KR20030071077A - Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin - Google Patents

Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin Download PDF

Info

Publication number
KR20030071077A
KR20030071077A KR1020020010606A KR20020010606A KR20030071077A KR 20030071077 A KR20030071077 A KR 20030071077A KR 1020020010606 A KR1020020010606 A KR 1020020010606A KR 20020010606 A KR20020010606 A KR 20020010606A KR 20030071077 A KR20030071077 A KR 20030071077A
Authority
KR
South Korea
Prior art keywords
lignin
wastewater
acid
kctc
microbacterium
Prior art date
Application number
KR1020020010606A
Other languages
Korean (ko)
Other versions
KR100435526B1 (en
Inventor
오희목
구영환
정상욱
윤병대
김희식
박찬선
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32222861&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20030071077(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR10-2002-0010606A priority Critical patent/KR100435526B1/en
Publication of KR20030071077A publication Critical patent/KR20030071077A/en
Application granted granted Critical
Publication of KR100435526B1 publication Critical patent/KR100435526B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: A microorganism Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin is provided, thereby effectively purifying organic waste water. CONSTITUTION: A microorganism Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin or derivatives thereof is provided, wherein the derivative of lignin is selected from vanillin, phenol, protocatechuic acid, syringic acid, vanillic acid, syringaldehyde, salicylic acid and 2,4-dinitrotoluene; and Microbacterium sp. PA5(KCTC 10172BP) is isolated by the steps of: collecting samples from the soil; culturing the soil samples on plate counting agar at 30 deg. C for 48 hours to isolate 20 strains; inoculating 20 strains in a nutrient medium containing vanillin cophenyl alcohol and culturing them at 30 deg. C for 48 hours to select 8 strains showing good growth activity; and culturing 8 strains in organic waste water containing vanillin cophenyl alcohol to select one strain showing the excellent growth activity and vanillin cophenyl alcohol decomposing activity.

Description

리그닌 분해활성을 갖는 마이크로박테리움 속 PA5(KCTC 10172BP) {Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin}PB5 (BPCT 10172 JP) in microbacterium having lignin degrading activity {Microbacterium sp. PA5 (KCTC 10172BP) capable of degrading lignin}

본 발명은 리그닌 분해활성을 갖는 마이크로박테리움 속 PA5(KCTC 10172BP)에 관한 것으로서, 더욱 상세하게는 난분해성 물질인 리그닌(lignin) 또는 이의 유도체를 선택적으로 분해할 수 있는 신균주 마이크로박테리움 속 PA5(KCTC 10172BP) 및 이 균주를 이용하여 난분해성 물질이 다량 함유된 유기성 폐수의 화학적 산소 요구량(COD)을 감소시킴으로써 폐수를 정화시키는 방법에 관한 것이다.The present invention relates to a microbacterium genus PA5 (KCTC 10172BP) having lignin-degrading activity, and more particularly, to a new strain microbacterium genus PA5 capable of selectively degrading lignin or a derivative thereof, which is a hardly degradable substance. (KCTC 10172BP) and a method for using this strain to purify wastewater by reducing the chemical oxygen demand (COD) of organic wastewater containing a large amount of hardly degradable material.

산업의 급속한 발달과 인구의 기하 급수적인 증가는 전 세계적으로 환경오염의 문제를 야기하고 있으며, 인류의 생존을 위협하는 정도까지 진행되었다. 또한, 화석 연료의 사용량 증가, 오염 물질 배출량 급증 등 자연 파괴의 심각성이 대두되면서, 직ㆍ간접적으로 인간의 생활에 영향을 미치는 것에 대한 대책 및 처리 기술에 대한 연구가 활발히 진행되고 있다. 이와 같은 환경오염의 주된 원인 중의 하나인 산업폐수, 오·하수 등은 하천과 지하수의 수질을 악화시키고 있다[대한민국 특허 출원번호 제 2000-0022425호].The rapid development of the industry and the exponential growth of the population are causing environmental pollution all over the world, and to the extent that it threatens human survival. In addition, as the seriousness of natural destruction such as the increase in the use of fossil fuels and the rapid increase in pollutant emissions is on the rise, research on countermeasures and treatment techniques for directly or indirectly affecting human life is being actively conducted. Industrial wastewater, sewage, and sewage, which are one of the main causes of such environmental pollution, are deteriorating the water quality of rivers and groundwater (Korean Patent Application No. 2000-0022425).

일반적으로 산업폐수의 처리기술은 크게 세 가지(화학적, 물리학적, 생물학적 방법)로 나뉘는데, 이중 생물학적 처리방법은 자연 생태계 물질순환의 원리인 자정작용을 이용하여 인위적으로 일정 조건하에서 제어·관리하는 것이며, 물리ㆍ화학적 처리법에 비하여 2차 오염의 가능성이 적고, 보다 경제적이고 효율적이므로, 유기성 폐수(오·하수, 제지, 식품 폐수 등)의 처리법으로 적절하다. 이러한 생물학적 처리에 관여하는 미생물은 세균(bacteria), 효모(yeast), 곰팡이(fungi), 조류(algae), 원생동물(protozoa) 등이 있고, 폐수처리에 주로 사용되는 것은 세균과 원생동물이다. 생물학적 처리의 핵심은 세균 등의 미생물에 의한 유기물질, 난분해성 물질 등의 분해로 볼 수 있다. 지금도 미생물의 분해에 대한 연구는 다양하게 진행되고 있으며, 특히 난분해성 물질을 분해하는 능력을 지닌 균주를 선별 및 이용하는데 관심이 집중되고 있다[대한민국 특허 출원번호 제 1998-46886호]. 원생동물은 BOD(Biochemical Oxygen Demand, 생화학적 산소요구량) 또는 COD 원인물질을 분해하는 세균의 최종 포식자이며, 폐수처리 지표 미생물이지만 세균보다 주변 환경 변화에 더욱 민감하며, 독성이나 난분해성 물질이 존재할 경우 찾아보기 힘들다.Generally, industrial wastewater treatment technology is divided into three types (chemical, physical, and biological methods), of which biological control method is artificially controlled and managed under certain conditions by using self-cleaning, which is the principle of natural ecosystem material circulation. Compared with physical and chemical treatment methods, secondary pollution is less likely and more economical and efficient. Therefore, it is suitable as a treatment method for organic wastewater (sewage, paper, food wastewater, etc.). Microorganisms involved in such biological treatment include bacteria, yeast, fungi, algae, protozoa, and the like, which are mainly used for wastewater treatment, bacteria and protozoa. The core of biological treatment can be seen as the decomposition of organic materials, hardly decomposable substances, etc. by microorganisms such as bacteria. Even now, researches on the degradation of microorganisms have been conducted in various ways, and in particular, attention has been focused on selecting and using strains having the ability to degrade hardly decomposable substances (Korean Patent Application No. 1998-46886). Protozoa are the final predators of bacteria that degrade BOD (Biochemical Oxygen Demand) or COD-causing agents, are indicators of wastewater treatment, but are more sensitive to changes in the surrounding environment than bacteria, Hard to find

이와 같이 폐수의 생물학적 처리는 많은 장점을 갖고 있으므로, 분해 활성이우수한 미생물을 분리, 선별하여, 우점화 및 고농도화시키는 기술개발과 실제 산업 현장의 폐수처리에 응용하려는 연구가 많이 진행되고 있다.As such, biological treatment of wastewater has many advantages, and many studies are being conducted to develop technology for separating, selecting, dominant and increasing concentration of microorganisms having excellent degradation activity, and applying them to industrial wastewater treatment.

일반적으로 고농도의 COD 값을 가지고 있거나 유기물이 다량 함유된 산업용 폐수에 널리 사용되는 폐수처리 공법 중 펜톤 처리법이 가장 보편화되어 있는데, 이는 1894년 Fenton에 의해 발표된 것으로 2가 철이온과 과산화 수소 반응을 이용한 산화 처리방법이다. 또한, 현재 산업폐수인 제지폐수에도 널리 사용되고 있는 폐수처리 공법으로 다음 세 가지 화학적 반응식으로 요약이 되는데, 이 반응은 수산화 철염을 발생시켜 폐수중의 난분해성 유기물을 분해하게 된다[대한민국 특허 출원번호 제 2001-53003호].In general, the Fenton treatment method is the most widely used wastewater treatment method for industrial wastewater containing a high concentration of COD or containing a large amount of organic matter, which was published by Fenton in 1894. Oxidation treatment method used. In addition, the wastewater treatment method widely used in paper wastewater, which is currently used for industrial wastewater, can be summarized by the following three chemical reaction equations, which generate iron hydroxide to decompose the hardly decomposable organic substances in the wastewater [Korea Patent Application No. 2001-53003].

Fe3 ++ H2O2→ Fe3 ++ OH-+ ㆍOH Fe 3 + + H 2 O 2 → Fe 3 + + OH - + OH and

RH + ㆍOH → R· + H20RH + ㆍ OH → R · + H 2 0

Fe3 ++ 3OH-→ Fe(OH)3 Fe 3 + + 3OH - → Fe (OH) 3

그러나, 이 공법의 단점은 과산화수소의 양이 펜톤 반응에 예민하게 반응하여 처리효율을 떨어지게 한다. 즉, 과산화수소의 양이 적으면 산화 응집이 미약하고, 과량 투입 시에는 응집된 유기물이 다시 산화되어 COD를 증가시키는 원인이 된다.However, a disadvantage of this process is that the amount of hydrogen peroxide reacts sensitively to the Fenton reaction, thereby reducing the treatment efficiency. In other words, when the amount of hydrogen peroxide is small, oxidative aggregation is weak, and when the excessive amount is added, the aggregated organic material is oxidized again to increase the COD.

이에 비해 생물학적 반응은 보통의 시험관 조건에서 일어나기 힘든 화학적반응이 효소를 촉매로 하여 비교적 무난하게 진행된다.In contrast, biological reactions are relatively easy with chemical catalysts, which are difficult to occur under normal in vitro conditions.

제지폐수의 생물학적 처리시 어려운 문제중의 하나는 리그닌 분해산물인 페놀성 리그닌 모델 화합물(phenolic lignin model compounds)의 생물학적 분해가 용이하지 않다는 점이었다. 페놀성 리그닌 모델 화합물은 카테콜(catechol), 페룰릭산(ferulic acid), 구아이아콜(guaiacol), 페놀(phenol), 프로토카테쿠익산(protocatechuic acid), 시린직산(syringic acid), 바닐릭산(vanillic acid)을 포함한다[P. Guiraud, R. Steiman, L. Ait-Laydi, and F. Seigle-Murandi. 1999. Degradation of phenolic and chloroaromatic compounds byCoprinusspp.Chemosphere. 38. 2775-2789]. 상기 페놀성 화합물은 독성이 있는 난분해성 화합물이며, 실제로 유기 화합물이 존재하는 산업폐수인 제지폐수의 경우 처리시 COD 감소에 많은 어려움이 있다[P. Guiraud, F. Seigle-Murandi, R. Steiman, and J. L. Benoit-Guyod. 1995. Comparison of the toxicity of various lignin-related phenolic compounds towards selectedFungi PerfectiandFungi Imperfecti. Ecotox. Environ. Saf. 32. 29-33].One of the difficult problems in the biological treatment of papermaking wastewater was the inability to biodegrade phenolic lignin model compounds, which are lignin degradation products. Phenolic lignin model compounds include catechol, ferulic acid, guaiacol, phenol, protocatechuic acid, syringic acid, and vanillic acid. vanillic acid) [P. Guiraud, R. Steiman, L. Ait-Laydi, and F. Seigle-Murandi. 1999. Degradation of phenolic and chloroaromatic compounds by Coprinus spp. Chemosphere . 38. 2775-2789]. The phenolic compound is a toxic hardly decomposable compound, and in the case of paper wastewater, which is an industrial wastewater in which organic compounds are present, there are many difficulties in reducing COD during treatment [P. Guiraud, F. Seigle-Murandi, R. Steiman, and JL Benoit-Guyod. 1995. Comparison of the toxicity of various lignin-related phenolic compounds towards selected Fungi Perfecti and Fungi Imperfecti . Ecotox. Environ. Saf. 32. 29-33.

따라서, 생물학적 처리로 처리 수질을 향상시키고, 시설과 에너지를 절감하며, 슬러지 발생량을 줄이는 등 최근에 분해 능력이 우수한 미생물을 이용한 기술적 확립과 실제 산업현장의 폐수처리 등에 응용하려는 연구가 많이 진행되고 있다.Therefore, a lot of researches have recently been conducted to improve the water quality, reduce facilities and energy, and reduce sludge production through biological treatment, and to apply it to the establishment of technology using microorganisms with excellent degradability and the actual industrial wastewater treatment. .

제지폐수는 펄프의 재생, 가공, 표백 등의 일련의 과정을 거친 후 배출되는 폐수로서 난분해성 고분자 화합물이 다량 함유되어 있으며, 이를 처리하기 위해 화학적, 생물학적, 물리학적 폐수처리 방법을 모두 사용하고 있는 실정이다.Paper wastewater is a wastewater discharged after a series of processes such as pulp regeneration, processing, and bleaching. It contains a large amount of hardly decomposable polymer compounds, and is used to treat chemical, biological, and physical wastewater treatment. It is true.

종래 국내의 제지폐수 처리기술은 리그닌에 초점을 맞춰 이를 제거시키기 위한 노력에 치중하였다[대한민국 특허 출원번호 제 2000-7775호; A. T. Martinez, S. Camarero, A. Guitierrez, P. Bocchini, and G. C. Galletti. 2001. Studies on wheat lignin degradation byPleurotusspecies using analyticalpyrolysis. J. Anal. Appl. Pyrolysis. 58/59. 401-411; T. K. Kirk. 1984. Degradation of lignin.InMicrobial Degradation of Organic Compounds. New York, Dekker. 399-437;M. S. A. Leisola, D. C. Ulmer, R. Waldner, and A. Fiechter. 1984. Role of veratryl alcohol in lignin degradation byPhanerochaete chrysosporium. J. Biotechnol. 1. 331-339].Conventional domestic paper wastewater treatment technology has focused on lignin and efforts to remove it [Korean Patent Application No. 2000-7775; AT Martinez, S. Camarero, A. Guitierrez, P. Bocchini, and GC Galletti. 2001. Studies on wheat lignin degradation by Pleurotus species using analyticalpyrolysis. J. Anal. Appl. Pyrolysis. 58/59. 401-411; TK Kirk. 1984. Degradation of lignin. In Microbial Degradation of Organic Compounds. New York, Dekker. 399-437; MSA Leisola, DC Ulmer, R. Waldner, and A. Fiechter. 1984.Role of veratryl alcohol in lignin degradation by Phanerochaete chrysosporium . J. Biotechnol. 1. 331-339.

그러나, 이런 고분자 화합물이 처리되더라도 2차적으로 분해되어 생성되는 부산물들은 폐수에 잔류하게 된다. 특히, 리그닌은 할로겐을 함유한 고리형 화합물을 많이 포함하고 있으며, 이런 고리모양의 화합물은 산화에 의한 분해 화학반응에 잘 견디므로 어려움이 있다.However, even when these polymer compounds are treated, by-products generated by secondary decomposition remain in the wastewater. In particular, lignin contains a lot of halogen-containing cyclic compounds, and these cyclic compounds are difficult to withstand decomposition chemical reactions by oxidation.

이를 처리하기 위해서는 재순환이 필요하고, 폭기조 내의 체류시간이 더 길어야 하는 등 추가적 비용이 소요되기 때문에 제지폐수의 COD 제거에 한계가 있었다.In order to deal with this, additional costs are required such as recirculation and longer residence times in the aeration tank.

따라서, 제지폐수의 발생과정에서 고분자 리그닌이 알칼리 가수분해 등의 작용을 거쳐 최종 산물로 바닐린 코페닐 알코올류가 폐수에 존재함이 확인됨에 따라 이를 저감시키는 방법이 새로운 과제로 대두되었다.Therefore, as the final product is confirmed that vanillin cophenyl alcohol is present in the wastewater through the action of alkaline hydrolysis in the process of papermaking wastewater, a method for reducing it has emerged as a new task.

이에, 본 발명자들은 상기와 같은 점을 해결하기 위해 연구한 결과, 난분해성 물질인 리그닌 또는 이의 유도체를 분해할 수 있는 신균주 마이크로박테리움 속 PA5(KCTC 10172BP)를 분리하고, 이 균주로 유기성 폐수, 특히 제지 페수에 다량 포함되어 있는 난분해성 물질을 제거하여 폐수를 정화시킴으로써 본 발명을 완성하게 되었다.Therefore, the present inventors have studied to solve the above problems, as a result, it is isolated PA5 (KCTC 10172BP) in the new strain microbacterium that can decompose the lignin or derivatives of the hardly decomposable substance, and the organic wastewater with this strain In particular, the present invention has been completed by purifying the wastewater by removing the hardly decomposable substance contained in a large amount of paper wastewater.

따라서, 본 발명은 유기성 폐수 내의 난분해성 물질을 선택적으로 분해할 수 있는 신균주 마이크로박테리움 속 PA5(KCTC 10172BP) 및 이를 이용하여 유기성 폐수의 COD를 저감시켜 폐수를 정화하는데 그 목적이 있다.Therefore, an object of the present invention is to purify wastewater by reducing COD of organic wastewater using PA5 (KCTC 10172BP) in the new strain microbacterium that can selectively decompose hardly decomposable substances in organic wastewater.

도 1은 신균주 마이크로박테리움 속 PA5(KCTC 10172BP) 의 16s rRNA 동정 결과를 나타낸 것이다.Figure 1 shows the results of 16s rRNA identification of PA5 (KCTC 10172BP) genus microbacterium.

본 발명은 리그닌 또는 이의 유도체 분해활성을 갖는 신균주 마이크로박테리움 속 PA5(Microbacteriumsp. PA5)[KCTC 10172BP]를 그 특징으로 한다.The present invention is characterized by a microbacterium sp. PA5 (KCTC 10172BP) of the genus Microbacterium genus PA5 having lignin or derivatives thereof.

또한, 상기 균주를 이용하여 리그닌 또는 이의 유도체를 함유하고 있는 폐수를 정화하는 방법을 포함한다.It also includes a method for purifying wastewater containing lignin or derivatives thereof using the strain.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 난분해성 물질인 리그닌(lignin) 또는 이의 유도체를 선택적으로 분해할 수 있는 신균주 마이크로박테리움 속 PA5(KCTC 10172BP) 및 이 균주를 이용하여 난분해성 물질이 다량 함유된 유기성 폐수의 화학적 산소 요구량(COD)을 감소시킴으로써 폐수를 정화시키는 방법에 관한 것이다.The present invention relates to chemical oxygen of organic wastewater containing PA5 (KCTC 10172BP) in a new strain microbacterium capable of selectively degrading lignin or a derivative thereof, and a large amount of hardly decomposable substances using the strain. A method of purifying wastewater by reducing the required amount of COD.

우선 산업체 폐수처리장과 폐수가 유출되는 하천 주위의 물과 토양을 채취하여 균주 분리용 시료로 사용하여 미생물을 순수 분리한 후 활성이 우수한 미생물을 최종 선별한다.First, water and soil around the industrial wastewater treatment plant and streams from which the wastewater flows out are collected and used as a sample for strain separation.

최종적으로 선별된 균주는 8 여종이었고, 리그닌 유도산물의 분해능이 가장 우수한 미생물을 동정한 결과, 마이크로박테리움 속(Microbacteriumsp.)과 유사한 성질을 갖는 근연균으로 동정되었으며, 마이크로박테리움 속 PA5(Microbacteriumsp. PA5)로 명명하였다. 한국생명공학연구원 유전자은행에 2002년 2월 16일에 기탁하였으며, 수탁번호는 KCTC 10172BP 이다.Finally, 8 strains were selected, and microorganisms having the highest resolution of lignin derivatives were identified. As a result, they were identified as mycorrhizal bacteria having similar properties to the genus Microbacterium sp. Microbacterium sp. PA5). It was deposited on February 16, 2002 to the Korea Biotechnology Research Institute Gene Bank. The accession number is KCTC 10172BP.

상기 균주는 호기성 조건하에서 생육이 우수하며, 리그닌 또는 이의 유도체의 분해 능력이 탁월하다. 리그닌 유도체로는 바닐린(vanilline), 코페닐(cophenyl), 페놀(phenol), 프로토카테쿠익산(protocatechuic acid), 시린직산(syringic acid), 바닐릭산(vanillic acid), 시린잘데하이드(syringaldehyde), 살리실릭산(salicylic acid), 2,4-디니트로톨루엔(2,4-dinitrotoluene) 등이 바람직하다.The strain has excellent growth under aerobic conditions, and has an excellent ability to degrade lignin or its derivatives. Lignin derivatives include vanilline, cophenyl, phenol, protocatechuic acid, syringic acid, vanillic acid, syringaldehyde, Salicylic acid, 2,4-dinitrotoluene, and the like are preferable.

상기 균주를 이용하여 유기성 폐수 중의 리그닌 또는 이의 유도체의 제거효율을 측정하고, 폐수 중의 COD 값을 측정하여 처리효율을 확인한다.The strain is used to measure the removal efficiency of lignin or derivatives thereof in the organic wastewater, and to determine the treatment efficiency by measuring the COD value in the wastewater.

상기 균주가 난분해성 물질이 다량 포함되어 있는 폐수의 COD 값을 감소시킴으로써 폐수 처리에 유용하게 사용할 수 있다.The strain can be usefully used for wastewater treatment by reducing the COD value of the wastewater containing a large amount of hardly decomposable substances.

이하, 본 발명은 다음 실시예에 의거하여 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on the following examples, but the present invention is not limited thereto.

실시예 1: 미생물 분리Example 1 Microbial Separation

제지 폐수처리장 부근의 토양 및 슬러지 10여점을 시료로 하여 미생물 20여 균주를 평판 한천(plate counting agar) 배지를 사용하여 순수분리하였다. 시료 0.1 g을 생리식염수(NaCl 0.85%) 9.9 ㎖에 현탁시킨 후 105배 희석하여 한천배지(tryptone 0.5%, yeast extract 0.25%, glucose 0.1%, agar 1.8%)에 도말한 다음 30 ℃에서 48시간 배양하였다. 배양 후 형성된 미생물 군체를 한천배지에서 획선법으로 20여 균주를 순수분리하였다.About 10 strains of soil and sludge near the paper wastewater treatment plant were purified by using plate counting agar medium. 0.1 g of the sample was suspended in 9.9 ml of physiological saline (NaCl 0.85%), diluted 10 5 times, and plated in agar medium (tryptone 0.5%, yeast extract 0.25%, glucose 0.1%, agar 1.8%), followed by 48 at 30 ° C. Time incubation. The microbial colonies formed after the cultivation were purely isolated from the strains by a screening method in agar medium.

순수분리된 20여 균주는 바닐린 코페닐 알코올류가 포함된 영양배지에 접종하여 30 ℃에서 48시간 진탕배양한 다음 660 nm에서 흡광도를 측정하여 생육정도가 우수한 8 균주를 최종 선별하였다.About 20 strains isolated from pure isolates were inoculated in nutrient medium containing vanillin cophenyl alcohol, shaken and cultured at 30 ° C. for 48 hours, and finally, eight strains having excellent growth degree were finally selected by measuring absorbance at 660 nm.

최종 선별된 8 균주 중에서 바닐린 코페닐 알코올류가 포함된 실제 유기성 폐수에서 균체 생장 및 바닐린 코페닐 알코올류 분해능이 우수한 균주를 선정하여 PA5로 명명하였고, 이를 동정하였다.Among the 8 selected strains, strains with excellent cell growth and vanillin cophenyl alcohol degradability in actual organic wastewater containing vanillin cophenyl alcohol were selected and named as PA5.

실시예 2: 미생물의 동정Example 2: Identification of Microorganisms

오폐수처리를 위하여 분리한 효소활성과 증식정도가 우수한 미생물을 분리한 것으로서 버어지스 매뉴얼(Bergy's Manual of Determinative Bacteriology)과 의약 박테리아의 동정 매뉴얼(Manual for the Identification of Medical Bacteria)을참고하여 균주의 형태학적, 생리학적 및 생화학적 특성을 조사한 후 균주 동정을 실시하였다.Types of strains obtained from microbial microorganisms with excellent enzymatic activity and proliferation degree for sewage treatment can be referred to the Manual of Determinative Bacteriology and Manual for the Identification of Medical Bacteria. Strain identification was performed after examining the physiological, physiological and biochemical properties.

그 결과, 상기 분리균주 PA5는 고체배지에서 원형의 집락(colony)을 형성하며, 집락 색깔은 옅은 노랑색을 띄었다. 본 분리균주는 그람 양성균으로 생육 pH 범위는 6 내지 8이었고, 생육 온도 범위는 25 ∼ 35 ℃이며, 호기적 조건과 혐기적 조건에서 생육이 가능한 편성 혐기성 세균이며, 운동성과 포자형성능이 있는 간균이다. 또한, 생리학적 특성은 다음 표 1에 나타낸 바와 같으며, DNA 상동성을 비교한 결과[도 1], 마이크로박테리움 쉴레이페리(Microbacterium schleiferi)(ATCC Y17237)와는 99%(472/474), 마이크로박테리움 속 PCOB-2(ATCC Y07842)와는 98%(497/504)의 상동성을 가짐을 확인하였다.As a result, the isolated strain PA5 forms a circular colony in a solid medium, and the colony color was pale yellow. This isolate is a Gram-positive bacterium with a growth pH range of 6 to 8, a growth temperature range of 25 to 35 ° C, a cultivated anaerobic bacterium capable of growing under aerobic and anaerobic conditions. . In addition, the physiological characteristics are as shown in Table 1 below, and comparing the DNA homology [Fig. 1], 99% (472/474), microbacterium ( Microbacterium schleiferi ) (ATCC Y17237) and micro It was confirmed that it has 98% (497/504) homology with PCOB-2 in the bacterium (ATCC Y07842).

이상의 결과로부터 본 분리균주는 마이크로박테리움 속과 유사한 성질을 갖는 근연균으로 동정되었으며, 이를 마이크로박테리움 속. PA5(Microbacteriumsp. PA5)라 명명하고 한국생명공학연구원 유전자은행(KCTC)에 2002년 2월 16일자로 기탁하였고 수탁번호 KCTC 10172BP를 부여받았다.From the above results, the isolated strain was identified as mycorrhizal fungus with similar properties to the genus Microbacterium, which was genus Microbacterium. PA5 (Microbacteriumsp. It was named PA5) and was deposited with the Korea Biotechnology Research Institute Gene Bank (KCTC) on February 16, 2002 and was given accession number KCTC 10172BP.

분리 균주 PA5의 당자화성(BIOLOG)Glycosylation of Isolated Strain PA5 (BIOLOG) 항목Item 결과result 항목Item 결과result waterwater -- p-hydroxy phenylacetic acid p -hydroxy phenylacetic acid -- α-cyclodextrinα-cyclodextrin -- 3-methyl-glucose3-methyl-glucose -- dextrindextrin ++ α-methyl-D-glucosideα-methyl-D-glucoside -- glycogenglycogen -- α-keto glutaric acidα-keto glutaric acid -- Tween40Tween40 ++ α-keto valeric acidα-keto valeric acid -- Tween80Tween80 -- L-lactic acidL-lactic acid vv β-cyclodextrinβ-cyclodextrin -- α-methyl-D-mannosideα-methyl-D-mannoside -- N-acetyl-D-glucosamineN-acetyl-D-glucosamine -- propionic acidpropionic acid -- inulininulin -- palatinosepalatinose ++ L-arabinoseL-arabinose -- D-riboseD-ribose -- D-arabitolD-arabitol -- salicinsalicin -- cellobiosecellobiose ++ succinic acidsuccinic acid -- mannanmannan -- sedoheptulosansedoheptulosan -- D-fructoseD-fructose ++ succinamic acidsuccinamic acid -- L-fucoseL-fucose -- stachyosestachyose -- D-galactoseD-galactose -- alaninamidealaninamide -- gentiobiosegentiobiose -- D-alanineD-alanine -- α-D-glucoseα-D-glucose ++ L-alanineL-alanine -- m-inositolm-inositol -- L-alanyl-glucineL-alanyl-glucine -- α-D-lactoseα-D-lactose -- L-asparagineL-asparagine -- lactuloselactulose -- D-tagatoseD-tagatose -- maltosemaltose ++ L-glutamic acidL-glutamic acid -- D-mannitolD-mannitol ++ D-xyloseD-xylose ++ D-mannoseD-mannose ++ glycyl-L-glutamic acidglycyl-L-glutamic acid -- D-melibioseD-melibiose -- lactamidelactamide -- β-methyl-D-glucosideβ-methyl-D-glucoside -- D-lactic acid methyl esterD-lactic acid methyl ester -- D-psicoseD-psicose -- D-malic acidD-malic acid -- D-raffinoseD-raffinose -- L-malic acidL-malic acid -- L-rhamnoseL-rhamnose -- methyl pyruvatemethyl pyruvate -- D-sorbitolD-sorbitol -- mono-methyl succinatemono-methyl succinate ++ sucrosesucrose ++ L-pyroglutamic acidL-pyroglutamic acid -- D-trehaloseD-trehalose ++ pyruvic acidpyruvic acid -- turanoseturanose ++ L-serineL-serine -- xylitolxylitol -- 2,3-butanediol2,3-butanediol -- methyl pyruvatemethyl pyruvate -- adenosineadenosine vv mono-methyl succinatemono-methyl succinate ++ 2-deoxy adenosine2-deoxy adenosine vv acetic acidacetic acid -- adenosine-5-monophosphateadenosine-5-monophosphate -- amygdalinamygdalin -- inosineinosine -- arbutinarbutin -- uridineuridine -- maltotriosemaltotriose ++ thymidinethymidine -- D-melezitoseD-melezitose ++ thymidine-5-monophosphatethymidine-5-monophosphate -- D-galacturonic acidD-galacturonic acid -- putrescineputrescine -- D-gluconic acidD-gluconic acid vv uridine-5-monophosphateuridine-5-monophosphate -- α-methyl-D-galactosideα-methyl-D-galactoside -- fructose-6-phosphatefructose-6-phosphate -- β-methyl-D-galactosideβ-methyl-D-galactoside -- glycerolglycerol -- α-hydroxy butyric acidα-hydroxy butyric acid -- D,L-α-glycerol phosphateD, L-α-glycerol phosphate -- β-hydroxy butyric acidβ-hydroxy butyric acid vv glucose-1-phosphateglucose-1-phosphate -- γ-hydroxy butyric acidγ-hydroxy butyric acid -- glucose-6-phosphateglucose-6-phosphate -- 주) -, negative (20% 이하); v, variable (20-80%); +, positive (80% 이상)Note), negative (less than 20%); v, variable (20-80%); +, positive (over 80%)

실시예 3: 제지 폐수 성분 분석Example 3: Paper Wastewater Component Analysis

우선 리그닌 성분이 폐수 내에 어느 정도의 양이 존재하고 있으며, 어떤 형태로 잔존하는지를 알기 위하여 펄프를 재생하여 종이를 생산하는 산업체를 찾아 정기적으로 시료를 채취 및 분석하였다.First, in order to know how much lignin is present in the wastewater and how it remains, it was collected and analyzed on a regular basis to find an industry that produces paper by recycling pulp.

J시에 위치한 P사의 폐수처리장에서 가져온 제지폐수의 원수를 공급받아 시료로 사용하였다. 시료는 GC-Mass(HP 5890 series II Plus, Pyrolyzer CDS PYROPROBE 2000, MASS HP 5989A)로 분석하였다[분석조건: Pyr. temp. (600 ℃, 5 초), Inj. temp.(270 ℃), Det. temp.(290 ℃), Oven temp.{40(3)-8-290(5)}].Raw water from paper wastewater from P's wastewater treatment plant located in J city was supplied and used as a sample. Samples were analyzed by GC-Mass (HP 5890 series II Plus, Pyrolyzer CDS PYROPROBE 2000, MASS HP 5989A) [analysis conditions: Pyr. temp. (600 ° C., 5 seconds), Inj. temp. (270 ° C.), Det. temp. (290 ° C.), Oven temp. {40 (3) -8-290 (5)}].

현재 시료 채취의 대상이 된 P사는 생물학적 폐수처리 공법인 활성 슬러지법을 이용하여 폐수를 처리하는 사업장이며, 최종 처리수인 방류수의 COD 농도는 약 100 ㎎/ℓ로 확인되었다. 더 이상의 COD 처리효율이 나오지 않는 이유를 찾고자 폐수를 분석한 결과 수계에 존재하는 것은 리그닌이 아니라 리그닌 유도체가 검출되었다[표 2]. 보통 생물학적 폐수처리공법인 활성 슬러지법을 사용하여 폐수를 처리하면, 거대분자인 리그닌은 분해가 되고, 2차적으로 분해산물이 생성되어 수계 내에 존재하게 된다.P, which is currently subject to sampling, is a plant that treats wastewater using the activated sludge method, which is a biological wastewater treatment method, and the COD concentration of the discharged water, which is the final treated water, was confirmed to be about 100 mg / l. The wastewater was analyzed to find the reason for no further COD treatment efficiency, and lignin derivatives were detected instead of lignin present in the water system [Table 2]. When wastewater is treated using the activated sludge method, which is a biological wastewater treatment method, large molecules of lignin are decomposed and secondary products are generated and are present in the water system.

GC Mass를 이용한 제지폐수의 성분 분석Component Analysis of Papermaking Wastewater Using GC Mass 검출 물질Detection substance 유지 시간(분)Retention time (minutes) 페놀phenol 11.07111.071 벤젠아민Benzeneamine 11.65711.657 2-메틸페놀2-methylphenol 12.53712.537 3-(1-메틸에틸)페놀3- (1-methylethyl) phenol 15.83315.833 1,2-디하이드로-1,5,8-트리메틸 나프탈렌1,2-dihydro-1,5,8-trimethyl naphthalene 18.58718.587 비스(1,1-디메틸에틸)페놀Bis (1,1-dimethylethyl) phenol 20.15320.153 5-아세틸-6-메틸-벤지미다졸론5-acetyl-6-methyl-benzimidazolone 24.29024.290

상기 표 2에서 보는 바와 같이, 실제 제지폐수 내에 존재하는 것은 리그닌이 아니라 그 유도체들인 2차 화합물이 검출되었고, 이 물질들은 난분해성 물질로 구분되어 있으며, 약간의 독성을 띄며, 폐수내의 COD원으로 작용하게 된다. 따라서, 이와 같은 2차 부산물들을 처리하였을 때 기존의 COD 농도보다 더 높은 제거효율을 나타낼 수 있음을 의미한다.As shown in Table 2, the secondary compound, which is not lignin, but its derivatives was detected in the actual papermaking wastewater, and these substances are classified as hardly decomposable substances, have a slight toxicity, and are a source of COD in the wastewater. Will work. Therefore, when the treatment of such secondary by-products means that the removal efficiency can be higher than the existing COD concentration.

실시예 4: 신균주에 의한 리그닌 유도체의 제거효율Example 4 Removal Efficiency of Lignin Derivatives by New Strains

본 발명 균주 및 활성이 우수한 8 여종의 분리 균주를 이용하여 제지폐수 내에 존재하는 리그닌 성분과 흡사하게 인공폐수를 제조하여 처리한 후 리그닌 유도체의 농도를 측정하여 분리 균주에 의한 리그닌 유도체의 제거효율을 다음 표 3에 나타내었다.Using the strain of the present invention and 8 kinds of isolated strains, the artificial wastewater was prepared and treated similarly to the lignin component present in the papermaking wastewater, and then the concentration of the lignin derivative was measured to determine the removal efficiency of the lignin derivative by the isolate. It is shown in Table 3 below.

분리 균주에 의한 리그닌 유도체의 제거효율Removal Efficiency of Lignin Derivatives by Isolated Strains 구 분division 제거효율(%)Removal efficiency (%) 시린직산Sirinic acid 바닐린vanillin 시린잘데하이드Sirinaldehyde 바닐릭산Vanillic acid 대조구Control -- -- -- -- PK2608PK2608 26.326.3 22.622.6 17.517.5 18.318.3 PK262PK262 37.737.7 31.931.9 31.731.7 29.229.2 PAK2603PAK2603 13.513.5 19.419.4 17.217.2 18.618.6 PK265PK265 25.125.1 20.420.4 22.822.8 20.120.1 PA5PA5 95.295.2 99.199.1 95.995.9 99.299.2 PAK2601PAK2601 13.113.1 19.119.1 11.411.4 17.817.8 PAK2607PAK2607 15.415.4 15.315.3 15.115.1 16.016.0 PK264PK264 10.610.6 16.116.1 12.212.2 11.411.4

상기 표 3에서 보는 바와 같이, 활성이 우수한 8 여종을 이용하여 제지폐수를 처리한 후 리그닌 유도체의 농도를 측정한 결과 마이크로박테리움 속. PA5(KCTC 10172BP)의 제거효율은 95 내지 99%로 조사된 균주 중에서 가장 우수한 것으로 나타났다.As shown in Table 3, after treating the papermaking wastewater using about eight kinds of excellent activity, the concentration of the lignin derivative was measured, and the genus microbacterium. Removal efficiency of PA5 (KCTC 10172BP) was found to be the best among the strains investigated at 95 to 99%.

실시예 5: 신균주에 의한 리그닌 제거효율Example 5: Lignin Removal Efficiency by New Strains

펄프폐수 중에 원료인 목재에는 리그닌, 타르, 당류 등이 함유되어 있기 때문에, 수중에서 분해되기 어려운 리그닌을 정량하는 것에 의의가 있다.Since wood, which is a raw material in pulp wastewater, contains lignin, tar, sugars, and the like, it is meaningful to quantify lignin that is difficult to decompose in water.

따라서, 본 실험은 리그닌에 주목한 정량법인 니트로소 법(Pearl-Benson 법)을 이용하여 리그닌 및 리그닌 유도체를 측정하였다[APHA, AWWA, WPCF. 1985. Standard Methods for the Examination of Water and Wastewater. 607.].Therefore, this experiment measured the lignin and lignin derivatives using the Nitroso method (Pearl-Benson method), a quantitative method that pays attention to lignin [APHA, AWWA, WPCF. 1985. Standard Methods for the Examination of Water and Wastewater. 607.].

이 실험은 현장에서 나오는 유입수를 시료로 하여 대조구는 현 폭기조 슬러지를 이용하였고, 실험구는 마이크로박테리움 속 PA5(KCTC 10172BP)를 사용하여 부피비로 5%되게 접종하였고, 운전 조건은 현장의 실제 조건과 동일하게 하였다.In this experiment, the influent from the site was sampled, and the control group used the current aeration tank sludge, and the experimental group was inoculated at a volume ratio of 5% using PA5 (KCTC 10172BP) in the microbacterium. The same was done.

본 발명에 따른 마이크로박테리움 속 PA5(KCTC 10172BP)를 이용하여 제지폐수에 직접 투여하여 3회 반복 실험한 결과, 다음 표 4에서 보는 바와 같이 대조구에 대해 평균 78%의 제거효율을 나타내었다.As a result of three repeated experiments using PA5 (KCTC 10172BP) in the microbacterium according to the present invention, it was directly administered to the papermaking wastewater, and as shown in Table 4, the average removal efficiency of the control group was 78%.

신균주를 이용한 제지폐수 내의 리그닌 제거효율Lignin Removal Efficiency in Paper Wastewater Using New Bacteria 구분division 대조구Control 1회1 time 2회Episode 2 3회3rd time 평균Average 리그닌 제거효율(%)Lignin removal efficiency (%) 18.218.2 83.683.6 63.663.6 88.588.5 78.678.6

실시예 6: 신균주를 이용한 COD 처리효율Example 6: COD Treatment Efficiency Using New Bacteria

본 발명 균주인 마이크로박테리움 속 PA5(KCTC 10172BP)를 이용하여 리그닌 또는 리그닌 유도체의 제거효율이 COD원에 미치는 영향을 보기 위하여, 상기 실시예 5를 수행시 같이 시행하였으며 COD 처리효율을 조사하여 그 결과를 다음 표 5에 나타내었다.In order to see the effect of the removal efficiency of the lignin or lignin derivatives on the COD source using the microorganism PA5 (KCTC 10172BP) in the strain of the present invention, was carried out as in Example 5 and investigated the COD treatment efficiency The results are shown in Table 5 below.

신균주를 이용한 제지폐수 내의 COD 처리효율COD Treatment Efficiency in Paper Wastewater Using New Bacteria 구 분division 대조구Control 1회1 time 2회Episode 2 3회3rd time 평균Average COD 처리효율(%)COD treatment efficiency (%) 6.36.3 24.924.9 19.519.5 25.725.7 23.423.4

상기 표 5에서 보는 바와 같이 본 발명에 따른 마이크로박테리움 속 PA5(KCTC 10172BP)를 이용하여 리그닌 성분이 제거될 때 COD 농도도 비슷한 양상을 띄며 제거된 것을 볼 수 있었다. 본 발명에 따른 마이크로박테리움 속 PA5(KCTC 10172BP)는 평균 23%의 처리효율이 나타났으며, 대조구에 비해 우수한 처리능을 보였다.As shown in Table 5, when the lignin component is removed using the microbacterium PA5 (KCTC 10172BP) according to the present invention, it was seen that the COD concentration was also removed. The microbacterium genus PA5 according to the present invention (KCTC 10172BP) showed an average treatment efficiency of 23%, and showed superior treatment performance compared to the control.

따라서, 본 발명으로 얻어진 분리 균주 마이크로박테리움 속 PA5(KCTC 10172BP)의 리그닌 제거효율은 폐수의 종류에 따라 다소 편차가 있겠지만 실시한 폐수의 대조구에 대해 평균 78% 이상의 높은 제거효율을 나타내었다. 또한, 제지폐수 내에 존재하는 2차 부산물인 리그닌 유도체들이 COD 원으로 영향을 미치고 있는 것으로 판단되었다.Therefore, the lignin removal efficiency of the isolated strain microorganism PA5 (KCTC 10172BP) obtained by the present invention was somewhat different depending on the type of wastewater, but showed an average removal efficiency of 78% or more for the control of the wastewater. In addition, it was determined that lignin derivatives, which are secondary by-products present in papermaking wastewater, affected COD sources.

이상에서 설명한 바와 같이, 본 발명은 난분해성 물질인 리그닌 또는 이의 유도체 분해활성이 우수한 신균주 마이크로박테리움 속 PA5(KCTC 10172BP) 및 시켜 오폐수처리 속도를 더욱 향상시키며, 처리 가능한 대상폐수의 범위를 확대시킬 수 있는 폐수 정화방법에 관한 것이다.As described above, the present invention, PA5 (KCTC 10172BP) in the new strain microbacterium having excellent degradation activity of lignin or its derivatives, which is a hardly decomposable substance, further improves the rate of wastewater treatment, and expands the range of treated wastewater. The present invention relates to a waste water purification method.

따라서, 본 발명에 따른 신균주는 오염된 자연환경을 개선 복원하는데 매우 유용하다.Therefore, the new strain according to the present invention is very useful for improving and restoring the contaminated natural environment.

Claims (3)

리그닌 또는 이의 유도체 분해활성을 가지는 마이크로박테리움 속 PA5(KCTC 10172BP).PA5 of the genus Microbacterium having lignin or its derivative degradation activity (KCTC 10172BP). 제 1 항에 있어서, 상기 유도체는 바닐린(vanilline), 페놀(phenol), 프로토카테쿠익산(protocatechuic acid), 시린직산(syringic acid), 바닐릭산(vanillic acid), 시린잘데하이드(syringaldehyde), 살리실릭산(salicylic acid) 및 2,4-디니트로톨루엔(2,4-dinitrotoluene) 중에서 선택된 것임을 특징으로 하는 마이크로박테리움 속 PA5(KCTC 10172BP).The method of claim 1, wherein the derivative is vanilline (phenol), phenol (phenol), protocatechuic acid (protocatechuic acid), syringic acid (syringic acid), vanillic acid (syringaldehyde) (syringaldehyde), salli PA5 (KCTC 10172BP) in the microbacterium, characterized in that it is selected from salicylic acid and 2,4-dinitrotoluene. 마이크로박테리움 속 PA5(KCTC 10172BP)를 이용하여 리그닌 또는 이의 유도체를 함유하는 폐수의 화학적 산소요구량(COD)을 감소시키는 것을 특징으로 하는 폐수의 정화방법.A method of purifying wastewater, characterized by reducing chemical oxygen demand (COD) of wastewater containing lignin or derivatives thereof using PA5 in the microbacterium (KCTC 10172BP).
KR10-2002-0010606A 2002-02-27 2002-02-27 Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin KR100435526B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0010606A KR100435526B1 (en) 2002-02-27 2002-02-27 Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0010606A KR100435526B1 (en) 2002-02-27 2002-02-27 Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin

Publications (2)

Publication Number Publication Date
KR20030071077A true KR20030071077A (en) 2003-09-03
KR100435526B1 KR100435526B1 (en) 2004-06-10

Family

ID=32222861

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0010606A KR100435526B1 (en) 2002-02-27 2002-02-27 Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin

Country Status (1)

Country Link
KR (1) KR100435526B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694881B1 (en) * 2006-03-27 2007-03-14 주식회사 닉시안 Novel microorganism strain with explosive materials degrading activity and the method for remediation of explosive materials-contaminated soil using that
CN104371948A (en) * 2014-07-02 2015-02-25 中国中化股份有限公司 Microbacterium sp. strain and application thereof
CN116286548A (en) * 2023-04-23 2023-06-23 中国农业大学 Novel microbacterium strain for degrading fibers and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487811B1 (en) 2013-08-20 2015-01-30 한국과학기술연구원 Novel Asticcacaulis sp. strain and decomposition method of lignin and lignocellulosic biomass using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2092501A1 (en) * 1992-04-03 1993-10-04 Fusako Kawai Method for biodegrading acrylic monomers and acrylic oligomers by microorganisms
JP2001037469A (en) * 1999-07-27 2001-02-13 Nissan Chem Ind Ltd Biodegradation of epichlorohydrin
KR100712425B1 (en) * 2000-01-13 2007-04-27 단국대학교 산학협력단 High molecular weight polycyclic aromatic hydrocarbon degrading bacteria for bioremediation of polycyclic aromatic hydrocarbon contaminated environment, the method for preparation thereof and decomposing oil composition comprising the degrading bacteria
JP3400418B2 (en) * 2000-08-16 2003-04-28 環微研株式会社 Novel microorganism and method for decomposing oil using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694881B1 (en) * 2006-03-27 2007-03-14 주식회사 닉시안 Novel microorganism strain with explosive materials degrading activity and the method for remediation of explosive materials-contaminated soil using that
CN104371948A (en) * 2014-07-02 2015-02-25 中国中化股份有限公司 Microbacterium sp. strain and application thereof
CN104371948B (en) * 2014-07-02 2017-02-01 中国中化股份有限公司 Microbacterium sp. strain and application thereof
CN116286548A (en) * 2023-04-23 2023-06-23 中国农业大学 Novel microbacterium strain for degrading fibers and application thereof
CN116286548B (en) * 2023-04-23 2023-08-04 中国农业大学 Novel microbacterium strain for degrading fibers and application thereof

Also Published As

Publication number Publication date
KR100435526B1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
Shi et al. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16
Zhou et al. Microbial degradation of N, N-dimethylformamide by Paracoccus sp. strain DMF-3 from activated sludge
Raj et al. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill
Bharagava et al. Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent
Mohana et al. Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium
Arutchelvan et al. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater
Karn et al. Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill
Raj et al. Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill
Wang et al. Biodegradation of 2, 4, 6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria
Briglia et al. Rhodococcus percolatus sp. nov., a bacterium degrading 2, 4, 6-trichlorophenol
Chandra et al. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste
Kubota et al. Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments
Khan et al. Degradation of lignin by Bacillus altitudinis SL7 isolated from pulp and paper mill effluent
Verma et al. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology
Lee et al. Effect of alkaline protease-producing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge
Chandra et al. Phenol degradation by Paenibacillus thiaminolyticus and Bacillus cereus in axenic and mixed conditions
Murshid et al. Application of an immobilized microbial consortium for the treatment of pharmaceutical wastewater: Batch-wise and continuous studies
Liu et al. Metabolic pathway of xenoestrogenic short ethoxy chain-nonylphenol to nonylphenol by aerobic bacteria, Ensifer sp. strain AS08 and Pseudomonas sp. strain AS90
US20070099286A1 (en) Novel radiation-resistant microorganism
Cherni et al. Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate
Smaoui et al. A new approach for detoxification of landfill leachate using Trametes trogii
Singh et al. Removal of colour and detoxification of pulp and paper mill effluent by microorganisms in two step bioreactor
KR100435526B1 (en) Microbacterium sp. PA5(KCTC 10172BP) capable of degrading lignin
Zheng et al. Biodegradation of furfural by Bacillus subtilis strain DS3
RU2661679C9 (en) Method of oil-processing and petrochemical production sewage waters purification from phenol

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100603

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee