료인 2,6-DMN 역시 높은 순도의 것이 요구된다.2,6-naphthalene dicarboxylic acid as a raw material of a high performance polyester used in the production of polyethylene naphthalate fibers, films and the like is required to be of high purity, and thus 2,6-naphylene dicarboxylic acid, which is a raw material of the 2,6-naphylene dicarboxylic acid, 6-DMN is also required to be of high purity.

디메틸나프날렌(이하 'DMN'이라 한다)은 2개의 메틸기의 위치에 따라 10개의 이성체가 존재하고, 2,6-나프탈렌 디카르복실산 원료로의 2,6-DMN은 다른 이성체를 실질적으로 포함하지 않는 고순도의 것이 필요하다.Dimethylnaphlenene (hereinafter referred to as 'DMN') has 10 isomers depending on the position of the two methyl groups, and 2,6-DMN to the 2,6-naphthalene dicarboxylic acid raw material substantially contains other isomers. High purity is needed.

종래에 알려져 있는 2,6-DMN의 제조방법은 DMN 이성체 혼합물으로부터 2,6-DMN을 증류조작이나 촉매를 사용한 공정을 통하여 제조하였으나, 다음 표 1과 같이 각 DMN 이성체의 끓는점이 상당히 근접하여 있어 증류에 의하여 2,6-DMN을 분리, 정제하는 것은 상당히 어렵다.The known method for preparing 2,6-DMN was prepared by distillation or a process using a catalyst from a mixture of DMN isomers, but the boiling point of each DMN isomer is quite close as shown in Table 1 below. Separation and purification of 2,6-DMN by distillation is quite difficult.

표 1에서 알 수 있듯이 DMN 이성체 중에서 2,6-DMN의 녹는점이 가장 높다. 따라서, 2,6-DMN은 용융결정화공정을 통하여 분리, 정제가 가능하다. 이러한 2,6-DMN의 분리방법으로 결정화에 의한 방법, 흡착에 의한 방법, 어떤 종류의 유기 화합물을 이용하여 2,6-DMN과 착체를 형성시키고, 이것을 분리한 후, 착체를 분해하는 방법 등이 제안되고 있다.As can be seen from Table 1, among the DMN isomers, the melting point of 2,6-DMN is the highest. Therefore, 2,6-DMN can be separated and purified through the melt crystallization process. The separation method of 2,6-DMN is a method of crystallization, a method of adsorption, a method of forming a complex with 2,6-DMN using some kind of organic compound, and then separating and decomposing the complex. Is being proposed.

2,6-DMN을 분리하는 방법과 관련된 종래기술을 살펴보면 다음과 같다.Looking at the prior art related to the method of separating 2,6-DMN as follows.

대한민국 특허공개 제2001-33746호에서는 폴리에틸렌 나프탈레이트 제조에 사용되는 2,6-DMN을 공급원료에 존재하는 특정 이성체에 제한되지 않고 일련의 분획단계, 결정화단계 및 흡착화단계를 통하여 DMN 이성체 혼합물로부터 높은 순도 및 높은 수율로 2,6-DMN을 제조하는 방법으로 결정화단계를 거친 후 최종정제단계로 p-, o-크실렌에 용해시켜 2,6-DMN을 흡착분리하는 공정을 제안하였다. 그리고, 일본공개특허 제1997-301900호에서는 DMN 이성화 반응 생성물으로부터 결정화에 의하여 2,6-DMN을 석출시키고, 고순도의 2,6-DMN을 높은 수율로 얻고 여과성이 좋은 바람직한 2,6-DMN 결정을 석출시키고 고순도의 2,6-DMN을 공업적으로 유리하게 분리, 회수하는 방법으로 용매 존재하에 DMN 이성화 반응 생성물으로부터 2,6-DMN을 결정화방법을 통하여 2,6-DMN을 제조하는 방법을 제안하였다. 이때 이성화 반응에 사용한 용매는 펜텐, 헥산, 헤탄, 옥탄, 노난, 데칸, 운데칸, 도데칸, 시클로펜탄, 시클로헥산, 메틸시클로펜탄, 메틸시클로헥산, 시클로옥탄, 메틸시클로옥탄, 데카인, 메틸데카인, 디메틸데카인 등을 사용하였다. 일본공개특허 제1997-249586호에서는 DMN 이성체 혼합물로부터 결정화에 의하여 2,6-DMN을 석출시키고, 고순도의 2,6-DMN을 얻고 장기간에 걸쳐 안정되고 소정이상의 순도를 유지하는 것이 가능한 공업적으로 유리한 분리, 회수하는 방법을 개시하고 있다.Korean Patent Publication No. 2001-33746 discloses that 2,6-DMN, which is used for the production of polyethylene naphthalate, is not limited to the specific isomers present in the feedstock, but is separated from the DMN isomer mixture through a series of fractionation, crystallization and adsorption steps. After the crystallization step to prepare 2,6-DMN with high purity and high yield, a process of adsorbing and separating 2,6-DMN by dissolving in p-, o-xylene as a final purification step was proposed. In Japanese Unexamined Patent Publication No. 1997-301900, 2,6-DMN is precipitated by crystallization from a DMN isomerization reaction product, high purity 2,6-DMN is obtained in high yield, and preferable 2,6-DMN crystal having good filterability. To prepare 2,6-DMN through crystallization of 2,6-DMN from DMN isomerization reaction product in the presence of solvent as a method of precipitation and industrially advantageously separating and recovering high purity 2,6-DMN. Suggested. The solvent used for the isomerization reaction is pentene, hexane, hetan, octane, nonane, decane, undecane, dodecane, cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, cyclooctane, methylcyclooctane, decaine, methyl Decaine, dimethyldecaine and the like were used. In Japanese Patent Laid-Open No. 1997-249586, it is industrially possible to precipitate 2,6-DMN by crystallization from a mixture of DMN isomers, to obtain high purity 2,6-DMN, to be stable over a long period of time, and to maintain a predetermined purity or more. Advantageous separation and recovery methods are disclosed.

그러나 이러한 방법들 중에서 결정화에 의한 방법이 가장 간단하고 공업적 분리방법으로서 적합함을 지적하고 있으나, 공정이 복잡하고 수율이 상대적으로 낮으며 비싼 용매를 사용하므로 상대적으로 고정 투자비와 생산비가 많이 드는 문제가 있다. 특히 결정화를 통한 분리공정을 사용하는 경우에서도 자세한 언급이 없고 단순히 냉각하여 결정화하는 형태의 것이 대부분이며 결정화공정보다는 이성질화 공정이나 촉매를 이용한 흡착공정 등에 주안을 두었으며 또한 결정화공정에서 추출용매가 아닌 이성화공정에 용매를 사용하였다. 또한, 결정화를 통하여 행하는 조작에서 2,6-DMN의 순도가 45 중량% 이상의 것을 도입하고 있어 이보다 낮은 순도의 것은 사용하기 어려운 문제가 있다.However, it is pointed out that among these methods, the method by crystallization is the simplest and most suitable as an industrial separation method, but the process is complicated, the yield is relatively low, and the use of expensive solvents causes relatively high fixed investment and production costs. There is. In particular, even in the case of using the separation process through crystallization, there is no detailed description, and most of the forms are simply crystallized by cooling. The focus is on isomerization process or adsorption process using a catalyst rather than crystallization process. A solvent was used for the isomerization process. In addition, in the operation performed through crystallization, the purity of 2,6-DMN is 45 wt% or more, and a lower purity has a problem that is difficult to use.

이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법 및 추출결정화방법을 조합하여 고순도의 2,6-디메틸나프탈렌을 분리함으로써, 본 발명을 완성하였다.Thus, the present inventors have completed the present invention by separating the high purity 2,6-dimethylnaphthalene by combining the melt crystallization method and the extraction crystallization method from naphtha cracked residue oil and dimethyl naphthalene isomeric mixture in order to solve the above problems. .

따라서, 본 발명은 장치가 간단하며 조업이 단순하여 고정투자비와 생산비를 줄일 수 있으며 고순도, 고수율로 2,6-디메틸나프탈렌을 얻을 수 있는 2,6-디메틸나프탈렌의 분리정제방법을 제공하는데 그 목적이 있다.Accordingly, the present invention provides a method for separation and purification of 2,6-dimethylnaphthalene, which is simple in operation and simple in operation, which can reduce fixed investment and production costs and obtain 2,6-dimethylnaphthalene in high purity and high yield. There is a purpose.

도 1은 본 발명에 따른 2,6-디메틸나프탈렌의 분리정제방법을 개략적으로 나타낸 공정도이다.1 is a process diagram schematically showing a separation and purification method of 2,6-dimethylnaphthalene according to the present invention.

도 2는 본 발명에 따른 2차 추출결정화방법에서 추출용매(헥산)의 첨가량에 따른 순도 및 수율을 나타낸 그래프이다.2 is a graph showing the purity and yield according to the amount of the extraction solvent (hexane) in the secondary extraction crystallization method according to the present invention.

본 발명은The present invention

1) 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법을 통해 선택적으로 2,6-디메틸나프탈렌을 포함하는 디메틸나프탈렌 이성질체의 혼합물을 분리하는 단계,1) separating a mixture of dimethylnaphthalene isomers, optionally including 2,6-dimethylnaphthalene, from the naphtha cracking residue oil and the dimethylnaphthalene isomer mixture by melt crystallization;

2) 상기 1 단계의 2,6-디메틸나프탈렌을 포함한 디메틸나프탈렌 이성질체의 혼합물로부터 추출결정화방법을 통해 고순도의 2,6-디메틸나프탈렌을 분리하는 단계2) separating high purity 2,6-dimethylnaphthalene from the mixture of dimethylnaphthalene isomers containing 2,6-dimethylnaphthalene in the first step through extraction crystallization;

로 이루어진 2,6-디메틸나프탈렌의 분리정제방법을 그 특징으로 한다.It is characterized by the separation and purification method of 2,6-dimethylnaphthalene consisting of.

이와같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 납사분해잔사유에 포함되어 있는 2,6-디메틸나프탈렌을 저에너지 소모형이고 장치가 간단하며 조업이 단순하여 고정투자비와 생산비를 줄일 수 있는 용융결정화 및 추출결정화 방법을 조합하여 고순도, 고수율로 2,6-DMN을 분리정제하는 방법에 관한 것이다.The present invention is a high-purity, high-purity combination of 2,6-dimethylnaphthalene contained in naphtha cracking residue oil, low energy consumption type, simple apparatus, simple operation, melt and crystallization and extraction crystallization method that can reduce fixed investment and production cost The present invention relates to a method for separating and purifying 2,6-DMN in yield.

본 발명에 따른 2,6-DMN을 분리정제하는 방법을 도 1을 참고로 하여 더욱 상세하게 설명하면 다음과 같다.The method for separating and purifying 2,6-DMN according to the present invention will be described in more detail with reference to FIG. 1 as follows.

먼저, 도 1의 1차 분리정제과정으로 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법을 통해 선택적으로 2,6-디메틸나프탈렌을 포함하는 디메틸나프탈렌 이성질체의 혼합물을 분리하는 1 단계에 대해 상세히 살펴보면 다음과 같다.First, a first step of separating the mixture of dimethyl naphthalene isomer including 2,6-dimethyl naphthalene selectively through melt crystallization from naphtha cracking residue oil and dimethyl naphthalene isomer mixture in the primary separation purification process of FIG. Looking at it as follows.

상기 납사분해잔사유는 납사분해 공정에서 부생되는 DMN의 10개 이성체, 모노메틸나프날렌 이성체 및 저비점의 탄화수소를 포함한 혼합물로서 2,6-DMN, 2,7-DMN, 2,3-DMN 및 기타의 혼합물이 각각 다음 표 2에 나타낸 함량으로 포함되어 있다.The naphtha cracking residue is a mixture containing 10 isomers of DMN, monomethylnaphlenene isomers and low boiling hydrocarbons which are by-products of naphtha cracking processes, 2,6-DMN, 2,7-DMN, 2,3-DMN and others. The mixtures of are each included in the amounts shown in Table 2 below.

상기 표 2에 나타난 바와 같이, 본 발명은 2,6-DMN이 2 ∼ 20 중량%의 낮은 함량으로 포함된 납사분해잔사유로부터 공업적으로 유용한 고순도의 2,6-DMN을 분리정제할 수 있으므로 종래의 2,6-DMN이 더 높은 함량이 포함된 나프탈렌계 화합물로부터 2,6-DMN을 분리하는 방법 보다 더 효율적으로 분리할 수 있는 장점을 가진다.As shown in Table 2, the present invention can separate and purify industrially useful high purity 2,6-DMN from naphtha cracked residue oil containing 2,6-DMN in a low content of 2 to 20% by weight. Conventional 2,6-DMN has the advantage that can be separated more efficiently than the method of separating 2,6-DMN from the naphthalene-based compound containing a higher content.

1차 분리정제과정은 용융결정화방법을 이용하여 상기 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 순도 45 중량% 이상의 2,6-DMN을 함유하는 2,6-DMN을 포함하는 디메틸나프탈렌 이성질체의 혼합물을 분리해 내는 과정으로, 결정화기의 냉각온도를 60 ℃에서 -40 ℃의 범위로 하고, 냉각속도를 0.1 ∼ 10 K/min 범위로 하여 2,6-DMN 결정을 생성시킨다. 이때, 냉각온도를 상기 범위로 하는이유는 원료 중 2,6-DMN의 결정생성 범위가 위 영역에 있기 때문이며 만일 상기 온도범위를 벗어나는 낮은 온도에서는 2,6-DMN 외의 다른 성분도 고체의 결정으로 자라나게 되고 또한 높은 온도에서는 결정이 생성되지 않는 문제가 있고, 냉각속도가 상기 범위를 벗어나면 결정화기의 조업이 어려울 뿐만 아니라 결정성장속도가 빠르기 때문에 생성된 결정속에 많은 불순물이 존재하여 순도가 떨어지는 문제가 있다.The primary separation and purification process uses a melt crystallization method to prepare a mixture of dimethylnaphthalene isomers containing 2,6-DMN containing 2,6-DMN with a purity of 45% by weight or more from the naphtha cracking residue oil and the dimethylnaphthalene isomer mixture. In the separation process, 2,6-DMN crystals are produced with the cooling temperature of the crystallizer in the range of 60 ° C to -40 ° C and the cooling rate in the range of 0.1 to 10 K / min. At this time, the reason why the cooling temperature is within the above range is because the crystal formation range of 2,6-DMN in the raw material is in the above range. If the temperature is outside the above temperature range, other components other than 2,6-DMN also grow into solid crystals. In addition, there is a problem that crystals do not form at high temperatures, and if the cooling rate is out of the above range, the operation of the crystallizer is not only difficult but also the crystal growth rate is fast. There is.

상기 용융결정화방법은 결정의 순도 및 수율을 향상시키기 위한 정제공정으로 경막결정화방법 또는 부유결정화방법을 사용할 수 있다.The melt crystallization method may be a film crystallization method or suspended crystallization method as a purification process for improving the purity and yield of the crystal.

상기 부유결정화방법에 사용하는 부유결정화 장치는 외부 자켓이 있는 냉각결정화기, 항온조 및 교반기로 구성되어 있다. 상기 교반기로는 교반속도 조절기가 장착된 마린-타입 교반기(marine-type stirrer, MS280D, MS)가 결정화기 내의 용액을 혼합하기 위하여 사용되고, 이때 교반속도는 무교반에서 1000 rpm으로 한다. 냉각결정화기 내의 용액과 항온조의 온도는 K-타입 열전대를 연결한 디지털 온도 측정기(180L, Yokogawa)로 기록하고, 항온조의 온도는 PID제어기가 장착된 냉동 항온 조절기(RBC20, JEIO TECH)를 사용하여 ±0.05K의 오차 범위로 제어한다. 항온조의 열매체(냉매)는 에틸렌글리콜과 물을 1 : 3 비율로 혼합한 것과 공업용 메탄올을 사용한다. 결정화기 내부의 용액 온도는 외부 자켓을 통하여 순환되는 열매체에 의하여 조절되며, 결정화기의 냉각 속도는 PID 프로그래밍에 의해 조절하며, 최종 냉각온도 조절범위는 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물의 농도에 따라 60 ℃에서 -40 ℃로 조절하여 생성된 결정들은 진공 여과기를 이용하여 모액으로부터 분리한다. 이때, 냉각속도는 0.1 ∼ 10 K/min 범위로 한다. 결정 및 잔여액의 조성은 FID(Flame Ionization Detector)가 장착된 기체크로마토그래피(이하 'GC'라 한다: DS 6200, DONAM)를 사용하여 분석하여 2,6-DMN의 순도가 45 중량% 이상이 되면 추출결정화를 통한 2차 분리정제공정으로 이송시킨다.The flotation crystallizer used in the flotation crystallization method is composed of a cooling crystallizer with an outer jacket, a thermostat and a stirrer. As the stirrer, a marine-type stirrer (MS280D, MS) equipped with a stirring speed controller is used to mix the solution in the crystallizer, and the stirring speed is 1000 rpm at a stirring. The temperature of the solution and the thermostat in the cooling crystallizer is recorded with a digital temperature measuring instrument (180L, Yokogawa) connected with a K-type thermocouple.The thermostat is recorded using a refrigerated thermostat (RBC20, JEIO TECH) equipped with a PID controller. Control to an error range of ± 0.05K. The heat medium (refrigerant) of the thermostat is a mixture of ethylene glycol and water in a 1: 3 ratio and industrial methanol. The solution temperature inside the crystallizer is controlled by the heating medium circulated through the outer jacket, the cooling rate of the crystallizer is controlled by PID programming, and the final cooling temperature control range is based on the concentration of naphtha cracking residue and dimethylnaphthalene isomeric mixture. The resulting crystals are then separated from the mother liquor using a vacuum filter at 60 ° C to -40 ° C. At this time, the cooling rate is in the range of 0.1 to 10 K / min. The composition of the crystal and the residual liquid was analyzed by gas chromatography equipped with Flame Ionization Detector (hereinafter referred to as 'GC': DS 6200, DONAM) and the purity of 2,6-DMN was 45 wt% or more. When it is transferred to the secondary separation and purification process through extraction crystallization.

상기 경막결정화방법에 사용하는 경막결정화 장치는 결정을 붙이기 위한 경막형 결정화기, 시료를 넣는 외부 결정화 용기, 냉매의 온도를 조절하기 위한 PID 제어기가 장착된 항온조, 온도 프로파일을 기록하는 디지털 온도기록계 및 채취된 샘플을 분석하기 위한 GC로 구성되며, 상기 결정화기는 파이렉스 유리(Pyrex glass)로 제작되었다. 경막결정화방법의 개략적인 절차는 다음과 같다. 냉매조의 온도를 30분 가량 60 ∼ 100 ℃로 평형을 유지시킨 후 PID 온도 제어기가 장착된 항온조의 냉매 순환에 의해 60 ∼ -40 ℃로 냉각시킨다. 결정화기의 표면은 결정화기의 내부를 순환하는 물과 에틸렌글리콜을 3 : 1 비율로 혼합한 냉매와 공업용 메탄올에 의해 60 ∼ -40 ℃로 냉각된다. 이때, 냉각속도는 0.1 ∼ 10 K/min 범위로 한다. 결정화기 벽에 결정이 형성된 양은 잔여 용융액의 양으로 결정하였으며, 결정 및 잔여액의 조성은 FID(Flame Ionization Detector)가 장착된 기체크로마토그래피(이하 'GC'라 한다: DS 6200, DONAM)를 사용하여 분석하여 2,6-DMN의 순도가 45 중량% 이상이 되면 추출결정화를 통한 2차 분리정제공정으로 이송시킨다.The film crystallization apparatus used in the film crystallization method includes a film-like crystallizer for attaching crystals, an external crystallization vessel for placing a sample, a thermostat equipped with a PID controller for controlling the temperature of the refrigerant, a digital temperature recorder for recording a temperature profile, and Consists of GC for analyzing the sample taken, the crystallizer was made of Pyrex glass. The general procedure of the film crystallization method is as follows. The temperature of the refrigerant tank is maintained at 60 to 100 ° C. for about 30 minutes, and then cooled to 60 to -40 ° C. by the refrigerant circulation in a constant temperature bath equipped with a PID temperature controller. The surface of the crystallizer is cooled to 60 to -40 ° C by a commercial methanol and a refrigerant in which water circulating inside the crystallizer is mixed with ethylene glycol in a 3: 1 ratio. At this time, the cooling rate is in the range of 0.1 to 10 K / min. The amount of crystals formed on the crystallizer wall was determined by the amount of the residual melt, and the composition of the crystal and the residual liquid was referred to as gas chromatography (hereinafter referred to as 'GC') equipped with a Flame Ionization Detector (FID: DS 6200, DONAM). When the purity of 2,6-DMN is 45% by weight or more, it is transferred to the secondary separation and purification process through extraction crystallization.

상기와 같은 용융결정화방법에 의한 분리정제공정은 1회 또는 연속적인 다단결정화공정으로 하여 2,6-DMN의 순도가 45 중량% 이상이 되면 추출결정화를 통한 2차 분리정제공정으로 이송한다. 다단결정화는 결정화기(I)에서 결정과 잔여액을 분리하고 결정 생성물은 2 단계의 2차 분리정제공정으로 보내고 잔여액은 결정화기(II)로 보내어 결정화를 수행하는 식으로 반복하여 2,6-DMN을 분리정제하는 방법을 말한다(도 1 참조).The separation and purification process by the melt crystallization method as described above is a single or continuous multi-stage crystallization process, when the purity of 2,6-DMN reaches 45% by weight or more, it is transferred to the secondary separation and purification process through extraction crystallization. Multistage crystallization separates the crystals and the residual liquid from the crystallizer (I), the crystal product is sent to the secondary separation and purification process in two stages, and the residue is sent to the crystallizer (II) to carry out the crystallization. -Method for separating and purifying DMN (see FIG. 1).

다음으로, 도 1의 2차 분리정제과정으로 상기 1차 분리정제과정에 의해 얻은 순도 45 중량% 이상의 2,6-DMN을 포함한 디메틸나프탈렌 이성질체의 혼합물로부터 추출결정화방법을 통해 순도 99 중량% 이상의 고순도의 2,6-디메틸나프탈렌을 분리하는 2 단계에 대해 상세히 살펴보면 다음과 같다.Next, a high purity of 99% by weight or more through extraction crystallization from a mixture of dimethylnaphthalene isomers containing 2,6-DMN of 45% by weight or more obtained by the first separation and purification process of the secondary separation purification process of FIG. 1. Looking at in detail for the 2 step of separating the 2,6-dimethylnaphthalene as follows.

2차 분리정제과정은 추출결정화방법을 이용하여 상기 2,6-DMN을 포함한 디메틸나프탈렌 이성질체의 혼합물로부터 순도 99 중량% 이상의 2,6-DMN을 분리해 내는 과정으로, 결정화기의 냉각온도를 100 ℃에서 -6 ℃의 범위로 하고, 냉각속도를 0.1 ∼ 10 K/min 범위로 하여 2,6-DMN 결정을 생성시킨다. 이때, 냉각온도를 상기 범위로 하는 이유는 상기 범위의 온도에서 2,6-DMN의 결정생성온도일 뿐만 아니라 결정상으로 가장 많이 존재하게 하기 때문이며 만일 상기 온도범위를 벗어나는 높은 온도에서는 결정의 생성이 없어 분리가 되지 않으며 낮은 온도에서는 기타 불순물이 함께 결정상으로 존재하게 되고, 냉각속도가 상기 범위를 벗어나면 결정속에 많은 다른 불순물들이 2,6-DMN가 같은 고체상으로 결정화되게 때문이다. 그리고, 상기 추출결정화방법에서 추출용매와 2,6-DMN을 포함한 디메틸나프탈렌 이성질체의 혼합물의 혼합비가 1: 1 ∼ 100 중량비로 하는 것이 바람직하며, 만일 그 혼합비가 상기 범위를 벗어나는 낮은 혼합비에서는 높은 순도의 결정을 얻기 어려우며 높은 혼합비에서는 생성되는 결정량에 비한 추출용매의 양이 상대적으로 너무 많으며 또한 과포화가 일어나지 않는 영역으로 상기의 온도범위에서는 결정을 얻기 어렵다. 특히, 추출결정화방법에서 사용하는 추출용매로는 2,6-DMN에 불활성이고, 점도가 낮고, 2,6-DMN과 비점 차이가 큰 용매를 사용하는 것이 용매와 결정의 분리가 쉬우며 상대적으로 많은 결정화물을 얻을 수 있다는 점에서 바람직하며, 상기 추출용매로는 탄소수 1 ∼ 6의 알코올, 아세톤, 톨루엔, p-크실렌, o-크실렌, 헥산, 헵탄, 옥탄, 데칸, 도데칸, 시클로펜탄, 시클로헥산, 메틸시클로펜탄, 메틸시클로헥산, 시클로옥탄, 메틸시클로옥탄, 에테르 또는 테트라하이드로퓨란, 테트라하이드로퓨란메탄올을 사용할 수 있으며, 더욱 바람직하게는 메탄올 또는 에탄올을 사용하는 것이 좋다. 추출결정화 공정은 2,6-DMN과 2,7-DMN이 함께 존재하는 공융계를 형성하는데 용융결정화 공정에서는 이러한 공융점보다 낮은 온도 영역에서는 분리가 어렵다. 따라서 제 3의 물질인 추출용매를 이용하여 상의 거동을 변화시킴으로서 우리가 원하는 2,6-DMN의 결정을 얻을 수 있는 것이다.The secondary separation purification process is a process of separating 2,6-DMN having a purity of 99% by weight or more from the mixture of the dimethylnaphthalene isomer including 2,6-DMN by using an extraction crystallization method, and cooling temperature of the crystallizer to 100 2,6-DMN crystal | crystallization is produced in the range of -6 degreeC from -degreeC, and cooling rate in the range of 0.1-10K / min. At this time, the reason why the cooling temperature is in the above range is not only a crystal forming temperature of 2,6-DMN at the above range, but also most crystalline phase, and there is no formation of crystal at a high temperature outside the above range. This is because it is not separated and other impurities are present in the crystal phase at low temperatures, and when the cooling rate is out of the above range, many other impurities in the crystals crystallize 2,6-DMN into the same solid phase. In the extraction crystallization method, the mixing ratio of the extraction solvent and the mixture of the dimethylnaphthalene isomer including 2,6-DMN is preferably 1: 1 to 100 weight ratio, and if the mixing ratio is out of the range, high purity is at a low mixing ratio. It is difficult to obtain the crystals, and it is difficult to obtain crystals in the above temperature range because the amount of the extraction solvent is relatively too large and the supersaturation does not occur at a high mixing ratio. In particular, the extraction solvent used in the extraction crystallization method is easy to separate the solvent and crystals by using a solvent which is inert to 2,6-DMN, has a low viscosity, and has a large boiling point difference from 2,6-DMN. It is preferable in that a large number of crystallizations can be obtained, and the extraction solvent may be alcohol having 1 to 6 carbon atoms, acetone, toluene, p-xylene, o-xylene, hexane, heptane, octane, decane, dodecane, cyclopentane, Cyclohexane, methylcyclopentane, methylcyclohexane, cyclooctane, methylcyclooctane, ether or tetrahydrofuran, tetrahydrofuranmethanol can be used, more preferably methanol or ethanol. The extraction crystallization process forms a eutectic system in which 2,6-DMN and 2,7-DMN coexist. In the melt crystallization process, it is difficult to separate in the temperature range below the eutectic point. Therefore, by changing the behavior of the phase using an extraction solvent, a third material, we can obtain the crystal of 2,6-DMN that we want.

이와같이, 상기한 본 발명에 따른 2,6-디메틸나프탈렌의 분리정제방법은 낮은 순도의 2,6-DMN을 함유하는 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법 및 추출결정화방법을 조합하여 순도 99 중량% 이상의 2,6-디메틸나프탈렌을 분리할 수 있다. 또한 1차 정제공정에도 추출결정화방법을 이용하여 결정화하면 더 효과적으로 높은 순도의 2,6-DMN을 얻을 수 있다.As described above, the separation and purification method of 2,6-dimethylnaphthalene according to the present invention is a combination of melt crystallization method and extraction crystallization method from a mixture of naphtha cracking residue oil and dimethylnaphthalene isomer containing low purity 2,6-DMN. It is possible to separate 2,6-dimethylnaphthalene having a purity of 99% by weight or more. In addition, crystallization using the extraction crystallization method in the first purification process can more effectively obtain 2,6-DMN of high purity.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는 바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

[부유형 결정화기에서 용융결정화방법을 이용한 1차 분리정제][First-Phase Separation Purification Using Melt Crystallization in a Floating Crystallizer]

실시예 1Example 1

10 중량% 정도의 2,6-DMN이 함유되어 있는 납사분해잔사유(crude) 100 g을 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 25 ℃로 30분간 유지시킨 후 -12 ℃까지 1 K/min의 속도로 냉각시켜 -12℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 다음 표 3에 나타내었다. 얻어진 결정생성물의 순도는 45.1 중량% 이었으며 수율은 75% 이었다.100 g of naphtha cracking residue (crude) containing about 10% by weight of 2,6-DMN is placed in a crystallizer with a jacket, and the heat medium is circulated through the jacket of the crystallizer to maintain the temperature at 25 ° C. for 30 minutes. Cool down to -12 ° C at a rate of 1 K / min and hold at -12 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to separate the residual liquid and the crystal product, and each component was analyzed using GC. The results are shown in Table 3 below. The purity of the obtained crystal product was 45.1 wt% and the yield was 75%.

생성된 2,6-DMN의 수율은 다음 수학식 1과 같이 계산하였다.The yield of the generated 2,6-DMN was calculated as in the following equation (1).

[부유형 결정화기에서 추출결정화방법을 이용한 2차 분리정제][Secondary Separation Purification Using Extraction Crystallization in Floating Crystallizers]

실시예 2Example 2

상기 1차 결정화에서 생성된 실시예 1의 생성물(45.1 중량%) 10 g에 추출용매로 시클로헥산 100 g을 첨가하여 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 45 ℃로 30분간 유지시킨 후 -20 ℃까지 1 K/min의 속도로 냉각시켜 -20 ℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 결정생성물을 얻었다.To 10 g of the product of Example 1 (45.1 wt%) produced in the primary crystallization, 100 g of cyclohexane was added as an extraction solvent and placed in a jacketed crystallizer, and the heat medium was circulated through the jacket of the crystallizer. After maintaining for 30 minutes, the mixture was cooled to -20 ° C at a rate of 1 K / min and maintained at -20 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to obtain a crystal product.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 3에나타내었다. 얻어진 결정생성물의 순도는 83.3 중량% 이었으며 수율은 32.4% 이었다.The crystals thus obtained were filtered using a vacuum filter to separate the remaining liquid and the crystal product, and the respective components were analyzed using GC. The results are shown in Table 3 above. The purity of the obtained crystal product was 83.3 wt% and the yield was 32.4%.

실시예 3Example 3

상기 1차 결정화에서 생성된 실시예 1의 생성물(45.1 중량%) 50 g에 추출용매로 헥산 500 g을 첨가하여 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 60 ℃로 30분간 유지시킨 후 -20 ℃까지 1 K/min의 속도로 냉각시켜 -20 ℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 결정생성물을 얻었다.To 50 g of the product of Example 1 (45.1 wt%) produced in the first crystallization, 500 g of hexane was added as an extraction solvent and placed in a jacketed crystallizer, and the heat medium was circulated through the jacket of the crystallizer to bring the temperature to 60 ° C. After holding for 30 minutes, the mixture was cooled to -20 ° C at a rate of 1 K / min and maintained at -20 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to obtain a crystal product.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 3에 나타내었다. 얻어진 결정생성물의 순도는 65.4 중량% 이었으며 수율은 98.7% 이었다.The crystals thus obtained were filtered using a vacuum filter to separate the residual liquid and the crystal product, and each component was analyzed using GC. The results are shown in Table 3 above. The purity of the obtained crystal product was 65.4 wt% and the yield was 98.7%.

실시예 4Example 4

상기 1차 결정화에서 생성된 실시예 1의 생성물(45.1 중량%) 25 g에 추출용매로 헥산 500 g을 첨가하여 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 60 ℃로 30분간 유지시킨 후 -10 ℃까지 1 K/min의 속도로 냉각시켜 -10 ℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 결정생성물을 얻었다.To 25 g of the product of Example 1 (45.1 wt.%) Produced in the first crystallization, 500 g of hexane was added as an extraction solvent and placed in a jacketed crystallizer, and the heat medium was circulated through the jacket of the crystallizer. After holding for 30 minutes, the mixture was cooled to -10 ° C at a rate of 1 K / min and maintained at -10 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to obtain a crystal product.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 3에 나타내었다. 얻어진 결정생성물의 순도는 98.2 중량% 이었으며 수율은 92.4% 이었다.The crystals thus obtained were filtered using a vacuum filter to separate the residual liquid and the crystal product, and each component was analyzed using GC. The results are shown in Table 3 above. The purity of the obtained crystal product was 98.2% by weight and the yield was 92.4%.

실시예 5Example 5

상기 1차 결정화에서 생성된 실시예 1의 생성물(45.1 중량%) 10 g에 추출용매로 헥산 500 g을 첨가하여 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 60 ℃로 30분간 유지시킨 후 -10 ℃까지 1 K/min의 속도로 냉각시켜 -10 ℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 결정생성물을 얻었다.To 10 g of the product of Example 1 (45.1 wt%) produced in the primary crystallization, 500 g of hexane was added as an extraction solvent and placed in a jacketed crystallizer, and the heat medium was circulated through the jacket of the crystallizer to bring the temperature to 60 ° C. After holding for 30 minutes, the mixture was cooled to -10 ° C at a rate of 1 K / min and maintained at -10 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to obtain a crystal product.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 3에 나타내었다. 얻어진 결정생성물의 순도는 99.7 중량% 이었으며 수율은 78.9% 이었다.The crystals thus obtained were filtered using a vacuum filter to separate the residual liquid and the crystal product, and each component was analyzed using GC. The results are shown in Table 3 above. The purity of the obtained crystal product was 99.7% by weight and the yield was 78.9%.

실시예 6Example 6

상기 1차 결정화에서 생성된 실시예 1의 생성물(45.1 중량%) 5 g에 추출용매로 헥산 500 g을 첨가하여 자켓으로 된 결정화기에 넣고 열매체를 결정화기의 자켓으로 순환시켜 온도를 60 ℃로 30분간 유지시킨 후 -8 ℃까지 1 K/min의 속도로 냉각시켜 -8 ℃에서 1시간동안 유지하였다. 교반속도는 500 rpm으로 유지하였다. 이렇게 현탁된 결정을 진공여과기를 사용하여 여과하여 결정생성물을 얻었다.To 5 g of the product of Example 1 (45.1 wt%) produced in the primary crystallization, 500 g of hexane was added as an extraction solvent and placed in a jacketed crystallizer, and the heat medium was circulated through the jacket of the crystallizer to bring the temperature to 60 ° C. After holding for 30 minutes, the mixture was cooled to -8 ° C at a rate of 1 K / min and maintained at -8 ° C for 1 hour. Stirring speed was maintained at 500 rpm. The suspended crystals were filtered using a vacuum filter to obtain a crystal product.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 3에 나타내었다. 얻어진 결정생성물의 순도는 99.9 중량% 이었으며 수율은 75.8% 이었다.The crystals thus obtained were filtered using a vacuum filter to separate the residual liquid and the crystal product, and each component was analyzed using GC. The results are shown in Table 3 above. The purity of the obtained crystal product was 99.9% by weight and the yield was 75.8%.

상기 실시예 3 ∼ 6과 같이 추출용매의 첨가량에 따른 2,6-DMN의 순도 및 수율을 도 2에 그래프로 나타내었으며, 추출용매의 첨가량이 많을수록 고순도의 2,6-DMN을 얻을 수 있음을 확인하였다.As shown in Examples 3 to 6, the purity and yield of 2,6-DMN according to the addition amount of the extraction solvent are shown in a graph in FIG. 2, and the higher the amount of the extraction solvent, the higher the purity of 2,6-DMN can be obtained. Confirmed.

그리고, 상기 실시예 2 ∼ 4는 추출결정화방법을 사용한 2차 분리정제공정에서 1 회만으로 순도 99 중량% 이상의 2,6-DMN을 분리해 낼 수 없었으므로, 99 중량% 이상의 순도를 얻기위해 도 1에 나타난 바와 같이 다단결정화공정을 수행하여 순도 99 중량% 이상의 2,6-DMN을 분리하였다.In addition, in Examples 2 to 4, since 2,6-DMN having a purity of 99% by weight or more could not be separated in a second separation and purification process using an extraction crystallization method, to obtain a purity of 99% by weight or more. As shown in Figure 1, a multistage crystallization process was performed to separate 2,6-DMN having a purity of 99% by weight or more.

[경막형 결정화기에서 용융결정화방법을 이용한 1차 분리정제][First-Phase Separation Purification Using Melt Crystallization in Dura-type Crystallizer]

실시예 7Example 7

10 중량% 정도의 2,6-DMN이 함유되어 있는 납사분해잔사유(crude) 100 g을 자켓으로 된 시료를 넣는 외부 결정화 용기에 넣고 열매체를 결정화기 내로 순환시켜 온도를 25 ℃로 유지시키고 경막결정화기 봉으로는 열매체를 25 ℃에서 -12 ℃까지 1 K/min의 속도로 냉각시켜 -12 ℃에서 1시간동안 유지하였다. 이렇게 결정화하여 결정화기 봉으로 석출되는 결정을 잔여액으로부터 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 다음 표 4에 나타내었다. 얻어진 결정생성물의 순도는 27.5 중량% 이었으며 수율은 50.4% 이었다.100 g of naphtha cracking residue (crude) containing about 10% by weight of 2,6-DMN is placed in an external crystallization vessel containing a jacketed sample, and the heat medium is circulated into the crystallizer to maintain the temperature at 25 ° C. The crystallization rod was cooled at a rate of 1 K / min from 25 ° C. to −12 ° C. and maintained at −12 ° C. for 1 hour. The crystals thus crystallized and separated into crystallization rods were separated from the residual liquid, and each component was analyzed using GC. The results are shown in Table 4 below. The purity of the obtained crystal product was 27.5% by weight and the yield was 50.4%.

상기 표 4에 나타난 바와 같이, 경막형 결정화기(용융결정화방법)를 이용한 1차 분리정제공정에서는 1 회 공정으로 순도 27.5 중량%의 2,6-DMN을 분리해 내므로, 2차 분리정제공정으로 2,6-DMN을 이송하기 위해서는 순도 45 중량% 이상의 2,6-DMN이 필요하므로, 도 1에 나타난 바와 같이 다단결정화공정을 수행하여 순도45.3 중량%의 2,6-DMN을 분리하였다.As shown in Table 4, in the primary separation and purification process using a film-type crystallizer (melt crystallization method), since 2,6-DMN having a purity of 27.5 wt% is separated in one step, the secondary separation and purification process In order to transfer 2,6-DMN to 2,6-DMN purity of 45% by weight or more is required, as shown in Figure 1 was subjected to a multi-stage crystallization process to remove 45.3% by weight of 2,6-DMN.

[경막형 결정화기에서 추출결정화방법을 이용한 2차 분리정제][Secondary Separation Purification Using Extraction Crystallization Method in Dural Crystallizers]

실시예 8Example 8

상기 1차 결정화에서 생성된 실시예 7의 생성물(순도 45.3 중량%) 10 g에 추출용매로 시클로헥산 700 g을 첨가하여 자켓으로 된 시료를 넣는 외부 결정화 용기에 넣고 열매체를 결정화기 내로 순환시켜 온도를 45 ℃로 유지시키고 경막결정화기 봉으로는 열매체를 45 ℃에서 -20 ℃까지 1 K/min의 속도로 냉각시켜 -20 ℃에서 2시간동안 유지하였다. 이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 4에 나타내었다. 얻어진 결정생성물의 순도는 95.5 중량% 이었으며 수율은 35% 이었다. 상기 실시예 8에 따른 2,6-DMN의 순도는 95.5 중량%로 낮으므로, 99 중량% 이상의 순도를 얻기위해 다단결정화공정을 수행하여 순도 99.5 중량%의 2,6-DMN을 분리하였다.To 10 g of the product of Example 7 (purity 45.3% by weight) produced in the primary crystallization, 700 g of cyclohexane was added as an extraction solvent, placed in an external crystallization vessel containing a jacketed sample, and the heat medium was circulated into the crystallizer. The temperature was maintained at 45 ℃ and the film crystallization rod was cooled at a rate of 1 K / min from 45 ℃ to -20 ℃ was maintained at -20 ℃ for 2 hours. The crystals thus obtained were filtered using a vacuum filter to separate the residual solution and the crystal product, and each component was analyzed using GC. The results are shown in Table 4 above. The purity of the obtained crystal product was 95.5% by weight and the yield was 35%. Since the purity of 2,6-DMN according to Example 8 was low as 95.5% by weight, 2,6-DMN having a purity of 99.5% by weight was separated by performing a multistage crystallization process to obtain a purity of 99% by weight or more.

실시예 9Example 9

상기 1차 결정화에서 생성된 실시예 7의 생성물(순도 45.3 중량%) 10 g에 추출용매로 헥산 300 g을 첨가하여 자켓으로 된 시료를 넣는 외부 결정화 용기에 넣고 열매체를 결정화기 내로 순환시켜 온도를 45 ℃로 유지시키고 경막결정화기 봉으로는 열매체를 45 ℃에서 -10 ℃까지 1 K/min의 속도로 냉각시켜 -8 ℃에서 1시간동안 유지하였다.To 10 g of the product of Example 7 (purity 45.3 wt%) produced in the primary crystallization, 300 g of hexane was added as an extraction solvent, placed in an external crystallization vessel containing a jacketed sample, and the heat medium was circulated into the crystallizer. The temperature was maintained at 45 ° C., and the film was cooled to a temperature of 1 K / min from 45 ° C. to −10 ° C. and maintained at −8 ° C. for 1 hour.

이렇게 얻은 결정을 진공여과기를 사용하여 여과하여 잔여액과 결정 생성물을 분리하여 GC를 사용하여 각각의 성분을 분석하였으며, 그 결과를 상기 표 4에 나타내었다. 얻어진 결정생성물의 순도는 95.8 중량% 이었으며 수율은 73% 이었다. 상기 실시예 9에 따른 2,6-DMN의 순도는 95.8 중량%로 낮으므로, 99 중량% 이상의 순도를 얻기위해 다단결정화공정을 수행하여 순도 99.7 중량%의 2,6-DMN을 분리하였다.The crystals thus obtained were filtered using a vacuum filter to separate the residual solution and the crystal product, and each component was analyzed using GC. The results are shown in Table 4 above. The purity of the obtained crystal product was 95.8% by weight and the yield was 73%. Since the purity of 2,6-DMN according to Example 9 was low as 95.8% by weight, 2,6-DMN having a purity of 99.7% by weight was separated by performing a multistage crystallization process to obtain a purity of 99% by weight or more.

상술한 바와 같이, 본 발명에 따른 용융결정화법(부유형 결정화기와 경막형 결정화기를 이용한)과 추출결정화법에 의한 2,6-DMN의 분리정제방법은 증류조작에서 사용하는 기화열의 약 1/5인 융해열을 이용하므로 에너지가 절약되고 단순한 고액분리조작에 의하여 고순도의 2,6-DMN을 고수율로 분리할 수 있다. 본 발명은 분리정제 장치가 간단하고 조업이 단순하여 고정투자비와 생산비를 줄일 수 있어 경제적으로도 유용한 장점이 있다. 또한, 추출결정화공정을 부가적인 공정으로 행하여 고수율, 고순도의 2,6-DMN을 효과적으로 분리해 낼 수 있는 장점이 있다.As described above, the separation and purification method of 2,6-DMN by the melt crystallization method (using a floating type crystallizer and a film-like crystallizer) and the extraction crystallization method according to the present invention is about 1 of the heat of vaporization used in the distillation operation. By using the heat of fusion of / 5, energy is saved and high purity 2,6-DMN can be separated with high yield by simple solid-liquid separation operation. The present invention has the advantage that the separation and purification apparatus is simple and the operation is simple, so that the fixed investment cost and production cost can be reduced. In addition, there is an advantage that the extraction crystallization process as an additional process can effectively separate high yield, high purity 2,6-DMN.

Claims (8)

1) 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물로부터 용융결정화방법을 통해 선택적으로 2,6-디메틸나프탈렌을 포함하는 디메틸나프탈렌 이성질체의 혼합물을 분리하는 단계,1) separating a mixture of dimethylnaphthalene isomers, optionally including 2,6-dimethylnaphthalene, from the naphtha cracking residue oil and the dimethylnaphthalene isomer mixture by melt crystallization; 2) 상기 1 단계의 2,6-디메틸나프탈렌을 포함한 디메틸나프탈렌 이성질체의 혼합물로부터 추출결정화방법을 통해 고순도의 2,6-디메틸나프탈렌을 분리하는 단계로 이루어진 것을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.2) separating 2,6-dimethylnaphthalene of high purity from the mixture of dimethylnaphthalene isomers including 2,6-dimethylnaphthalene in the first step by extracting crystallization method Separation Purification Method. 제 1 항에 있어서, 상기 1 단계의 용융결정화방법은 냉각온도가 60 ∼ -40 ℃ 범위인 것을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.The method of claim 1, wherein the melt crystallization method of the first step is a separation and purification method of 2,6-dimethylnaphthalene, characterized in that the cooling temperature range 60 ~ -40 ℃. 제 1 항에 있어서, 상기 1 단계의 용융결정화방법은 냉각속도가 0.1 ∼ 10 K/min 범위인 것을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.The method of claim 1, wherein the melt crystallization method of step 1 is a separation and purification method of 2,6-dimethylnaphthalene, characterized in that the cooling rate is in the range of 0.1 ~ 10 K / min. 제 1 항에 있어서, 상기 2 단계의 추출결정화방법은 냉각온도가 100 ∼ -6 ℃ 범위인 것을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.The method of claim 1, wherein the extraction crystallization method of the second step is a separation and purification method of 2,6-dimethylnaphthalene, characterized in that the cooling temperature is in the range of 100 ~ -6 ℃. 제 1 항에 있어서, 상기 2 단계의 추출결정화방법에서 추출용매와 2,6-디메틸나프탈렌을 포함한 디메틸나프탈렌 이성질체의 혼합물의 혼합비가 1: 1 ∼ 100 중량비인 것을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.2. The 2,6-dimethylnaphthalene according to claim 1, wherein the mixing ratio of the extraction solvent and the mixture of the dimethyl naphthalene isomer including 2,6-dimethylnaphthalene in the two-step extraction crystallization method is 1: 1 to 100 by weight. Separation and purification method of. 제 1 항에 있어서, 상기 2 단계의 추출용매는 탄소수 1 ∼ 6의 알코올, 아세톤, 톨루엔, p-크실렌, o-크실렌, 헥산, 헵탄, 옥탄, 데칸, 도데칸, 시클로펜탄, 시클로헥산, 메틸시클로펜탄, 메틸시클로헥산, 시클로옥탄, 메틸시클로옥탄, 에테르 및 테트라하이드로퓨란, 테트라하이드로퓨란메탄올 중에서 선택된 것임을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.The method of claim 1, wherein the two extraction solvents are alcohols having 1 to 6 carbon atoms, acetone, toluene, p-xylene, o-xylene, hexane, heptane, octane, decane, dodecane, cyclopentane, cyclohexane, methyl Separation and purification method of 2,6-dimethylnaphthalene, characterized in that selected from cyclopentane, methylcyclohexane, cyclooctane, methylcyclooctane, ether and tetrahydrofuran, tetrahydrofuranmethanol. 제 1 항에 있어서, 상기 납사분해잔사유 및 디메틸나프탈렌 이성체 혼합물은 2,6-디메틸나프탈렌을 2 ∼ 20 중량% 포함한 것임을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.The method of claim 1, wherein the naphtha cracking residue oil and the dimethyl naphthalene isomeric mixture comprise 2 to 20 wt% of 2,6-dimethylnaphthalene. 제 1 항에 있어서, 상기 1 단계의 분리정제방법을 행한 2,6-디메틸나프탈렌을 포함하는 디메틸나프탈렌 이성질체의 혼합물은 2,6-디메틸나프탈렌을 45 ∼ 60 중량% 포함한 것임을 특징으로 하는 2,6-디메틸나프탈렌의 분리정제방법.2. The method of claim 1, wherein the mixture of dimethylnaphthalene isomers including 2,6-dimethylnaphthalene, which is subjected to the separation and purification method of step 1, comprises 2,6-dimethylnaphthalene in an amount of 45 to 60% by weight. -Separation and purification method of dimethyl naphthalene.
KR10-2002-0014499A 2002-03-18 2002-03-18 Purification method of 2,6-dimethylnaphthalene KR100463076B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014499A KR100463076B1 (en) 2002-03-18 2002-03-18 Purification method of 2,6-dimethylnaphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014499A KR100463076B1 (en) 2002-03-18 2002-03-18 Purification method of 2,6-dimethylnaphthalene

Publications (2)

Publication Number Publication Date
KR20030075336A true KR20030075336A (en) 2003-09-26
KR100463076B1 KR100463076B1 (en) 2004-12-23

Family

ID=32225176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0014499A KR100463076B1 (en) 2002-03-18 2002-03-18 Purification method of 2,6-dimethylnaphthalene

Country Status (1)

Country Link
KR (1) KR100463076B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725590B1 (en) * 2005-11-24 2007-06-08 한국화학연구원 Separation method of napthalene from pyrolysis gas oil through multi-step layer melt crystallization without solvent
KR100754744B1 (en) * 2006-05-01 2007-09-03 주식회사 효성 Separation and purification method of 2,6-dimethylnaphthalene
WO2008082107A1 (en) * 2006-12-29 2008-07-10 Hyosung Corporation Method and system for separation and purification of high-purity 2,6-dimethylnaphthalene by continuous crystallization
WO2013073880A1 (en) * 2011-11-16 2013-05-23 에스케이이노베이션 주식회사 Method for separating and refining 2,6-dimethylnaphthalene from hydrotreated light cycle oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100782677B1 (en) 2006-12-29 2007-12-07 주식회사 효성 Method of preparing high purity 2,6-dimethylnaphthalene
KR100934164B1 (en) * 2007-10-23 2009-12-29 주식회사 효성 High purity separation method for controlling morphology and particle size of 2,6-dimethylnaphthalene

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4822449B1 (en) * 1968-09-10 1973-07-06
JPH09176054A (en) * 1995-12-26 1997-07-08 Kobe Steel Ltd Purification of crystalline substance
US5948949A (en) * 1996-02-28 1999-09-07 Mitsubishi Gas Chemical Company, Inc. Process for producing 2,6-dimethylnaphthalene
JPH09249586A (en) * 1996-03-15 1997-09-22 Mitsubishi Gas Chem Co Inc Production of high purity 2,6-dimethylnaphthalene
US6072098A (en) * 1996-03-15 2000-06-06 Mitsubishi Gas Chemical Company, Inc. Process for producing highly pure 2,6-dimethylnaphthalene
KR100316139B1 (en) * 1999-01-15 2001-12-20 박호군 Process for separating highly purified 2,6-dimethylnaphthalene
BR0013824A (en) * 1999-08-31 2002-07-16 Kobe Steel Ltd Method for making 2,6-dimethylnaphthalene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725590B1 (en) * 2005-11-24 2007-06-08 한국화학연구원 Separation method of napthalene from pyrolysis gas oil through multi-step layer melt crystallization without solvent
KR100754744B1 (en) * 2006-05-01 2007-09-03 주식회사 효성 Separation and purification method of 2,6-dimethylnaphthalene
US7605296B2 (en) 2006-05-01 2009-10-20 Hyosung Corporation Method for separating and purifying 2,6-dimethylnaphthalene
WO2008082107A1 (en) * 2006-12-29 2008-07-10 Hyosung Corporation Method and system for separation and purification of high-purity 2,6-dimethylnaphthalene by continuous crystallization
WO2013073880A1 (en) * 2011-11-16 2013-05-23 에스케이이노베이션 주식회사 Method for separating and refining 2,6-dimethylnaphthalene from hydrotreated light cycle oil

Also Published As

Publication number Publication date
KR100463076B1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
EP0792858B1 (en) Process for the purification of 2,6-dimethylnaphthalene and its use in the production of 2,6-naphthalenedicarboxylic acid
KR100463076B1 (en) Purification method of 2,6-dimethylnaphthalene
JP4646886B2 (en) Method for separating and purifying 2,6-dimethylnaphthalene
US5175376A (en) Process for the purification of 2,6-diisopropyl phenol
ES2221251T3 (en) CRYSTALLIZATION OF 2,6-DIMETHYLETHYLENE.
US7795489B2 (en) Method for obtaining 2,6-dimethylnaphthalene using isomerization and crystallization processes
US2637749A (en) Process for purification of cyclohexane
US3798280A (en) Process for preparation of 2,6-dimethyl naphthalene
EP1193237B1 (en) Method for manufacturing 2,6-Dimethylnaphthalene
US6072098A (en) Process for producing highly pure 2,6-dimethylnaphthalene
US4683034A (en) Process for separating dimethyl isophthalate and dimethyl orthophthalate from their mixture with dimethyl terephthalate
EP1153904B1 (en) Process for the separation of 2,6-dimethylnaphthalene from mixtures containing it
US3825614A (en) Recovery of meta-xylene by selective crystallization
US2506289A (en) Process for the sepoaration of isomers
EP0264226B1 (en) Separation process by crystallisation
JPH09176054A (en) Purification of crystalline substance
EP0757047B1 (en) Process for crystallizing chroman-I from an impure mixture
KR100725590B1 (en) Separation method of napthalene from pyrolysis gas oil through multi-step layer melt crystallization without solvent
US2914586A (en) Method for purifying durene
US3956394A (en) Process for purifying p-tolualdehyde
JPH05163168A (en) Selective separation of 2,6-diisopropylnaphthalene
JPH09291045A (en) Production of 2,6-dimethylnaphthalene
JPH04221340A (en) Production of highly pure isophthalic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071002

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee