KR20030066919A - Structure and method for manufacturing solder bump of flip chip package - Google Patents

Structure and method for manufacturing solder bump of flip chip package Download PDF

Info

Publication number
KR20030066919A
KR20030066919A KR1020020006670A KR20020006670A KR20030066919A KR 20030066919 A KR20030066919 A KR 20030066919A KR 1020020006670 A KR1020020006670 A KR 1020020006670A KR 20020006670 A KR20020006670 A KR 20020006670A KR 20030066919 A KR20030066919 A KR 20030066919A
Authority
KR
South Korea
Prior art keywords
layer
solder bump
pad
alloy layer
metal
Prior art date
Application number
KR1020020006670A
Other languages
Korean (ko)
Other versions
KR100455678B1 (en
Inventor
한훈
최성창
유진
Original Assignee
마이크로스케일 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크로스케일 주식회사 filed Critical 마이크로스케일 주식회사
Priority to KR10-2002-0006670A priority Critical patent/KR100455678B1/en
Publication of KR20030066919A publication Critical patent/KR20030066919A/en
Application granted granted Critical
Publication of KR100455678B1 publication Critical patent/KR100455678B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05669Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/36Material effects
    • H01L2924/365Metallurgical effects
    • H01L2924/3651Formation of intermetallics

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE: A structure of a solder bump for a semiconductor flip chip package is provided to improve adhesion between the solder bump and the semiconductor flip chip package by additionally forming a Ni-Cu alloy layer on a metal adhesion layer of an under bump metallization(UBM) structure layer such that the Ni-Cu alloy layer is made of Ni and Cu that have high reactivity with solder. CONSTITUTION: A passivation layer(14) having an opening to which a pad(12) is exposed is formed on a semiconductor chip(10). A metal adhesion layer(18) bonded to the pad, the Ni-Cu alloy layer(20) and an oxidation preventing metal layer(22) are sequentially stacked to form the UBM structure layer(23) through the opening of the passivation layer. The solder bump(24) is bonded to the UBM structure layer.

Description

반도체 플립칩 패키지를 위한 솔더 범프 구조 및 그 제조 방법{STRUCTURE AND METHOD FOR MANUFACTURING SOLDER BUMP OF FLIP CHIP PACKAGE}STRUCTURE AND METHOD FOR MANUFACTURING SOLDER BUMP OF FLIP CHIP PACKAGE

본 발명은 반도체 플립칩 패키지 기술에 관한 것으로서, 특히 고융점 납 솔더(High lead solder), 공융 솔더(Eutectic solder) 및 무연솔더(Pb-free solder)를 위한 반도체 플립칩 패키지를 위한 솔더 범프 구조 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor flip chip package technology, and more particularly to solder bump structures for semiconductor flip chip packages for high lead solder, eutectic solder, and lead-free solder. The manufacturing method is related.

반도체 소자의 고속화, 고집적화에 따라 소자의 크기가 미세화되고 I/O 수가 증가하고 있다. 이에 따라 기존의 플라스틱 패키지로는 다수의 외부 리드들을 형성하는데 제약이 있어 패키지 구조가 핀 삽입형에서 표면실장형으로 급격히 변화되어 회로 기판에 대한 실장밀도를 높여왔다.As the speed of semiconductor devices increases, the size of devices becomes smaller and the number of I / Os increases. Accordingly, the conventional plastic package has a limitation in forming a plurality of external leads, so the package structure is rapidly changed from a pin insertion type to a surface mount type, thereby increasing the mounting density of the circuit board.

이러한 요구에 따라 최근 반도체 칩을 최소한의 공간상에 패키징하는 볼 그리드 어레이(Ball Grid Array) 패키지, 칩 스케일 패키지(Chip Scale Package) 등이 등장하게 되었으며, 이러한 패키지는 와이어 본딩(Wire Bonding), 탭(TAB; Tape Automated Bonding) 및 플립 칩 본딩(Flip Chip Bonding) 등의 다양한 전기적 접속 방법으로 실장된다. 이들 전기적 접속 방법 중에서 고속, 고기능, 고밀도 실장에 가장 효과적인 방법은 플립 칩 본딩이며, 플립 칩 본딩 공정에는 접속의 매개체로서 반도체 칩의 또는 반도체 칩 패드 상에 솔더 범프(Solder Bump)가 필요하다.In response to these demands, ball grid array packages and chip scale packages, which package semiconductor chips in a minimal space, have recently emerged. Such packages include wire bonding and tabs. (TAB; Tape Automated Bonding) and Flip Chip Bonding (Flip Chip Bonding). Among these electrical connection methods, the most effective method for high speed, high function, and high density mounting is flip chip bonding. A flip chip bonding process requires solder bumps on a semiconductor chip or on a semiconductor chip pad as a connection medium.

그런데, 종래 플립칩 본딩 기술에서는 솔더 범프 아래 금속층(Under Bump Metallization : 이하 UBM이라 칭함)을 형성하고 있다. 이러한 UMB층은 솔더가 잘 접착할 수 있도록 솔더 웨팅층(wetting layer)을 제공해야 하며, 솔더 성분이 반도체 칩 내부로 침투하지 못하도록 막아주는 확산 방지의 역할을 해야한다. 또한 솔더가 열처리 과정에서도 패드와 잘 접착될 수 있도록 패드와 접착성을 제공해야 하며 외부로부터 패드를 보호하는 역할을 해야한다.However, in the conventional flip chip bonding technology, a metal layer (hereinafter referred to as UBM) is formed under a solder bump. The UMB layer should provide a solder wetting layer to allow the solder to adhere well and act as a diffusion barrier to prevent the solder component from penetrating into the semiconductor chip. In addition, the pads must provide adhesion with the pads so that the solder can bond well to the pads during the heat treatment process, and must protect the pads from the outside.

하지만, 전자제품의 소형화에 따라 패키지의 크기에 대한 관심이 고조되어 미세 피치의 솔더 범프를 형성하면서 패키지 신뢰성에 대한 문제가 발생하였다. 즉, 패키지 크기가 점차 칩(chip) 크기로 감소함에 따라 솔더 범프의 크기나 UBM층 의 두께가 감소하여 UBM층과 솔더 범프의 반응으로 성장하는 금속간 화합물로 인해 패키지의 신뢰성이 감소하게 되었다.However, with the miniaturization of electronic products, interest in the size of packages has increased, forming solder bumps with fine pitch, causing problems with package reliability. That is, as the package size gradually decreases to the chip size, the solder bump size or the thickness of the UBM layer decreases, thereby reducing the reliability of the package due to the intermetallic compound grown by the reaction between the UBM layer and the solder bump.

이러한 문제를 해결하기 위하여 종래에는 무전해 도금법으로 패드층 표면을 Ni-P로 도금하여 UBM층을 형성함으로써 금속간 화합물의 성장 속도를 늦추고 패키지의 신뢰성을 향상시킬 수 있다는 결과를 보였다.In order to solve this problem, conventionally, the surface of the pad layer was formed with Ni-P by electroless plating to form a UBM layer, which showed that the growth rate of the intermetallic compound may be slowed and the reliability of the package may be improved.

그러나, 무전해 Ni-P 도금은 도금층의 내부 응력을 높여 반도체 칩을 깨뜨리는 문제를 야기시켰다. 이외에도 스퍼터링 방법 또는 전해 도금법으로 형성시킨 Ni, NiV 이나 Cu층 등이 고려되고 있으나, 이는 고융점 납 솔더(High Lead solder) 또는 공융 솔더(Eutectic solder)에서 상용화해서 사용하고 있지만, 무연 솔더(Pb-free solder)의 경우 주석의 높은 반응으로 인하여 UBM층과 반응하여 금속간 화합물 생성이 급격히 발생함으로 적합하지 않다.However, electroless Ni-P plating caused a problem of breaking the semiconductor chip by increasing the internal stress of the plating layer. In addition, although Ni, NiV, or Cu layers formed by sputtering or electroplating are considered, they are commercially used in high lead solder or eutectic solder, but lead-free solder (Pb- In the case of free solder, it is not suitable to react with the UBM layer due to the high reaction of tin, so that the formation of intermetallic compound occurs rapidly.

더욱이 종래 기술에서는 솔더의 재료인 주석(Sn)의 조성이 증가할수록 금속간 화합물의 두께가 증가되기 때문에 패키지 신뢰성이 저하되는 문제가 있었다.Furthermore, in the related art, as the composition of tin (Sn), which is a solder material, increases, the thickness of the intermetallic compound increases, which causes a problem of deteriorating package reliability.

본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위하여 솔더 범프 하부의 UBM 구조층에 Ni와 Cu를 포함한 Ni-Cu 합금층(alloy layer)을 추가 형성함으로써 고융점 솔더, 공융 솔더 및 무연 솔더용 UBM으로 사용할 수 있고 Ni-Cu 합금층과 솔더 사이의 반응으로 성장하는 금속간 화합물을 Cu 조성에 따라 성장 속도를 조정하여 그 두께가 얇아져 패키지의 신뢰성을 향상시킬 수 있는 반도체 플립칩 패키지를 위한 솔더 범프 구조 및 그 제조 방법을 제공하는데 있다.An object of the present invention is to solve the problems of the prior art by adding a Ni-Cu alloy layer containing Ni and Cu in the UBM structure layer under the solder bumps, high melting point solder, eutectic solder and lead-free solder For semiconductor flip chip package, which can be used as UBM for the semiconductor, and the intermetallic compound that grows by reaction between Ni-Cu alloy layer and solder can be grown by adjusting the growth rate according to Cu composition to improve the reliability of the package. The present invention provides a solder bump structure and a method of manufacturing the same.

상기 목적을 달성하기 위하여 본 발명은 솔더 범프를 이용한 플립칩 패키지 구조에 있어서, 반도체 칩상에 패드가 노출되는 개구부를 갖는 보호막과, 보호막의 개구부를 통해 패드와 접착된 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층이 순차 적층된 UBM 구조층과, UBM 구조층에 본딩된 솔더 범프를 구비한다.In order to achieve the above object, the present invention provides a flip chip package structure using solder bumps, the protective film having an opening through which a pad is exposed on a semiconductor chip, a metal adhesive layer and a Ni-Cu alloy layer bonded to the pad through the opening of the protective film. And a UBM structure layer in which anti-oxidation metal layers are sequentially stacked, and solder bumps bonded to the UBM structure layer.

상기 목적을 달성하기 위하여 본 발명은 반도체 칩의 패드 상부에 UBM층 및 솔더 범프를 형성하는 제조 방법에 있어서, 반도체 칩 상부에 패드가 노출된 개구부를 갖는 보호막을 형성하는 단계와, 보호막의 개구부를 통해 패드와 접착된 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층이 순차 적층된 UBM 구조층을 형성하는 단계와, UBM 구조층에 솔더 범프를 본딩하는 단계를 포함한다.In order to achieve the above object, the present invention provides a manufacturing method for forming a UBM layer and solder bumps on the pad of the semiconductor chip, forming a protective film having an opening exposed by the pad on the semiconductor chip, and the opening of the protective film Forming a UBM structure layer in which a metal adhesive layer, a Ni—Cu alloy layer, and an anti-oxidation metal layer, which are bonded to the pad through the pad, are sequentially stacked; and bonding solder bumps to the UBM structure layer.

도 1은 본 발명에 따른 반도체 플립칩 패키지를 위한 Ni-Cu 합금층을 이용한 UBM 구조층 및 솔더 범프 구조를 나타낸 도면,1 is a view showing a UBM structure layer and a solder bump structure using a Ni-Cu alloy layer for a semiconductor flip chip package according to the present invention,

도 2a 내지 2g는 본 발명의 일 실시예에 따른 반도체 플립칩 패키지를 위한 Ni-Cu 합금층을 이용한 UBM 및 솔더 범프의 제조 방법을 순차적으로 나타낸 공정 순서도,2A to 2G are flowcharts sequentially illustrating a method of manufacturing UBM and solder bumps using a Ni—Cu alloy layer for a semiconductor flip chip package according to an embodiment of the present invention;

도 3a 내지 도 3g는 본 발명의 다른 실시예에 따른 반도체 플립칩 패키지를 위한 Ni-Cu 합금층을 이용한 UBM 및 솔더 범프의 제조 방법을 순차적으로 나타낸 공정 순서도.3A to 3G are flowcharts sequentially illustrating a method of manufacturing UBM and solder bumps using a Ni—Cu alloy layer for a semiconductor flip chip package according to another embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

10 : 반도체 칩 12 : 패드10 semiconductor chip 12 pad

14 : 보호막 16, 21 : 감광성 고분자막 패턴14: protective film 16, 21: photosensitive polymer film pattern

18 : 금속 접착층 20 : Ni-Cu 합금층18 metal bonding layer 20 Ni-Cu alloy layer

22 : 산화방지 금속층 23 : UBM 구조층22: anti-oxidation metal layer 23: UBM structure layer

24 : 솔더 범프24: solder bump

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 따른 반도체 플립칩 패키지를 위한 Ni-Cu 합금층을 이용한 UBM 구조층 및 솔더 범프 구조를 나타낸 도면이다.1 is a view showing a UBM structure layer and a solder bump structure using a Ni-Cu alloy layer for a semiconductor flip chip package according to the present invention.

도 1을 참조하면, 본 발명의 솔더 범프 구조는 반도체 칩(10) 상에 형성된 패드(12)와, 패드(12)가 노출되도록 개구부를 갖고 반도체 칩(10) 상부에 형성된 보호막(14)과, 보호막(14)의 개구부를 통해 패드(12)와 접착된 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)이 순차 적층된 UBM 구조층(23)과, UBM 구조층(23)에 본딩된 솔더 범프(24)로 이루어진다.Referring to FIG. 1, the solder bump structure of the present invention may include a pad 12 formed on the semiconductor chip 10, a protective film 14 formed on the semiconductor chip 10 and having an opening to expose the pad 12. The UBM structure layer 23 in which the metal adhesive layer 18, the Ni-Cu alloy layer 20, and the anti-oxidation metal layer 22, which are bonded to the pad 12 through the opening of the protective film 14, is sequentially stacked, and the UBM It consists of a solder bump 24 bonded to the structural layer 23.

여기서, UBM 구조층(23)의 금속 접착층(18)은 Ti, Cr, 또는 TiW으로 이루어지고 그 두께는 0.5∼10㎛이다. 그리고 Ni-Cu 합금층(20)은 Ni 및 Cu로 이루어지고 그 두께는 0.5∼10㎛이다. 이때, Ni-Cu 합금층(20)에서 Cu의 함량 조성을 1∼40 at%에서 조정하여 Ni-Cu 합금층(20)과 솔더 범프 사이에 성장되는 금속간 화합물의 성장 속도를 제어할 수 있다. 또한 산화방지 금속층(22)은 Au, Pt, Pd 또는 Cu로 이루어지고 그 두께는 0.5∼2㎛이다.Here, the metal adhesive layer 18 of the UBM structure layer 23 is made of Ti, Cr, or TiW, and its thickness is 0.5 to 10 mu m. And Ni-Cu alloy layer 20 is made of Ni and Cu and the thickness is 0.5 to 10㎛. In this case, the growth rate of the intermetallic compound grown between the Ni—Cu alloy layer 20 and the solder bumps may be controlled by adjusting the content of Cu in the Ni—Cu alloy layer 20 at 1 to 40 at%. The anti-oxidation metal layer 22 is made of Au, Pt, Pd or Cu, and has a thickness of 0.5 to 2 m.

그러므로, 본 발명에 따른 플립칩용 솔더범프 구조에 있어서, 솔더 범프(24) 하부의 UBM 구조층(23)에 주석(Sn)을 주로 함유한 솔더와의 반응성이 높은 Ni와 Cu를 포함한 Ni-Cu 합금층(20)을 추가 형성함으로써 UBM 구조층과 솔더 사이의 접착력을 향상시키고, 금속간 화합물의 성장을 억제하여 솔더 조인트부의 신뢰성을 향상시킨다.Therefore, in the solder bump structure for flip chip according to the present invention, Ni-Cu containing Ni and Cu having high reactivity with solder mainly containing tin (Sn) in the UBM structure layer 23 under the solder bump 24. By further forming the alloy layer 20, the adhesion between the UBM structure layer and the solder is improved, and the growth of the intermetallic compound is suppressed to improve the reliability of the solder joint.

도 2a 내지 2g는 본 발명의 일 실시예에 따른 반도체 플립칩 패키지의 본딩 제조 방법을 순차적으로 나타낸 공정 순서도로서, 이를 참조하면 본 발명의 일 실시예는 제조 공정은 다음과 같다. 본 실시예에서는 리프트 오프(lift-off) 방식을 적용하기로 한다.2A through 2G are flowcharts sequentially illustrating a method of manufacturing a bonding method of a semiconductor flip chip package according to an embodiment of the present invention. Referring to this, an embodiment of the present invention is a manufacturing process as follows. In this embodiment, a lift-off method is applied.

도 2a는 통상적으로 알려진 반도체 제조 공정을 이용하여 제조된 반도체 웨이퍼 칩(10) 상부 전면에 보호막(14)을 형성한 후, 칩의 패드(12)가 노출되도록 보호막(14)을 패터닝하여 개구부(15)를 형성한 모습을 나타낸 것이다.FIG. 2A illustrates a passivation layer 14 formed on a top surface of a semiconductor wafer chip 10 manufactured using a conventionally known semiconductor manufacturing process, and then patterning the passivation layer 14 to expose the pad 12 of the chip. 15) is formed.

다음 도 2b 내지 도 2f를 참조해서 보호막(14)의 개구부(15)를 통해 패드(12)와 접착된 본 발명의 일 실시예에 따라 UBM 구조층을 형성한다.Next, referring to FIGS. 2B through 2F, a UBM structure layer is formed according to an exemplary embodiment of the present invention, which is bonded to the pad 12 through the opening 15 of the passivation layer 14.

도 2b에 도시된 바와 같이, 상기 결과물 전면에 UBM 구조층 영역을 정의하고자 감광성 고분자막을 형성하고 이를 패터닝해서 보호막(14) 상부에 패드(12)가 노출되는 감광성 고분자막 패턴(16)을 형성한다.As shown in FIG. 2B, a photosensitive polymer film is formed on the entire surface of the resultant to define a UBM structure layer region, and is patterned to form a photosensitive polymer film pattern 16 on which the pad 12 is exposed on the passivation layer 14.

그리고 도 2c 및 도 2d에 도시된 바와 같이, 감광성 고분자막 패턴(16)이 있는 결과물에 금속 접착층(18)과 Ni-Cu 합금층(20)을 순차 적층한다. 이때 금속 접착층(18)은 Ti, Cr, 또는 TiW으로 이루어지고 그 두께는 0.5∼10㎛로 하는데, 스퍼터링 또는 증기법으로 증착한다. 그리고 Ni-Cu 합금층(20)의 두께는 0.5∼10㎛로 한다. 이때, Ni-Cu 합금층(20)에서 Cu의 함량 조성을 1∼40 at%에서 조정하여 Ni-Cu 합금층(20)과 솔더 범프 사이에 성장되는 금속간 화합물의 성장 속도를 제어할 수 있다. 역시 Ni-Cu 합금층(20)은 스퍼터링 또는 증기법으로 증착하고, 증착 중에 발생되는 응력을 감소시기 위하여 증착 중에 반도체 칩(10)을 수냉시키도록 하는 것이 바람직하다.2C and 2D, the metal adhesive layer 18 and the Ni—Cu alloy layer 20 are sequentially stacked on the resultant product having the photosensitive polymer film pattern 16. At this time, the metal adhesive layer 18 is made of Ti, Cr, or TiW and the thickness thereof is 0.5 to 10 탆, and is deposited by sputtering or vapor deposition. And the thickness of the Ni-Cu alloy layer 20 shall be 0.5-10 micrometers. In this case, the growth rate of the intermetallic compound grown between the Ni—Cu alloy layer 20 and the solder bumps may be controlled by adjusting the content of Cu in the Ni—Cu alloy layer 20 at 1 to 40 at%. Ni-Cu alloy layer 20 is also preferably deposited by sputtering or vapor deposition, and it is preferable to cool the semiconductor chip 10 during deposition in order to reduce stress generated during deposition.

이어서 도 2e에 도시된 바와 같이, 감광성 고분자막 패턴(16)과 그 상부의 금속 접착층(18)과 Ni-Cu 합금층(20)을 선택적으로 제거한다. 그래서 패드(12) 상부에만 금속 접착층(18)과 Ni-Cu 합금층(20)이 남도록 한다.Subsequently, as shown in FIG. 2E, the photosensitive polymer film pattern 16, the metal adhesive layer 18, and the Ni—Cu alloy layer 20 thereon are selectively removed. Therefore, the metal adhesive layer 18 and the Ni—Cu alloy layer 20 remain only on the pad 12.

그런 다음 도 2f에 도시된 바와 같이, Ni-Cu 합금층(20) 상부에 산화방지 금속층(22)을 무전해 도금으로 형성함으로써 패드(12)에 접착된 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)이 순차 적층된 UBM 구조층(23)이 형성된다. 이때 산화방지 금속층(22)은 Au, Pt, Pd 또는 Cu로 이루어지며 0.5∼2㎛ 두께로 한다. 그리고 산화방지 금속층(22)은 스퍼터링, 증기법 등을 이용하여 증착한다.Then, as shown in FIG. 2F, the Ni-Cu alloy and the metal adhesive layer 18 bonded to the pad 12 are formed by electroless plating on the Ni-Cu alloy layer 20 by electroless plating. The UBM structure layer 23 in which the layer 20 and the anti-oxidation metal layer 22 are sequentially stacked is formed. At this time, the anti-oxidation metal layer 22 is made of Au, Pt, Pd or Cu and has a thickness of 0.5 to 2㎛. The anti-oxidation metal layer 22 is deposited by sputtering, vapor deposition, or the like.

그리고나서 도 2g에 도시된 바와 같이, 본 발명의 UBM 구조층(23)에 전해도금법, 스크린 프린트 방법, 볼 플레이스먼트(ball placement) 방법 등을 사용하여 솔더 범프(24)를 형성한다.Then, as shown in FIG. 2G, the solder bumps 24 are formed in the UBM structure layer 23 of the present invention using an electroplating method, a screen printing method, a ball placement method, or the like.

본 발명의 일 실시예에 있어서는, 상기 제조 공정대신에 다음과 같이 진행할 수 있다. 도 2d와 동일하게 공정을 진행하여 보호막(14) 상부에 패드가 노출되는 감광성 고분자막 패턴(16)과, 감광성 고분자막 패턴(16)이 있는 결과물에 금속 접착층(18)과 Ni-Cu 합금층(20)을 적층하고 그 위에 스퍼터링 방법 또는 증기법을 이용하여 산화방지 금속층(22)을 형성한다. 그리고 감광성 고분자막 패턴(16)과 그 상부의 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)을 선택적으로 제거해서 패드(12) 상부에만 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)이 남도록 하여 UBM 구조층(23)을 형성한다. 그리고 나서 도 2g에 도시된 바와 같이, 본 발명의 UBM 구조층(23)에 솔더 범프(24)를 형성한다.In one embodiment of the present invention, instead of the manufacturing process can proceed as follows. 2D, the metal adhesive layer 18 and the Ni—Cu alloy layer 20 are formed on the resulting photosensitive polymer film pattern 16 and the photosensitive polymer film pattern 16 having the pads exposed on the passivation layer 14. ) Is laminated and the anti-oxidation metal layer 22 is formed thereon using a sputtering method or a vapor method. The photosensitive polymer film pattern 16, the metal adhesive layer 18, the Ni-Cu alloy layer 20, and the anti-oxidation metal layer 22 are selectively removed, and the metal adhesive layer 18 and Ni are disposed only on the pad 12. The UBM structure layer 23 is formed with the Cu alloy layer 20 and the anti-oxidation metal layer 22 remaining. Then, as shown in FIG. 2G, solder bumps 24 are formed in the UBM structure layer 23 of the present invention.

그러므로, 본 발명의 일 실시예는 감광성 고분자막 패턴(16)을 이용한 리프트 오프 방식을 채택하여 감광성 고분자막 패턴(16)과 금속 접착층(18) 및 Ni-Cu합금층(20)을 형성한 후에 감광성 고분자막 패턴(16)을 제거해서 패드(12)에 연결된 UBM 구조층(23)의 금속 접착층(18)과 Ni-Cu 합금층(20)을 형성하고 무전해 도금방법을 이용하여 산화방지 금속층(22)을 형성하거나 감광성 고분자막 패턴(16)과 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속막(22)을 순차 형성한 후에 감광성 고분자막 패턴(16)을 제거해서 패드(12)에 연결된 UBM 구조층(23)의 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)을 형성함으로써 UBM 구조층(23)의 Ni-Cu 합금층(20)을 통해 솔더의 접착력이 향상되면서 금속간 화합물의 성장이 억제되어 솔더 조인트부의 신뢰성을 높일 수 있다. 이와 더불어, Ni-Cu 합금층(20)과 솔더 사이의 반응으로 성장하는 금속간 화합물을 Ni-Cu 합금층(20)내 Cu 조성 비율에 따라 성장 속도를 조정하여 그 두께를 얇게 할 수 있다.Therefore, an embodiment of the present invention adopts a lift-off method using the photosensitive polymer film pattern 16 to form the photosensitive polymer film pattern 16, the metal adhesive layer 18, and the Ni—Cu alloy layer 20, and then the photosensitive polymer film 20. The pattern 16 is removed to form the metal adhesive layer 18 and the Ni-Cu alloy layer 20 of the UBM structure layer 23 connected to the pad 12, and the anti-oxidation metal layer 22 using the electroless plating method. Or the photosensitive polymer film pattern 16, the metal adhesive layer 18, the Ni-Cu alloy layer 20, and the anti-oxidation metal film 22 are sequentially formed, and then the photosensitive polymer film pattern 16 is removed to form the pad 12. Through the Ni-Cu alloy layer 20 of the UBM structure layer 23 by forming the metal adhesive layer 18 and Ni-Cu alloy layer 20 and the anti-oxidation metal layer 22 of the UBM structure layer 23 connected to the As the adhesion of the solder is improved, the growth of the intermetallic compound is suppressed, thereby increasing the reliability of the solder joint. In addition, the thickness of the intermetallic compound grown by the reaction between the Ni—Cu alloy layer 20 and the solder may be reduced by adjusting the growth rate according to the Cu composition ratio in the Ni—Cu alloy layer 20.

도 3a 내지 도 3g는 본 발명의 다른 실시예에 따른 반도체 플립칩 패키지의 본딩 제조 방법을 순차적으로 나타낸 공정 순서도로서, 이를 참조하면 본 발명의 다른 실시예의 제조 공정은 다음과 같다.3A to 3G are flowcharts sequentially illustrating a bonding fabrication method of a semiconductor flip chip package according to another embodiment of the present invention. Referring to this, the fabrication process of another embodiment of the present invention is as follows.

도 3a는 기존에 알려진 반도체 공정을 이용하여 형성된 반도체 웨이퍼로, 기판(10) 상부 전면에 보호막(14)을 형성한 후, 패드(12)가 노출되도록 보호막(14)을 패터닝하여 개구부(15)를 형성한 모습이다.3A illustrates a semiconductor wafer formed by using a conventionally known semiconductor process. After the protective film 14 is formed on the entire upper surface of the substrate 10, the protective film 14 is patterned so that the pad 12 is exposed. Shaped to form.

다음 도 3b 내지 도 3f를 참조해서 보호막(14)의 개구부(15)를 통해 패드(12)와 접착된 본 발명의 다른 실시예에 따라 UBM 구조층을 형성한다.Next, referring to FIGS. 3B to 3F, a UBM structure layer is formed according to another exemplary embodiment of the present invention bonded to the pad 12 through the opening 15 of the passivation layer 14.

도 3b 및 도 3c에 도시된 바와 같이, 보호막(14) 및 패드(12) 전면에 금속 접착층(18)과 Ni-Cu 합금층(20)을 순차 적층한다. 이때 금속 접착층(18)은 Ti,Cr, 또는 TiW으로 이루어지고 그 두께는 0.5∼10㎛하는데, 스퍼터링 또는 증기법으로 증착한다. 그리고 Ni-Cu 합금층(20)은 Ni 및 Cu로 이루어지고 그 두께는 0.5∼10㎛이다. 이때, Ni-Cu 합금층(20)에서 Cu의 함량 조성을 1∼40 at%에서 조정하여 Ni-Cu 합금층(20)과 솔더 범프 사이에 성장되는 금속간 화합물의 성장 속도를 제어할 수 있다. 역시 Ni-Cu 합금층(20)은 스퍼터링 또는 증기법으로 증착하고, 증착 중에 발생되는 응력을 감소시기 위하여 증착 중에 반도체 칩(10)을 수냉시킨다.As shown in FIGS. 3B and 3C, the metal adhesive layer 18 and the Ni—Cu alloy layer 20 are sequentially stacked on the passivation layer 14 and the pad 12. At this time, the metal adhesive layer 18 is made of Ti, Cr, or TiW and the thickness thereof is 0.5 to 10 µm, and is deposited by sputtering or vapor deposition. And Ni-Cu alloy layer 20 is made of Ni and Cu and the thickness is 0.5 to 10㎛. In this case, the growth rate of the intermetallic compound grown between the Ni—Cu alloy layer 20 and the solder bumps may be controlled by adjusting the content of Cu in the Ni—Cu alloy layer 20 at 1 to 40 at%. The Ni—Cu alloy layer 20 is also deposited by sputtering or vapor deposition, and water-cools the semiconductor chip 10 during deposition to reduce the stress generated during deposition.

그리고 도 3d에 도시된 바와 같이, Ni-Cu 합금층(20) 상부에 UBM 구조층 영역을 정의하는 감광성 고분자막 패턴(21)을 형성한다.3D, the photosensitive polymer film pattern 21 defining the UBM structure layer region is formed on the Ni—Cu alloy layer 20.

도 3e에 도시된 바와 같이, 건식 식각 공정 또는 습식 식각 공정을 진행하여 감광성 고분자 패턴(21)에 맞추어 적층된 Ni-Cu 합금층(20) 및 금속 접착층(18)을 패터닝한 후에, 감광성 고분자 패턴(21)을 제거한다.As shown in FIG. 3E, after the dry etching process or the wet etching process is performed to pattern the Ni-Cu alloy layer 20 and the metal adhesive layer 18 laminated according to the photosensitive polymer pattern 21, the photosensitive polymer pattern is formed. Remove (21).

그 다음 도 3f에 도시된 바와 같이, Ni-Cu 합금층(20) 상부에 산화방지 금속층(22)을 무전해 도금함으로써 패드(12)에 접착된 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)이 순차 적층된 UBM 구조층(23)이 형성된다. 이때 산화방지 금속층(22)은 Au, Pt, Pd 또는 Cu로 이루어지며 0.5∼2㎛ 두께로 한다.Then, as shown in FIG. 3F, the metal adhesion layer 18 and the Ni—Cu alloy layer bonded to the pad 12 by electroless plating an anti-oxidation metal layer 22 on the Ni—Cu alloy layer 20 ( 20) and the UBM structure layer 23 in which the anti-oxidation metal layer 22 is sequentially stacked is formed. At this time, the anti-oxidation metal layer 22 is made of Au, Pt, Pd or Cu and has a thickness of 0.5 to 2㎛.

그리고나서 도 3g에 도시된 바와 같이, 본 발명의 UBM 구조층(23)에 전해도금법, 스크린 프린트 방법, 볼 플레이스먼트 방법 등을 사용하여 솔더 범프(24)를 형성한다.Then, as shown in FIG. 3G, the solder bumps 24 are formed in the UBM structure layer 23 of the present invention by using an electroplating method, a screen printing method, a ball placement method, or the like.

한편, 본 발명의 다른 실시예에 있어서는, 상술한 제조 공정대신에 다음과 같이 UBM 구조층을 제조할 수도 있다. 우선 도 3c와 동일하게 공정을 진행하여 보호막(14) 및 패드(12) 전면에 금속 접착층(18)과 Ni-Cu 합금층(20)을 형성하고 스퍼터링, 증기법 등으로 산화방지 금속층(22)을 형성한다. 그리고 산화방지 금속층(22) 상부에 UBM 구조층 영역을 정의하는 감광성 고분자막 패턴(21)을 형성하고 식각 공정으로 감광성 고분자막 패턴(21)에 맞추어 적층된 산화방지 금속층(22)과 Ni-Cu 합금층(20) 및 금속 접착층(18)을 패터닝한 후에 감광성 고분자막 패턴(21)을 제거함으로써 UBM 구조층(23)을 형성한다.On the other hand, in another embodiment of the present invention, instead of the above-described manufacturing process, the UBM structure layer may be manufactured as follows. First, the process is performed in the same manner as in FIG. 3C to form the metal adhesive layer 18 and the Ni-Cu alloy layer 20 on the passivation layer 14 and the pad 12 in front, and the anti-oxidation metal layer 22 by sputtering or steam method. To form. An anti-oxidation metal layer 22 and a Ni-Cu alloy layer are formed on the anti-oxidation metal layer 22 to form a photosensitive polymer film pattern 21 defining a region of the UBM structure layer. The UBM structure layer 23 is formed by removing the photosensitive polymer film pattern 21 after patterning the 20 and the metal adhesive layer 18.

그러므로, 본 발명의 다른 실시예는 금속 접착층(18)과 Ni-Cu 합금층(20)을 증착하고 감광성 고분자막 패턴(21)을 이용하여 금속 접착층(18)과 Ni-Cu 합금층(20)을 식각한 후에 감광성 고분자막 패턴(21)을 제거하고 무전해 도금 방법으로 산화방지 금속층(22)을 형성하여 UBM 구조층(23)을 형성하거나, 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)을 순차 증착하고 감광성 고분자막 패턴(21)을 이용하여 금속 접착층(18)과 Ni-Cu 합금층(20) 및 산화방지 금속층(22)을 식각해서 패드(12)에 연결된 UBM 구조층(23)을 형성함으로써 UBM 구조층(23)의 Ni-Cu 합금층(20)을 통해 솔더의 접착력이 향상되면서 금속간 화합물의 성장이 억제되어 솔더 조인트부의 신뢰성을 높일 수 있다. 이와 더불어, Ni-Cu 합금층(20)과 솔더 사이의 반응으로 성장하는 금속간 화합물을 Ni-Cu 합금층(20)내 Cu 조성 비율에 따라 성장 속도를 조정하여 그 두께를 얇게 할 수 있다.Therefore, another embodiment of the present invention deposits the metal adhesive layer 18 and the Ni-Cu alloy layer 20 and the metal adhesive layer 18 and the Ni-Cu alloy layer 20 by using the photosensitive polymer film pattern 21. After etching, the photosensitive polymer film pattern 21 is removed and an anti-oxidation metal layer 22 is formed by an electroless plating method to form the UBM structure layer 23, or the metal adhesive layer 18 and the Ni—Cu alloy layer 20. And sequentially depositing the anti-oxidation metal layer 22 and etching the metal adhesive layer 18, the Ni—Cu alloy layer 20, and the anti-oxidation metal layer 22 using the photosensitive polymer film pattern 21 to be connected to the pad 12. By forming the UBM structure layer 23, the adhesion of the solder is improved through the Ni—Cu alloy layer 20 of the UBM structure layer 23, and the growth of the intermetallic compound is suppressed, thereby increasing the reliability of the solder joint part. In addition, the thickness of the intermetallic compound grown by the reaction between the Ni—Cu alloy layer 20 and the solder may be reduced by adjusting the growth rate according to the Cu composition ratio in the Ni—Cu alloy layer 20.

이상 설명한 바와 같이, 본 발명은 UBM 구조층의 금속 접착층 상부에 솔더와 반응성이 높은 Ni과 Cu로 Ni-Cu 합금층을 추가 형성함으로써 솔더 범프와 패키지 사이의 접착력을 향상시킬 수 있다. 특히 무연 솔더의 경우 주석(Sn)의 함량이 높아서 UBM 구조층과 솔더 범프 사이에 금속간 화합물 두께가 증가하게 되는데, 본 발명을 적용할 경우 Ni-Cu 합금층의 Cu 조성을 조정하여 Ni-Cu 합금층과 솔더 범프 사이에 성장되는 금속간 화합물 성장 속도를 얇게 할 수 있다.As described above, the present invention can improve the adhesive force between the solder bump and the package by further forming a Ni-Cu alloy layer of Ni and Cu highly reactive with the solder on the metal adhesive layer of the UBM structure layer. Particularly, in the case of lead-free solders, the content of tin (Sn) is high to increase the intermetallic compound thickness between the UBM structure layer and the solder bumps. In the present invention, the Ni-Cu alloy is adjusted by adjusting the Cu composition of the Ni-Cu alloy layer. It is possible to reduce the growth rate of the intermetallic compound grown between the layer and the solder bumps.

따라서, 본 발명은 고융점 솔더, 공융 솔더 및 무연솔더에 적합한 얇은 두께의 UBM 구조층의 구현이 가능하므로 패키지의 신뢰성을 향상시킬 수 있다.Accordingly, the present invention enables the implementation of a thin UBM structure layer suitable for high melting point solders, eutectic solders, and lead-free solders, thereby improving package reliability.

한편, 본 발명은 상술한 실시예에 국한되는 것이 아니라 후술되는 청구범위에 기재된 본 발명의 기술적 사상과 범주내에서 당업자에 의해 여러 가지 변형이 가능하다.On the other hand, the present invention is not limited to the above-described embodiment, various modifications are possible by those skilled in the art within the spirit and scope of the present invention described in the claims to be described later.

Claims (19)

솔더 범프를 이용한 플립칩 패키지 구조에 있어서,In flip chip package structure using solder bump, 반도체 칩상에 패드가 노출되는 개구부를 갖는 보호막;A protective film having an opening on which a pad is exposed on the semiconductor chip; 상기 보호막의 개구부를 통해 상기 패드와 접착된 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층이 순차 적층된 UBM 구조층; 및A UBM structure layer in which a metal adhesive layer, a Ni—Cu alloy layer, and an anti-oxidation metal layer adhered to the pad through the opening of the passivation layer are sequentially stacked; And 상기 UBM 구조층에 본딩된 솔더 범프를 구비한 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.Solder bump structure for a semiconductor flip chip package, characterized in that it comprises a solder bump bonded to the UBM structure layer. 제 1항에 있어서, 상기 금속 접착층은 Ti, Cr, 또는 TiW으로 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the metal adhesive layer is made of Ti, Cr, or TiW. 제 1항에 있어서, 상기 금속 접착층은 0.5∼10㎛ 두께로 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the metal adhesive layer is 0.5 to 10 μm thick. 제 1항에 있어서, 상기 Ni-Cu 합금층은 Cu의 함량이 1∼40 at%인 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the Ni—Cu alloy layer has a Cu content of 1 to 40 at%. 제 1항에 있어서, 상기 Ni-Cu 합금층은 0.5∼10㎛ 두께로 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the Ni—Cu alloy layer has a thickness of about 0.5 μm to about 10 μm. 제 1항에 있어서, 상기 산화방지 금속층은 Au, Pt, Pd 또는 Cu로 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the anti-oxidation metal layer is formed of Au, Pt, Pd, or Cu. 제 1항에 있어서, 상기 산화방지 금속층은 0.5∼2㎛ 두께로 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 구조.The solder bump structure of claim 1, wherein the anti-oxidation metal layer is 0.5 to 2 μm thick. 반도체 칩의 패드 상부에 UBM층 및 솔더 범프를 형성하는 제조 방법에 있어서,In the manufacturing method of forming a UBM layer and solder bumps on the pad of the semiconductor chip, 반도체 칩 상부에 패드가 노출된 개구부를 갖는 보호막을 형성하는 단계;Forming a passivation layer on the semiconductor chip, the passivation layer having an opening where the pad is exposed; 상기 보호막의 개구부를 통해 상기 패드와 접착된 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층이 순차 적층된 UBM 구조층을 형성하는 단계; 및Forming a UBM structure layer in which a metal adhesive layer, a Ni—Cu alloy layer, and an anti-oxidation metal layer adhered to the pad are sequentially stacked through the opening of the passivation layer; And 상기 UBM 구조층에 솔더 범프를 본딩하는 단계를 포함하여 이루어진 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.Bonding a solder bump to the UBM structure layer; and manufacturing a solder bump for a semiconductor flip chip package. 제 8항에 있어서, 상기 UBM 구조층을 형성하는 단계는,The method of claim 8, wherein the forming of the UBM structure layer, 상기 보호막 상부에 상기 패드가 노출되는 감광성 고분자막 패턴을 형성하는 단계;Forming a photosensitive polymer film pattern on which the pad is exposed on the passivation layer; 상기 감광성 고분자막 패턴이 있는 결과물에 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층을 순차 적층하는 단계;Sequentially depositing a metal adhesive layer, a Ni—Cu alloy layer, and an anti-oxidation metal layer on the resultant photosensitive polymer film pattern; 상기 감광성 고분자막 패턴과 그 상부의 상기 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층을 선택적으로 제거해서 상기 패드 상부에만 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층을 남기는 단계를 더 포함하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.And selectively removing the photosensitive polymer film pattern, the metal adhesive layer, the Ni-Cu alloy layer, and the anti-oxidation metal layer thereon to leave the metal adhesive layer, the Ni-Cu alloy layer, and the anti-oxidation metal layer only on the pad. A solder bump manufacturing method for a semiconductor flip chip package, characterized by the above. 제 8항에 있어서, 상기 UBM 구조층을 형성하는 단계는,The method of claim 8, wherein the forming of the UBM structure layer, 상기 보호막 상부에 상기 패드가 노출되는 감광성 고분자막 패턴을 형성하는 단계;Forming a photosensitive polymer film pattern on which the pad is exposed on the passivation layer; 상기 감광성 고분자막 패턴이 있는 결과물에 금속 접착층과 Ni-Cu 합금층을 순차 적층하는 단계;Sequentially laminating a metal adhesive layer and a Ni—Cu alloy layer on the resultant photosensitive polymer film pattern; 상기 감광성 고분자막 패턴과 그 상부의 상기 금속 접착층과 Ni-Cu 합금층을 선택적으로 제거해서 상기 패드 상부에만 금속 접착층과 Ni-Cu 합금층을 남기는 단계; 및Selectively removing the photosensitive polymer film pattern, the metal adhesive layer and the Ni—Cu alloy layer thereon, leaving the metal adhesive layer and the Ni—Cu alloy layer only on the pad; And 상기 Ni-Cu 합금층 상부에 산화방지 금속층을 무전해 도금으로 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method for manufacturing a solder bump for a semiconductor flip chip package, characterized in that it further comprises the step of forming an anti-oxidation metal layer on the Ni-Cu alloy layer by electroless plating. 제 8항에 있어서, 상기 UBM 구조층을 형성하는 단계는,The method of claim 8, wherein the forming of the UBM structure layer, 상기 보호막 및 패드 전면에 상기 금속 접착층과 Ni-Cu 합금층 및 산화방지 금속층을 순차 적층하는 단계;Sequentially stacking the metal adhesive layer, the Ni—Cu alloy layer, and the anti-oxidation metal layer on the entire surface of the protective film and the pad; 상기 산화방지 금속층 상부에 상기 UBM 구조층 영역을 정의하는 감광성 고분자막 패턴을 형성하는 단계; 및Forming a photosensitive polymer film pattern defining an area of the UBM structure layer on the anti-oxidation metal layer; And 상기 감광성 고분자막 패턴을 이용하여 상기 적층된 산화방지 금속층과 Ni-Cu 합금층 및 금속 접착층을 패터닝한 후에 상기 감광성 고분자막 패턴을 제거하는 단계를 더 포함하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.Solder bumps for the semiconductor flip chip package further comprising the step of removing the photosensitive polymer film pattern after patterning the stacked anti-oxidation metal layer, Ni-Cu alloy layer and the metal adhesive layer using the photosensitive polymer film pattern Manufacturing method. 제 8항에 있어서, 상기 UBM 구조층을 형성하는 단계는,The method of claim 8, wherein the forming of the UBM structure layer, 상기 보호막 및 패드 전면에 상기 금속 접착층과 Ni-Cu 합금층을 순차 적층하는 단계;Sequentially stacking the metal adhesive layer and the Ni—Cu alloy layer on the passivation layer and the entire surface of the pad; 상기 Ni-Cu 합금층 상부에 상기 UBM 구조층 영역을 정의하는 감광성 고분자막 패턴을 형성하는 단계;Forming a photosensitive polymer film pattern defining a region of the UBM structure layer on the Ni—Cu alloy layer; 상기 감광성 고분자 패턴을 이용하여 상기 적층된 Ni-Cu 합금층 및 금속 접착층을 패터닝하는 단계; 및Patterning the laminated Ni—Cu alloy layer and the metal adhesive layer using the photosensitive polymer pattern; And 상기 Ni-Cu 합금층 상부에 산화방지 금속층을 무전해 도금하여 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method for manufacturing a solder bump for a semiconductor flip chip package, characterized in that it further comprises the step of electroless plating an anti-oxidation metal layer on the Ni-Cu alloy layer. 제 8항 내지 제 12항에 있어서, 상기 금속 접착층은 Ti, Cr, 또는 TiW으로 이루어지며 0.5∼10㎛ 두께로 형성하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the metal adhesive layer is made of Ti, Cr, or TiW, and is formed in a thickness of 0.5 to 10 μm. 제 8항 내지 제 12항에 있어서, 상기 금속 접착층은 스퍼터링 또는 증기법으로 증착하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the metal adhesive layer is deposited by sputtering or vapor deposition. 제 8항 내지 제 12항에 있어서, 상기 Ni-Cu 합금층은 Cu의 함량을 1∼40at%로 하고 0.5∼10㎛ 두께로 형성하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the Ni—Cu alloy layer has a Cu content of 1 to 40 at% and is formed to a thickness of 0.5 to 10 μm. 제 8항 내지 제 12항에 있어서, 상기 Ni-Cu 합금층은 스퍼터링 또는 증기법으로 증착하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the Ni—Cu alloy layer is deposited by sputtering or vapor deposition. 제 8항 내지 제 12항에 있어서, 상기 Ni-Cu 합금층은 공정 중에 발생되는 응력을 감소시기 위하여 증착 중에 반도체 칩을 수냉시키는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the Ni—Cu alloy layer cools the semiconductor chip during deposition to reduce stress generated during the process. 13. 제 8항 내지 제 12항에 있어서, 상기 산화방지 금속층은 Au, Pt, Pd 또는 Cu로 이루어지며 0.5∼2㎛ 두께로 형성하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the anti-oxidation metal layer is made of Au, Pt, Pd, or Cu and is formed to a thickness of 0.5 to 2 μm. 제 8항 내지 제 12항에 있어서, 상기 산화방지 금속층은 스퍼터링, 증기법 또는 무전해 도금으로 형성하는 것을 특징으로 하는 반도체 플립칩 패키지를 위한 솔더 범프 제조 방법.The method of claim 8, wherein the anti-oxidation metal layer is formed by sputtering, vapor deposition, or electroless plating.
KR10-2002-0006670A 2002-02-06 2002-02-06 Structure and method for manufacturing solder bump of flip chip package KR100455678B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0006670A KR100455678B1 (en) 2002-02-06 2002-02-06 Structure and method for manufacturing solder bump of flip chip package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0006670A KR100455678B1 (en) 2002-02-06 2002-02-06 Structure and method for manufacturing solder bump of flip chip package

Publications (2)

Publication Number Publication Date
KR20030066919A true KR20030066919A (en) 2003-08-14
KR100455678B1 KR100455678B1 (en) 2004-11-06

Family

ID=32220651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0006670A KR100455678B1 (en) 2002-02-06 2002-02-06 Structure and method for manufacturing solder bump of flip chip package

Country Status (1)

Country Link
KR (1) KR100455678B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762354B1 (en) * 2006-09-11 2007-10-12 주식회사 네패스 Flip chip semiconductor package and fabrication method thereof
KR100861153B1 (en) 2005-10-07 2008-09-30 가부시끼가이샤 르네사스 테크놀로지 A semiconductor device
KR101037692B1 (en) * 2004-04-16 2011-05-30 주식회사 하이닉스반도체 Method for fabricating wafer level package
KR101447505B1 (en) * 2012-06-20 2014-10-08 서울과학기술대학교 산학협력단 Solder joint structure having tooth-like structure with excellent efficiency for suppressing the formation of kirkendall voids and method of manufacturing the same
US9899584B2 (en) 2014-11-10 2018-02-20 Samsung Electronics Co., Ltd. Semiconductor device and package including solder bumps with strengthened intermetallic compound
US11127658B2 (en) 2016-07-18 2021-09-21 Lbsemicon Co., Ltd. Manufacturing method for reflowed solder balls and their under bump metallurgy structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950623A (en) * 1988-08-02 1990-08-21 Microelectronics Center Of North Carolina Method of building solder bumps
US5449955A (en) * 1994-04-01 1995-09-12 At&T Corp. Film circuit metal system for use with bumped IC packages
US5503286A (en) * 1994-06-28 1996-04-02 International Business Machines Corporation Electroplated solder terminal
KR100319813B1 (en) * 2000-01-03 2002-01-09 윤종용 method of forming solder bumps with reduced UBM undercut

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037692B1 (en) * 2004-04-16 2011-05-30 주식회사 하이닉스반도체 Method for fabricating wafer level package
KR100861153B1 (en) 2005-10-07 2008-09-30 가부시끼가이샤 르네사스 테크놀로지 A semiconductor device
KR100933201B1 (en) * 2005-10-07 2009-12-22 가부시끼가이샤 르네사스 테크놀로지 Semiconductor device and manufacturing method
KR100762354B1 (en) * 2006-09-11 2007-10-12 주식회사 네패스 Flip chip semiconductor package and fabrication method thereof
KR101447505B1 (en) * 2012-06-20 2014-10-08 서울과학기술대학교 산학협력단 Solder joint structure having tooth-like structure with excellent efficiency for suppressing the formation of kirkendall voids and method of manufacturing the same
US9899584B2 (en) 2014-11-10 2018-02-20 Samsung Electronics Co., Ltd. Semiconductor device and package including solder bumps with strengthened intermetallic compound
US11127658B2 (en) 2016-07-18 2021-09-21 Lbsemicon Co., Ltd. Manufacturing method for reflowed solder balls and their under bump metallurgy structure
US11664297B2 (en) 2016-07-18 2023-05-30 Lbsemicon Co., Ltd. Manufacturing method for reflowed solder balls and their under bump metallurgy structure

Also Published As

Publication number Publication date
KR100455678B1 (en) 2004-11-06

Similar Documents

Publication Publication Date Title
US7098126B2 (en) Formation of electroplate solder on an organic circuit board for flip chip joints and board to board solder joints
US7319276B2 (en) Substrate for pre-soldering material and fabrication method thereof
US7682960B2 (en) Method of fabricating a wafer structure having a pad and a first protection layer and a second protection layer
USRE48420E1 (en) Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices
KR100772920B1 (en) Semiconductor chip with solder bump and fabrication method thereof
US6605525B2 (en) Method for forming a wafer level package incorporating a multiplicity of elastomeric blocks and package formed
TW468245B (en) Semiconductor device and its manufacturing method
US9373596B2 (en) Passivated copper chip pads
US20060201997A1 (en) Fine pad pitch organic circuit board with plating solder and method for fabricating the same
KR20010090777A (en) Interconnections to copper ICs
WO2008073807A1 (en) Solder bump/under bump metallurgy structure for high temperature applications
JPH11274200A (en) Method for forming interconnection bump on semiconductor die
US20040043538A1 (en) Wafer level package incorporating dual compliant layers and method for fabrication
TWM397597U (en) Package structure of integrated circuit
US6596611B2 (en) Method for forming wafer level package having serpentine-shaped electrode along scribe line and package formed
KR100455678B1 (en) Structure and method for manufacturing solder bump of flip chip package
EP1322146A1 (en) Method of electroplating solder bumps on an organic circuit board
JP4631223B2 (en) Semiconductor package and semiconductor device using the same
KR20000019151A (en) Semiconductor chip having solder bump and fabrication method for the same
KR100523298B1 (en) Semiconductor chip having Au bump and manufacturing method thereof
EP1621278B1 (en) Substrate for pre-soldering material and fabrication method thereof
KR100726059B1 (en) formation of electroplate solder on an organic circuit board for flip chip joints and board to board solder joints
JP4086771B2 (en) Bump electrode, bump electrode manufacturing method, and bump electrode connection structure
JP2653482B2 (en) IC lead connection method
JP2000040715A (en) Flip-chip packaged semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121010

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131010

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141027

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151125

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20171127

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191128

Year of fee payment: 16