KR20030066120A - DNA fragments which encode RNA polymerase beta-subunit gene of Legionella species, rpoB specific primer and method for discrimination with them - Google Patents
DNA fragments which encode RNA polymerase beta-subunit gene of Legionella species, rpoB specific primer and method for discrimination with them Download PDFInfo
- Publication number
- KR20030066120A KR20030066120A KR1020020006297A KR20020006297A KR20030066120A KR 20030066120 A KR20030066120 A KR 20030066120A KR 1020020006297 A KR1020020006297 A KR 1020020006297A KR 20020006297 A KR20020006297 A KR 20020006297A KR 20030066120 A KR20030066120 A KR 20030066120A
- Authority
- KR
- South Korea
- Prior art keywords
- legionella
- seq
- gene segment
- rpob gene
- species
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
본 발명은 레지오넬라 균종의 RNA 중합 효소 베타 서브유닛(RNA polymerase β-subunit(rpoB)) DNA의 분절에 관한 것으로서, 보다 상세하게는 레지오넬라 균종의 rpoB DNA의 특정 부위를 선택적으로 증폭시키는데 사용되는 프라이머, 각 레지오넬라 균종에 따라 서로 구별되는 염기 서열을 갖는 각 균종의 rpoB DNA 분절들 및 이러한 rpoB DNA 분절들과 이들의 제한 효소 인식 부위를 이용하여 레지오넬라의 각 균종을 판별하는 방법에 대한 것이다.The present invention relates to a segment of RNA polymerase β-subunit (rpoB) DNA of Legionella species, and more particularly, a primer used to selectively amplify a specific site of rpoB DNA of Legionella species, RpoB DNA fragments of each species having base sequences distinct from each other according to each Legionella species, and a method for determining each species of Legionella using these rpoB DNA segments and their restriction enzyme recognition sites.
또한, 본 발명은 레지오넬라 뉴모필라균의 선택적 검출 방법에 관한 것으로서, 보다 상세하게는 레지오넬라 뉴모필라균의 rpoB 유전자만을 선택적으로 증폭시키는 프라이머 및 레지오넬라 뉴모필라균의 판별 및 동정 방법에 대한 것이다.In addition, the present invention relates to a method for the selective detection of Legionella pneumophila, and more particularly to a method for identifying and identifying a primer and Legionella pneumophila to selectively amplify only the rpoB gene of Legionella pneumophila.
레지오넬라균은 온수 시설, 샤워기, 에어컨과 같은 냉방 시설의 냉각탑수, 증발형 콘덴서, 가습기, 치료용 분무기, 와류욕(whirlpool spas), 호흡기 치료장치, 장식용 분수, 상수도 등의 인공적인 환경에서뿐만 아니라, 하천이나 호수, 토양 등의 자연 환경에서도 검출된다.Legionella is not only used in artificial environments such as hot water facilities, showers, cooling towers in cooling facilities such as air conditioners, evaporative condensers, humidifiers, therapeutic sprayers, whirlpool spas, respiratory treatment units, decorative fountains, waterworks, It is also detected in natural environments such as rivers, lakes and soils.
레지오넬라균은 포자와 협막이 없는 그람음성 간균으로서 호기성 세균이며, 5% CO2배양기에서 L-시스테인이 함유된 BCYE-α배지에서 잘 자란다. 대개 산화효소와 카탈라아제에 대하여 약한 양성, 젤라티나제(gelatinase)에 대하여 양성이고 운동성이 있다(Winn, W. C.Legionella, p. 572-582.InMurray, P. R. (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D. C., 1999.). 또한, 이들의 rpoB 유전자의 특정부위에 변이가 생기면 리팜핀 내성이 나타난다는 사실도 알려져 있다(Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V. Rifampicin region revisited.J Biol Chem268, 14820-14825, 1993.).Legionella is a gram-negative bacillus without spores and capillaries and is an aerobic bacterium and grows well in BCYE-α medium containing L-cysteine in a 5% CO 2 incubator. Usually positive for oxidase and catalase, positive for gelatinase and motility (Winn, WC Legionella , p. 572-582. In Murray, PR (ed.), Mannual of clinical microbiology, 7th ed.American Society for Microbiology, Washington, DC, 1999. It is also known that mutations in specific regions of these rpoB genes result in rifampin resistance (Severinov, K., Soushko, M., Goldfarb, A. and Nikiforov, V. Rifampicin region revisited. J Biol Chem 268 , 14820-14825, 1993.).
지금까지 42종과 60개 이상의 혈청형이 알려져 있고(Hookey, J. V., Sauders, N. A., Fry, N. K., Birtles, R. J. and Harrison, T. G. Phylogeny ofTo date, 42 species and more than 60 serotypes are known (Hookey, J. V., Sauders, N. A., Fry, N. K., Birtles, R. J. and Harrison, T. G. Phylogeny of
Legionellaceaebased on small-subunit ribosomal DNA sequences and proposal ofLegionella lyticacomb. nov. forLegionella-like amoebal pathogens.Int J Syst Bacteriol46, 526-531, 1996.; Lo Presti, F., Riffard, S., Meugnier, H., Reyrolle, M., Lasne, Y., Grimont, P. A. D., Grimont, F. Vandenesch, F., Etienne, J., Fleurette, J. and Freney, J.Legionella taurinensissp. nov., a new species antigenically similar toLegionella spiritensis.Int J Syst Bacteriol49, 397-403, 1999.; Swanson, M. S. and Hammer, B. K.Legionella pneumophilapathogenesis: a fateful journey from amoebae to macrophages.Annu Rev Microbiol54, 567-613, 2000.; Winn, W. C.Legionella, p. 572-582.InMurray, P. R. (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D. C., 1999.), 이 중 21종이 폐렴증상이있는 면역 억제 요법을 받는 환자로부터 분리되었다(Fang, G. D., Yu, V. L. and Vickers, R. M. Disease due to the Legionellaceae (other thanLegionella pneumophila). Historical, microbiological, clinical, and epidemiological review.Medicine68, 116-132, 1989.; Miyamoto, H., Yamamoto, H., Arima, K., Fujii, J., Maruta, K., Izu, K., Shiomori, T. and Yoshida, S.-I. Development of a new seminested PCR method for detection ofLegionellaspecies and its application to surveillance of legionellae in hospital cooling tower water.Appl Environ Microbiol63, 2489-2494, 1997.). Legionellaceae based on small-subunit ribosomal DNA sequences and proposal of Legionella lytica comb. nov. for Legionella -like amoebal pathogens. Int J Syst Bacteriol 46, 526-531, 1996 .; Lo Presti, F., Riffard, S., Meugnier, H., Reyrolle, M., Lasne, Y., Grimont, PAD, Grimont, F. Vandenesch, F., Etienne, J., Fleurette, J. and Freney , J. Legionella taurinensis sp. nov., a new species antigenically similar to Legionella spiritensis . Int J Syst Bacteriol 49, 397-403, 1999 .; Swanson, MS and Hammer, BK Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54, 567-613, 2000 .; Winn, WC Legionella , p. 572-582. In Murray, PR (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, DC, 1999.), 21 of which were isolated from patients undergoing immunosuppressive therapy with pneumonia (Fang, GD, Yu, VL and Vickers, RM Disease due to the Legionellaceae (other than Legionella pneumophila). Historical, microbiological, clinical, and epidemiological review. Medicine 68, 116-132, 1989 .; Miyamoto, H., Yamamoto, H., Arima, K., Fujii, J., Maruta, K., Izu , K., Shiomori, T. and Yoshida, S.-I. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water.Appl Environ Microbiol 63, 2489-2494, 1997.).
이러한 레지오넬라균은 미스트(mist)등에 점착되어 사람의 호흡기를 통해 폐포까지 들어가 질병을 일으키는 것으로 알려져 있다. 이 가운데 레지오넬라 뉴모필라가 레지오넬라증을 일으키는 가장 흔하고 대표적인 균이다. 레지오넬라증은 미국의 경우 입원을 요하는 전염성 폐렴의 2-15%를 차지한다(Marston, B. J., Lipman, H. B. and Breiman, R. F. Surveillance for Legionnairess disease.Arch These Legionella bacteria are known to adhere to mist and enter the alveoli through the human respiratory tract and cause disease. Among them, Legionella pneumophila is the most common and representative cause of Legionellosis. Legionnaires' disease in the case of the United States, accounting for 2-15% of infectious pneumonia requiring hospitalization (Marston, BJ, Lipman, HB and Breiman, RF Surveillance for Legionnairess disease. Arch
Intern Med154, 2417-2422, 1994.; Swanson, M. S. and Hammer, B. K.Legionella pneumophilapathogenesis: a fateful journey from amoebae to macrophages.Annu Rev Microbiol54, 567-613, 2000.). Intern Med 154, 2417-2422, 1994 .; Swanson, MS and Hammer, BK Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54, 567-613, 2000.).
이러한 레지오넬라속에 속하는 종들을 구분할 수 있는 일반적인 방법으로 여러 가지가 알려져 있다. 레지오넬라속 세균들의 세포벽의 지방산(fatty acid)과 유비퀴논(ubiquinone)성분 등의 차이로 각각의 종들을 구분하기도 하고(Waterer, G. W., Baselski, V. S. and Wunderink, R. G.Legionellaand community-acquiredThere are several known ways to distinguish these species from the genus Legionella. Different species can be distinguished by differences in fatty acid and ubiquinone components of the cell wall of Legionella bacteria (Waterer, GW, Baselski, VS and Wunderink, RG Legionella and community-acquired).
pneumonia: a review of current diagnostic tests from a clinicians viewpoint.Amer. J. Med.110:41-48. 2001.; Winn, W. C.Legionella, p. 572-582.InMurray, P. R. (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D. C., 1999.), 가까운 종들끼리 구분 짓는 방법을 사용하기도 한다.pneumonia: a review of current diagnostic tests from a clinicians viewpoint. Amer. J. Med. 110: 41-48. 2001 .; Winn, WC Legionella , p. 572-582. In Murray, PR (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, DC, 1999).
균종을 동정하기 위한 생화학적 검사법으로는 산화효소(oxidase), 카탈라아제(catalase), 마뇨산염 가수분해(hippurate hydrolysis), 자기형광법 (autofluorescent test), 우레아제 테스트(urease test)등이 사용되기도 한다(Fox, K. F. & Brown, A. Application of numerical systematics to the phenotypic differentiation of Legionellae.J Clin Microbiol17, 1952-1955. 1999.; Orrison, L. H., Cherry, W. B., Fliermans, C. B., McDougal, L. K. & Dodd, D. J. Characteristics of environmental isolates ofLegionella pneumophila. Appl Environ Microbiol42, 109-115. 1981.; Pine, L., Hoffman, P. S., Malcom, G. B., Benson, R. F. & Gorman, G. W. Whole-cell peroxidase test for identification ofLegionella pneumophila. J Clin Microbiol19, 286-290. 1984.Biochemical assays to identify species are sometimes used as oxidase, catalase, hippurate hydrolysis, autofluorescent test, or urease test. , KF & Brown, A. Application of numerical systematics to the phenotypic differentiation of Legionellae.J Clin Microbiol 17, 1952-1955. 1999 .; Orrison, LH, Cherry, WB, Fliermans, CB, McDougal, LK & Dodd, DJ Characteristics of environmental isolates of Legionella pneumophila.Appl Environ Microbiol 42, 109-115. 1981 .; Pine, L., Hoffman, PS, Malcom, GB, Benson, RF & Gorman, GW Whole-cell peroxidase test for identification of Legionella pneumophila. J Clin Microbiol 19, 286-290. 1984.
; Weaver, R. E. & Feeley, J. C. Cultural and biochemical characterization of Legionnaires disease bacterium. p.20-25. In G. L. Jones and G. A. Hebert (ed.), Legionnaires, the disease, the bacterium, and methodology. Centers for Disease Control, Atlanta. 1979.). 항혈청을 이용하여 종과 혈청형(serogroup)을 동정하기도 하는데, 미국의 CDC(Centers for Disease Control)와 한국의 국립보건원의 경우 이러한 방법을 사용하고 있다.; Weaver, R. E. & Feeley, J. C. Cultural and biochemical characterization of Legionnaires disease bacterium. p.20-25. In G. L. Jones and G. A. Hebert (ed.), Legionnaires, the disease, the bacterium, and methodology. Centers for Disease Control, Atlanta. 1979.). Antisera is also used to identify species and serogroups, which are used by the Centers for Disease Control (CDC) in the United States and the National Institutes of Health in Korea.
그러나, 동일 종 내에서도 변화가 심해 이들만으로는 균종 구별의 명확한 기준이 되지 못하는 실정이며, 토끼 면역 혈청을 이용하거나, 상품화되어 있는 항혈청(Denka 제품)을 이용하는 경우에도L. pneumophilaserogroup 1-6,L. dumoffii, L. gormanii, L. micdadei등 몇 개의 균종에 대해서만 동정이 가능한 것으로 알려져 있다(Winn, W. C.Legionella, p. 572-582.InMurray, P. R. (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, D. C., 1999.).However, even in the same species, the changes are not so clear that they are not a definite criterion for distinguishing the species. Even when using rabbit immune serum or using commercially available antiserum (Denka), L. pneumophila serogroup 1-6, L. Only a few species, including dumoffii, L. gormanii and L. micdadei , are known to be identified (Winn, WC Legionella , p. 572-582. In Murray, PR (ed.), Mannual of clinical microbiology, 7th ed. American Society for Microbiology, Washington, DC, 1999.).
따라서, 이와 같은 균종 동정을 위한 종래 기술의 문제점을 유전자 분석에 의한 새로운 방법으로 해결하기 위한 노력이 경주되어 왔다. 현재까지는, 각 세균들의 종을 동정하기 위해서는 16S rRNA 유전자가 분자 마커로서 가장 많이 사용되고 있다(Woese, C. R. Bacterial evolution.Microbiol Rev51, 221-271, 1987.; Woese, C. R., Kandler, O. and Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.Proc Natl Acad Sci USA87, 4576-4579, 1990.).Therefore, efforts have been made to solve the problems of the prior art for identifying such species by a new method by genetic analysis. To date, 16S rRNA genes are most commonly used as molecular markers to identify species of bacteria (Woese, CR Bacterial evolution. Microbiol Rev 51, 221-271, 1987 .; Woese, CR, Kandler, O. and Wheelis , ML Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.Proc Natl Acad Sci USA 87, 4576-4579, 1990.).
그러나, 상기 마커의 불균질성(heterogeneity)으로 인해 한계점이 있다고 알려져 있다(Wang, Y., Zhang, Z. and Ramanan, N. The ActinomyceteThermobispora containstwo distinct types of transcriptionally active 16S rRNA genes.J Bacteriol179, 3270-3276, 1997.; Fogel, G. B., Collins, C. R., Li, J. and Brunk, C. F. Prokaryotic genome size and SSU rDNA copy number: estimation ofmicrobial relative abundance from a mixed population.Microb Ecol38, 93-113, 1999.; Ueda, K., Seki, T., Kudo, T., Yoshida, T. and Kataoka, M. Two distinct mechanisms cause heterogeneity of 16S rRNA.J Bacteriol181, 78-82, 1999.; Dahllof, I., Baillie, H. and Kjelleberg, S. rpoB-based microbial community analysis avoids limitations inherent in 16S rDNA gene intraspecies heterogeneity.Appl Environ Microbiol66, 3376-3380, 2000.). 레지오넬라 균종들에 대해서도 16S rRNA 유전자(Fry, N. K., Warwick, S., Saunders, N. A. and Embley, T. M. The use of 16S ribosomal RNA analyses to investigate the phylogeny of the familyLegionellaceae.J Gen Microbiol137, 1215-1222, 1991.; Birtles, R. J., Rowbotham, T. J., Raoult, D. and Harrison, T. G. Phylogenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison.Microbiology142, 3525-3530, 1996.; Hookey, J. V., Sauders, N. A., Fry, N. K., Birtles, R. J. and Harrison, T. G. Phylogeny ofHowever, the heterogeneity of the markers is known to be limited (Wang, Y., Zhang, Z. and Ramanan, N. The Actinomycete Thermobispora contains two distinct types of transcriptionally active 16S rRNA genes.J Bacteriol 179, 3270 -3276, 1997 .; Fogel, GB, Collins, CR, Li, J. and Brunk, CF Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population.Microb Ecol 38, 93-113, 1999. Ueda, K., Seki, T., Kudo, T., Yoshida, T. and Kataoka, M. Two distinct mechanisms cause heterogeneity of 16S rRNA.J Bacteriol 181, 78-82, 1999 .; Dahllof, I., Baillie, H. and Kjelleberg, S. rpoB -bas ed microbial community analysis avoids limitations inherent in 16S rDNA gene intraspecies heterogeneity.Appl Environ Microbiol 66, 3376-3380, 2000.). 16S rRNA genes (Fry, NK, Warwick, S., Saunders, NA and Embley, TM The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae.J Gen Microbiol 137, 1215-1222, 1991 .; Birtles, RJ, Rowbotham, TJ, Raoult, D. and Harrison, TG Phylogenetic diversity of intra-amoebal legionellae as revealed by 16S rRNA gene sequence comparison. Microbiology 142, 3525-3530, 1996 .; Hookey, JV, Sauders , NA, Fry, NK, Birtles, RJ and Harrison, TG Phylogeny of
Legionellaceaebased on small-subunit ribosomal DNA sequences and proposal ofLegionella lyticacomb. nov. forLegionella-like amoebal pathogens.Int J Syst Bacteriol46, 526-531, 1996.) 또는mip염기서열(Ratcliff, R. M., Lanser, J. A., Manning, P. A. and Heuzenroeder, M. W. Sequence-based classification scheme for the genusLegionellatargeting themipgene.J Clin Microbiol36, 1560-1567, 1998.; Ratcliff, R. M., Donnelan, S. C., Lanser, J. A., Manning, P. A. and Heuzenroeder, M. W. Interspecies sequence differences in the Mipprotein from the genusLegionella: implication for function and evolutionary relatedness.Mol Microbiol25, 1149-1158, 1997.)를 사용한 균종 판별에 의한 분류가 시도된 바 있으나, 이들 유전자를 이용하여 균종을 동정한 경우에도 서로 불일치가 있음이 알려진 바 있다(Hookey, J. V., Sauders, N. A., Fry, N. K., Birtles, R. J. and Harrison, T. G. Phylogeny ofLegionellaceaebased on small-subunit ribosomal DNA sequences and proposal ofLegionella lyticacomb. nov. forLegionella-like amoebal pathogens.Int J Syst Bacteriol46, 526-531, 1996.; Ratcliff, R. M., Donnelan, S. C., Lanser, J. A., Manning, P. A. and Heuzenroeder, M. W. Interspecies sequence differences in the Mip protein from the genusLegionella: implication for function and evolutionary relatedness.Mol Microbiol25, 1149-1158, 1997.). 이는 특정 균종들의 계통관계를 알기 위해서 이러한 유전자 한가지만을 사용하는 것은 무리가 따르고 잘못된 결론을 도출할 수 있다는 것을 의미한다(Woese, C. R. Reconstructing bacterial evolution with rRNA, p. 1-24.InSelander, R. K., Clark, A. G. and Whittman, T. S. (eds.) Evolution at the Molecular Level. Sunderland, MA: Sinauer Associates, 1991.; Ratcliff, R. M., Donnelan, S. C., Lanser, J. A., Manning, P. A. and Heuzenroeder, M. W. Interspecies sequence differences in the Mip protein from the genusLegionella: implication for function and evolutionary relatedness.Mol Microbiol25, 1149-1158, 1997.). Legionellaceae based on small-subunit ribosomal DNA sequences and proposal of Legionella lytica comb. nov. for Legionella -like amoebal pathogens. Int J Syst Bacteriol 46, 526-531, 1996.) or mip sequence (Ratcliff, RM, Lanser, JA, Manning, PA and Heuzenroeder, MW Sequence-based classification scheme for the genus Legionella targeting the mip gene.J Clin Microbiol 36, 1560-1567, 1998 .; Ratcliff, RM, Donnelan, SC, Lanser, JA, Manning, PA and Heuzenroeder, MW Interspecies sequence differences in the Mipprotein from the genus Legionella : implication for function and evolutionary relatedness.Mol Microbiol 25, 1149-1158, 1997.) has been attempted to classify by fungal species determination, but even when the species were identified using these genes, there was a known inconsistency (Hookey, JV, Sauders, NA, Fry, NK, Birtles, RJ and Harrison, TG Phylogeny of Legionellaceae based on small-subunit ribosomal DNA sequences and proposal of Legionella lytica comb.nov.for Legionella -like amoebal pathogens.Int J Syst Bacteriol 46, 526-531, 1996 .; Ratcliff , RM, Donnelan, SC, Lanser, JA, Manning, PA an d Heuzenroeder, MW Interspecies sequence differences in the Mip protein from the genus Legionella : implication for function and evolutionary relatedness. Mol Microbiol 25, 1149-1158, 1997.). This means that using only one of these genes to determine the lineage of a particular species can lead to a frustrating and erroneous conclusion (Woese, CR Reconstructing bacterial evolution with rRNA, p. 1-24. In Selander, RK, Clark, AG and Whittman, TS (eds.) Evolution at the Molecular Level.Sunderland, MA: Sinauer Associates, 1991 .; Ratcliff, RM, Donnelan, SC, Lanser, JA, Manning, PA and Heuzenroeder, MW Interspecies sequence differences in the Mip protein from the genus Legionella : implication for function and evolutionary relatedness.Mol Microbiol 25, 1149-1158, 1997.).
현재까지 알려진 44가지 이상의 레지오넬라 균종들 중에도 여러 균종이 병원성을 갖는다고 보고되고 있으나, 이들 중 가장 위협적인 병원균은 폐렴을 일으키는 것으로 보고된 레지오넬라 뉴모필라이다. 이러한 레지오넬라 뉴모필라균은 15개의 serogroup이 알려져 있고, 이 중 레지오넬라 뉴모필라 serogroup 1이 가장 흔한 폐렴 원인균이다. 이 외에도L. micdadei, L. bozemanii, L. longbeachae등은 주로 면역 억제자에서 폐렴을 일으키는 원인균으로 보고되고 있다.Among 44 or more Legionella species known to date, several species have been reported to be pathogenic, but the most threatening pathogen is Legionella pneumophila, which has been reported to cause pneumonia. Legionella pneumophila is known to have 15 serogroups, of which Legionella pneumophila serogroup 1 is the most common cause of pneumonia. In addition, L. micdadei, L. bozemanii and L. longbeachae have been reported to cause pneumonia mainly in immunosuppressors.
이들에 의해 발생하는 가장 대표적인 병으로는 레지오넬라 폐렴이 있다. 레지오넬라 폐렴은 식욕 부진과 권태감, 근육통이나 두통으로 시작하며 낮 동안에 오한과 함께 급격히 39∼40.5℃까지 열이 오른다. 건성 기침이 생기고, 설사 , 오심, 구토나 복통이 일어나며, 3일경부터 흉부 X선상의 변화가 나타나기 시작한다. 처음에는 국소적 혹은 반상 침윤이 생기는데 이 침윤은 점차 양측 폐로 진행하게 되고, 호흡부전이 생겨 치명적이 된다. 저혈압도 지역획득 레지오넬라 폐렴의 17% 에서 나타난다. 사망률은 건강한 사람의 지역획득 폐렴에서는 낮지만, 원내감염에서는 50%까지 이른다. 흉부 X선 소견과 임상 증상이 반드시 일치하지는 않으므로, 항균제가 효과가 있더라도 X선상의 폐렴상은 계속 악화될 수도 있다. 흉부 X선 소견이 완전히 좋아지려면 증상이 좋아진 후 1∼2개월, 때로는 3∼4개월까지 걸리기도 한다. 폐렴 이외의 증상도 생겨서 심장 수술 후 심내막염, 심근염, 심외막염이나 부비동염, 봉소염, 복막염, 신우신염 등도 일어난다.The most representative disease caused by them is Legionella pneumonia. Legionella pneumonia begins with loss of appetite, malaise, myalgia or headache, and fever up to 39 ~ 40.5 ℃ during the day with chills. A dry cough develops, diarrhea, nausea, vomiting or abdominal pain occurs around 3 days and changes in chest X-rays begin to occur. Initially, local or phacoinvasion occurs, which gradually progresses to both lungs, and respiratory failure develops and becomes fatal. Hypotension is also seen in 17% of locally acquired Legionella pneumonia. Mortality rates are low in community-acquired pneumonia in healthy people but up to 50% in hospital infections. Because chest X-ray findings do not necessarily coincide with clinical symptoms, X-ray pneumonia may continue to worsen even if antimicrobials work. Thoracic X-ray findings may take 1 to 2 months, sometimes 3 to 4 months after symptoms improve. Symptoms other than pneumonia may also occur after heart surgery, including endocarditis, myocarditis, epicarditis, sinusitis, sinusitis, peritonitis, and pyelonephritis.
따라서, 당업계에는 레지오넬라 균종에 따라 서로 구별되는 염기서열의 분석을 통하여 균종의 판별을 보다 신속하게 수행할 수 있고, 감염 초기에도 감염 여부와 균종을 정확하게 검사할 수 있는 방법의 개발 및 특히, 감염 초기에 레지오넬라뉴모필라에 의한 감염 여부를 신속히 진단하기 위하여 레지오넬라 뉴모필라종에만 특이적인 염기서열의 분석을 통하여 레지오넬라의 다른 균종들로부터 레지오넬라 뉴모필라종을 검출할 수 있는 방법과 레지오넬라 뉴모필라종 가운데서도 레지오넬라 뉴모필라 serogroup1 등을 판별 및 동정할 수 있는 방법의 개발이 시급하게 요청되어 왔다.Therefore, in the art, it is possible to more quickly perform the determination of species through analysis of nucleotide sequences distinguished from each other by Legionella species, and to develop a method capable of accurately examining the presence of an infection and the species in the early stages of infection, and in particular, infection. For the early diagnosis of Legionella pneumophila, we can detect Legionella pneumophila from other Legionella species by analyzing the nucleotide sequence specific to Legionella pneumophila and also among Legionella pneumophila. There has been an urgent need to develop a method for identifying and identifying Legionella pneumophila serogroup1.
따라서, 본 발명의 목적은 상기의 문제점을 해결하기 위하여 레지오넬라 균종에 따라 서로 구별되는 RNA 중합효소 베타 서브 유닛(RNA polymerase β-subunit (rpoB)) 유전자 분절을 제공하는 것이다.Accordingly, an object of the present invention is to provide RNA polymerase β-subunit (rpoB) gene segments which are distinguished from each other according to Legionella species in order to solve the above problems.
본 발명의 다른 목적은 상기의 rpoB 유전자 분절을 증폭시키는 단계; 증폭된 유전자 분절의 염기 서열을 결정하는 단계; 그리고, 상기의 염기 서열을 대비하는 단계를 포함하는 레지오넬라 균종 판별 방법을 제공하는 것이다.Another object of the present invention is to amplify the rpoB gene segment; Determining the base sequence of the amplified gene segment; And, it provides a Legionella species identification method comprising the step of contrasting the base sequence.
본 발명의 또 다른 목적은 상기의 rpoB 유전자 분절을 증폭시키는 단계; 증폭된 유전자 분절 내에 존재하는 특정 제한 효소 인식부위의 절단을 확인하기 위하여 상기의 유전자 분절에 제한 효소를 부가하는 단계; 상기 특정 제한 효소에 의한 상기 유전자 분절의 절단 여부를 분석하는 단계를 포함하는 레지오넬라 균종 판별 방법을 제공하는 것이다.Another object of the present invention is to amplify the rpoB gene segment; Adding a restriction enzyme to said gene segment to identify cleavage of specific restriction enzyme recognition sites present in the amplified gene segment; It is to provide a Legionella species discrimination method comprising the step of analyzing the cleavage of the gene segment by the specific restriction enzyme.
본 발명의 또 다른 목적은 레지오넬라 균종의 rpoB 유전자의 일부분을 선택적으로 증폭시키는 프라이머 및 이를 이용한 레지오넬라 균종 판별 및 동정 방법을 를 제공하는 것이다.Still another object of the present invention is to provide a primer for selectively amplifying a portion of the rpoB gene of Legionella species and a method for identifying and identifying Legionella species using the same.
본 발명의 또 다른 목적은 레지오넬라 뉴모필라종의 rpoB DNA만을 선택적으로 증폭시키는 프라이머 및 레지오넬라 뉴모필라종의 판별 및 동정 방법을 제공하는 것이다.It is still another object of the present invention to provide a primer for selectively amplifying only rpoB DNA of Legionella pneumophila species and a method for identifying and identifying Legionella pneumophila species.
도1은 레지오넬라 rpoB 유전자 증폭을 위해 사용한 프라이머의 위치 요약도이다.1 is a summary position diagram of primers used for Legionella rpoB gene amplification.
도2는 레지오넬라 속에 속한 균종들과 다른 균속의 균종들에 대하여 시행한 rpoB 유전자 분절의 PCR결과를 나타낸다.Figure 2 shows the PCR results of the rpoB gene segments performed on the species of the genus Legionella and other strains.
도3은 rpoB, 16S rRNA 유전자, 그리고mip유전자 사이의 pairwise distance 비교한 결과이다.3 shows a comparison of pairwise distances between rpoB, 16S rRNA gene, and mip gene.
도4는 rpoB 염기서열에 근거하여 작성한 레지오넬라 균종들의 계통 관계를 나타낸 표이다.Figure 4 is a table showing the lineage relationship between Legionella species prepared based on the rpoB base sequence.
도5는 환자로부터 분리한 균주 Kp1, Kp2, 그리고 Kp3의 rpoB 염기서열을 표준 균주들의 염기서열과 함께 NJ method로 나타낸 계통수이다.Figure 5 is a phylogenetic tree showing the rpoB base sequence of strains Kp1, Kp2, and Kp3 isolated from the patient with the nucleotide sequences of the standard strains.
도6은 레지오넬라 뉴모필라와 레지오넬라의 다른 균종들을 대상으로 레지오넬라 뉴모필라에 선택적인 프라이머로 PCR을 한 결과이다.FIG. 6 shows the results of PCR with primers selective for Legionella pneumophila against Legionella pneumophila and other species of Legionella.
도7은 레지오넬라 뉴모필라 표준 균주들을 대상으로 레지오넬라 뉴모필라에선택적인 프라이머로 PCR을 한 후BamHI으로 절단한 결과이다.Figure 7 shows the result of cleavage with Bam HI after PCR with the primers selective for Legionella pneumophila standard strains Legionella pneumophila.
상기의 본 발명의 목적은 레지오넬라 균종의 rpoB DNA의 일부분을 선택적으로 증폭시킬 수 있는 서열번호 제42 및 제43의 염기 서열을 갖는 프라이머 쌍(5'GATGATATCGATCAYCTDGG3',5'TTCVGGCGTTCAATNGGAC3')를 사용하여 레지오넬라속 38가지 균종의 DNA의 rpoB 유전자의 일부분을 선택적으로 증폭하는 단계; 상기의 증폭된 rpoB DNA 분절의 염기 서열을 결정하는 단계; 상기에서 결정된 염기서열을 대비하여 레지오넬라속 각 균종을 판별하는 단계를 포함하는 방법을 제공함으로써 달성된다.An object of the present invention is to use a primer pair ( 5 ' GATGATATCGATCAYCTDGG 3' , 5 ' TTCVGGCGTTCAATNGGAC 3' ) having the nucleotide sequence of SEQ ID NO: 42 and 43 that can selectively amplify a portion of rpoB DNA of Legionella species Selectively amplifying a portion of rpoB gene of DNA of 38 species of Legionella genus; Determining the base sequence of the amplified rpoB DNA fragment; It is achieved by providing a method comprising the step of determining each species of Legionella genus in contrast to the base sequence determined above.
레지오넬라균들의 rpoB 유전자의 일부분을 선택적으로 증폭시키는 단계에서는 정방향 프라이머(5'GATGATATCGATCAYCTDGG3') 및 역방향 프라이머(5'TTCVGGCGTTCAATNGGAC3')가 혼합되어 사용될 수 있다. 또한 이들 프라이머는 선택적으로 증폭된 rpoB 유전자의 분절들의 염기서열을 분석하기 위한 반응에도 사용된다. 이러한 염기서열 분석 반응에서도 이들 정방향 프라이머와 역방향 프라이머가 혼합되어 사용된다.In the step of selectively amplifying a part of the rpoB gene of Legionella are a forward primer (5 'GATGATATCGATCAYCTDGG 3') and reverse primer (5 'TTCVGGCGTTCAATNGGAC 3') may be used in combination. These primers are also used in reactions to analyze the sequencing of fragments of the selectively amplified rpoB gene. In these sequencing reactions, these forward primers and reverse primers are mixed and used.
이러한 방법으로 얻어진 각 분절의 염기서열 정보를, 본 명세서의 서열번호 제1 내지 제42의 염기서열과 대비 판단함으로써 분석 대상 레지오넬라균이 어느 종에 속하는 지를 판별할 수 있다.By judging the base sequence information of each segment obtained by this method with the base sequences of SEQ ID NOs: 1 to 42 of the present specification, it is possible to determine which species the Legionella bacteria to be analyzed belong to.
본 발명의 또 다른 목적은 서열 번호 43 및 44의 염기서열을 갖는 프라이머 쌍을 포함하는 것을 특징으로 하는 레지오넬라속 균을 선택적으로 판별하기 위한 진단 시약을 제공하는 것이다. Still another object of the present invention is to provide a diagnostic reagent for selectively discriminating Legionella bacteria, comprising a primer pair having the nucleotide sequences of SEQ ID NOs: 43 and 44.
본 발명의 또 다른 목적은 서열번호 제1 내지 제42의 염기서열을 제공함으로써 달성된다.Another object of the present invention is achieved by providing the nucleotide sequence of SEQ ID NO: 1 to 42.
1)One) Legionella adelaidensisLegionella adelaidensis (UOEH 13562)(UOEH 13562)
AGTGTTGGTAAAATGGCAGAAAATCAATTCCGTGTTGGGCTTGTTCGTGTTGAAAGAGCGGTAAAAGAGCGCTTGAGTCTTGCTGAATCCGAAAACTTGATGCCACAAGATTTAATTAATGCTAAACCCGTATCTGCTGCTATTAAAGAATTCTTTGGTTCAAGTCAGCTTTCCCAATTTATGGATCAAGTGAATCCTCTATCAGGTGTCACACATAAACGCCGTGTTTCGGCATTGGGGCCAGGTGGACTAACACGTGAAAGAGCAGGATTTGAAGTTCGCGACGTACATACTACCCACAGTGTTGGTAAAATGGCAGAAAATCAATTCCGTGTTGGGCTTGTTCGTGTTGAAAGAGCGGTAAAAGAGCGCTTGAGTCTTGCTGAATCCGAAAACTTGATGCCACAAGATTTAATTAATGCTAAACCCGTATCTGCTGCTATTAAAGAATTCTTTGGTTCAAGTCAGCTTTCCCAATTTATGGATCAAGTGAATCCTCTATCAGGTGTCACACATAAACGCCGTGTTTCGGCATTGGGGCCAGGTGGACTAACACGTGAAAGAGCAGGATTTGAAGTTCGCGACGTACATACTACCCAC
2)2) Legionella anisaLegionella anisa (ATCC 35292)(ATCC 35292)
AGAGTTGGTGAAATGACAGAAAACCAATTTAGGGTCGGTCTTGTACGTGTTGAACGAGCTGTTAAAGAACGCTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCCGTCTCTGCTGCGATTAAAGAATTCTTTGGCTCAAGCCAGTTATCACAGTTTATGGATCAAGTTAATCCATTATCCGGTGTAACTCACAAACGTAGTGTTTCAGCACTGGGTCCAGGTGGTTTAACACGTGAGCGAGCTGGTTTTGAAGTTCGTGACGTTCACACCACTCACAGAGTTGGTGAAATGACAGAAAACCAATTTAGGGTCGGTCTTGTACGTGTTGAACGAGCTGTTAAAGAACGCTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCCGTCTCTGCTGCGATTAAAGAATTCTTTGGCTCAAGCCAGTTATCACAGTTTATGGATCAAGTTAATCCATTATCCGGTGTAACTCACAAACGTAGTGTTTCAGCACTGGGTCCAGGTGGTTTAACACGTGAGCGAGCTGGTTTTGAAGTTCGTGACGTTCACACCACTCAC
3)3) Legionella birminghamensisLegionella birminghamensis (UOEH 11749)(UOEH 11749)
AGTGTTGGTGAAATGGCTGAAAACCAATTCCGGGTAGGGCTGGTGCGTGTTGAACGCGCAGTGAAGGAACGTCTTAGTCTGGTTGAGTCTGAAAATCTGATGCCTCAGGATCTGATCAATGCCAAGCCTGTGTCAGCTGCAATCAAGGAGTTCTTCGGTTCAAGTCAGTTGTCTCAGTTCATGGATCAGGTCAATCCATTATCTGGTGTAACCCATAAGCGCCGTGTTTCAGCATTAGGCCCAGGTGGATTGACACGTGAAAGAGCTGGATTTGAGGTGCGCGACGTTCACACAACCCATAGTGTTGGTGAAATGGCTGAAAACCAATTCCGGGTAGGGCTGGTGCGTGTTGAACGCGCAGTGAAGGAACGTCTTAGTCTGGTTGAGTCTGAAAATCTGATGCCTCAGGATCTGATCAATGCCAAGCCTGTGTCAGCTGCAATCAAGGAGTTCTTCGGTTCAAGTCAGTTGTCTCAGTTCATGGATCAGGTCAATCCATTATCTGGTGTAACCCATAAGCGCCGTGTTTCAGCATTAGGCCCAGGTGGATTGACACGTGAAAGAGCTGGATTTGAGGTGCGCGACGTTCACACAACCCAT
4)4) Legionella bozemaniiLegionella bozemanii serogroup 1 (ATCC 33217)serogroup 1 (ATCC 33217)
AGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGTCTTGTACGTGTTAAAAGAGCAGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATTTGATGCCTCAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCAATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGACCAAGTTAATCCATTATCAGGTGTGACACACAAACGTAGGGTTTCTGCATTGGGCCCAGGTGGTTTAACACGTGAACGAGCAGGTTTTGAAGTTCGTGACGTTCATACCACACACAGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGTCTTGTACGTGTTAAAAGAGCAGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATTTGATGCCTCAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCAATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGACCAAGTTAATCCATTATCAGGTGTGACACACAAACGTAGGGTTTCTGCATTGGGCCCAGGTGGTTTAACACGTGAACGAGCAGGTTTTGAAGTTCGTGACGTTCATACCACACAC
5)5) Legionella bozemaniiLegionella bozemanii serogroup 2 (ATCC 35545)serogroup 2 (ATCC 35545)
AGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGtCTTGTACGTGTTGAAAGAGCGGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCGATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGATCAAGTTAATCCGTTATCGGGTGTAACACACAAACGTAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACGCGTGAACGTGCAGGATTTGAAGTTCGtGACGTCCATACCACACACAGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGtCTTGTACGTGTTGAAAGAGCGGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCGATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGATCAAGTTAATCCGTTATCGGGTGTAACACACAAACGTAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACGCGTGAACGTGCAGGATTTGAAGTTCGtGACGTCCATACCACACAC
6)6) Legionella brunensisLegionella brunensis (UOEH 12655)(UOEH 12655)
AGTGTTGGTGAAATGGCAGAAAACCAATTCCGTGTAGGTTTGGTAAGAGTTGAGCGTGCGGTTAAAGAGCGTTTGAGTCTTGTTGAGTCTGAAAATCTAATGCCACAAGATTTAATTAATGCAAAACCTGTTTCTGCTGCTGTGAAAGAATTTTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAGGTTAATCCTCTTTCAGGGGTTACTCATAAGCGTCGTGTTTCAGCTCTTGGCCCAGGTGGTTTGACAAGAGAACGAGCAGGATTTGAGGTGCGTGACGTTCATACGACTCACAGTGTTGGTGAAATGGCAGAAAACCAATTCCGTGTAGGTTTGGTAAGAGTTGAGCGTGCGGTTAAAGAGCGTTTGAGTCTTGTTGAGTCTGAAAATCTAATGCCACAAGATTTAATTAATGCAAAACCTGTTTCTGCTGCTGTGAAAGAATTTTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAGGTTAATCCTCTTTCAGGGGTTACTCATAAGCGTCGTGTTTCAGCTCTTGGCCCAGGTGGTTTGACAAGAGAACGAGCAGGATTTGAGGTGCGTGACGTTCATACGACTCAC
7)7) Legionella cherriiLegionella cherrii (UOEH 10742)(UOEH 10742)
AGTGTTGGTAAAATGACTGAAAACCAATTCAGAGTTGGGCTTGTACGTGTAGAACGAGCTGTTAAGGAGCGCTTGAGTTTAGTTGAATCAGAAAATCTTATGCCACAAGATTTAATTAATGCAAAACCTGTTTCAGCTGCAATTAAAGAGTTCTTTGGTTCAAGCCAGTTATCACAATTTATGGATCAGGTTAACCCCTTATCTGGCGTTACCCATAAGCGAAGAGTTTCAGCATTAGGCCCAGGTGGTTTAACACGTGAACGTGCAGGGTTTGAGGTACGTGACGTACATACCACACACAGTGTTGGTAAAATGACTGAAAACCAATTCAGAGTTGGGCTTGTACGTGTAGAACGAGCTGTTAAGGAGCGCTTGAGTTTAGTTGAATCAGAAAATCTTATGCCACAAGATTTAATTAATGCAAAACCTGTTTCAGCTGCAATTAAAGAGTTCTTTGGTTCAAGCCAGTTATCACAATTTATGGATCAGGTTAACCCCTTATCTGGCGTTACCCATAAGCGAAGAGTTTCAGCATTAGGCCCAGGTGGTTTAACACGTGAACGTGCAGGGTTTGAGGTACGTGACGTACATACCACACAC
8)8) Legionella cincinnatiensisLegionella cincinnatiensis (UOEH 12201)(UOEH 12201)
AGTGTTGGAGAAATGACTGAAAACCAATTTAGGGTTGGTCTTGTTCGCGTTGAAAGAGCAGTTAAAGAACGATTAAGTTTAGTTGAGTCTGAAAATTTAATGCCACAGGATTTAATTAATGCAAAACCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGTTCAAGTCAGTTGTCTCAATTTATGGATCAGGTAAATCCATTATCAGGAGTAACTCATAAGCGAAGAGTATCCGCTTTGGGCCCAGGTGGATTAACTCGTGAACGCGCTGGCTTTGAAGTCCGTGACGTACATACAACACATAGTGTTGGAGAAATGACTGAAAACCAATTTAGGGTTGGTCTTGTTCGCGTTGAAAGAGCAGTTAAAGAACGATTAAGTTTAGTTGAGTCTGAAAATTTAATGCCACAGGATTTAATTAATGCAAAACCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGTTCAAGTCAGTTGTCTCAATTTATGGATCAGGTAAATCCATTATCAGGAGTAACTCATAAGCGAAGAGTATCCGCTTTGGGCCCAGGTGGATTAACTCGTGAACGCGCTGGCTTTGAAGTCCGTGACGTACATACAACACAT
9)9) Legionella dumoffiiLegionella dumoffii (ATCC 33279)(ATCC 33279)
AGTGTTGGTGAAATGACCGAAAACCAATTCAGAGTGGGGCTCGTGCGCGTTGAGCGCGCTGTCAAAGAGCGCTTGAGCCTGGTGGAATCTGAAAATTTGATGCCACAAGATTTAATTAATGCGAAACCTGTTTCGGCTGCAATTAAAGAATTCTTCGGTTCCAGTCAGTTATCGCAATTCATGGATCAGGTTAATCCATTATCTGGTGTTACCCATAAGCGCAGGGTTTCTGCATTAGGCCCAGGCGGATTGACACGTGAACGCGCAGGATTTGAGGTTCGTGACGTACATACCACACACAGTGTTGGTGAAATGACCGAAAACCAATTCAGAGTGGGGCTCGTGCGCGTTGAGCGCGCTGTCAAAGAGCGCTTGAGCCTGGTGGAATCTGAAAATTTGATGCCACAAGATTTAATTAATGCGAAACCTGTTTCGGCTGCAATTAAAGAATTCTTCGGTTCCAGTCAGTTATCGCAATTCATGGATCAGGTTAATCCATTATCTGGTGTTACCCATAAGCGCAGGGTTTCTGCATTAGGCCCAGGCGGATTGACACGTGAACGCGCAGGATTTGAGGTTCGTGACGTACATACCACACAC
10)10) Legionella erythraLegionella erythra (ATCC 35303)(ATCC 35303)
AGTGTCGGCGAGATGACAGAAAACCAGTTTCGTGTCGGCTTGGTCCGTGTTGAGCGAGCGGTCAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCCCAGGATTTGATTAACGCCAAACCTGTTTCTGCAGCAATCAAAGAGTTTTTTGGTTCTAGCCAGTTATCTCAGTTTATGGATCAGGTTAATCCGCTTTCTGGTGTTACACACAAGCGCCGTGTTTCGGCACTTGGCCCAGGCGGTTTGACTCGTGAACGTGCAGGATTTGAGGTCCGCGACGTTCATACCACTCATAGTGTCGGCGAGATGACAGAAAACCAGTTTCGTGTCGGCTTGGTCCGTGTTGAGCGAGCGGTCAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCCCAGGATTTGATTAACGCCAAACCTGTTTCTGCAGCAATCAAAGAGTTTTTTGGTTCTAGCCAGTTATCTCAGTTTATGGATCAGGTTAATCCGCTTTCTGGTGTTACACACAAGCGCCGTGTTTCGGCACTTGGCCCAGGCGGTTTGACTCGTGAACGTGCAGGATTTGAGGTCCGCGACGTTCATACCACTCAT
11)11) Legionella fairfieldensisLegionella fairfieldensis (UOEH 13563)(UOEH 13563)
TCAGTAGGTGAAATGACAGAAAATCAATTTCGCGTGGGGTTGGTTCGAGTTGAGCGTGCTGTAAAAGAACGCCTAAGTCTTGTTGAGTCAGAAAATCTTATGCCGCAAGATTTAATTAACGCCAAGCCTGTGTCTGCAGCTGTGAAAGAATTTTTTGGTTCTAGCCAGTTATCTCAGTTTATGGATCAAGTTAATCCTCTATCAGGTGTTACCCATAAACGCCGCGTTTCGGCCCTTGGTCCAGGTGGTTTAACCAGAGAAAGGGCTGGTTTTGAAGTACGTGACGTTCATACTACTCATTCAGTAGGTGAAATGACAGAAAATCAATTTCGCGTGGGGTTGGTTCGAGTTGAGCGTGCTGTAAAAGAACGCCTAAGTCTTGTTGAGTCAGAAAATCTTATGCCGCAAGATTTAATTAACGCCAAGCCTGTGTCTGCAGCTGTGAAAGAATTTTTTGGTTCTAGCCAGTTATCTCAGTTTATGGATCAAGTTAATCCTCTATCAGGTGTTACCCATAAACGCCGCGTTTCGGCCCTTGGTCCAGGTGGTTTAACCAGAGAAAGGGCTGGTTTTGAAGTACGTGACGTTCATACTACTCAT
12)12) Legionella feeleiiLegionella feeleii serogroup 1 (ATCC 35072)serogroup 1 (ATCC 35072)
AGCGTTGGTGAAATGGCTGAAAACCAATTTCGAGTTGGTTTGGTTCGTGTGGAACGTGCAGTTAAAGAACGTTTGAGTTTAGTCGAATCAGAAAATTTGATGCCGCAGGATCTGATTAATGCTAAACCAGTCTCTGCCGCGATCAAAGAGTTCTTTGGTTCTAGCCAATTATCACAGTTTATGGATCAAGTTAACCCGCTGTCAGGTGTTACTCACAAGCGCCGTGTTTCAGCTCTTGGCCCAGGCGGCTTAACCCGTGAGCGTGCCGGTTTTGAGGTTCGTGACGTTCATACAACGCATAGCGTTGGTGAAATGGCTGAAAACCAATTTCGAGTTGGTTTGGTTCGTGTGGAACGTGCAGTTAAAGAACGTTTGAGTTTAGTCGAATCAGAAAATTTGATGCCGCAGGATCTGATTAATGCTAAACCAGTCTCTGCCGCGATCAAAGAGTTCTTTGGTTCTAGCCAATTATCACAGTTTATGGATCAAGTTAACCCGCTGTCAGGTGTTACTCACAAGCGCCGTGTTTCAGCTCTTGGCCCAGGCGGCTTAACCCGTGAGCGTGCCGGTTTTGAGGTTCGTGACGTTCATACAACGCAT
13)13) Legionella feeleiiLegionella feeleii serogroup 2 (UOEH 10744)serogroup 2 (UOEH 10744)
AGCGTTGGTGAAATGGCTGAAAACCAATTTCGAGTTGGTTTGGTTCGTGTGGAACGTGCAGTTAAAGAACGTTTGAGTTTAGTCGAATCAGAAAATTTGATGCCGCAGGATCTGATTAATGCTAAACCAGTCTCTGCCGCGATCAAAGAGTTCTTTGGTTCTAGCCAATTATCACAGTTTATGGATCAAGTTAACCCACTGTCAGGTGTTACTCACAAGCGCCGTGTTTCGGCTCTTGGCCCAGGCGGCTTAACCCGCGAGCGTGCCGGTTTTGAGGTTCGTGACGTTCATACAACGCATAGCGTTGGTGAAATGGCTGAAAACCAATTTCGAGTTGGTTTGGTTCGTGTGGAACGTGCAGTTAAAGAACGTTTGAGTTTAGTCGAATCAGAAAATTTGATGCCGCAGGATCTGATTAATGCTAAACCAGTCTCTGCCGCGATCAAAGAGTTCTTTGGTTCTAGCCAATTATCACAGTTTATGGATCAAGTTAACCCACTGTCAGGTGTTACTCACAAGCGCCGTGTTTCGGCTCTTGGCCCAGGCGGCTTAACCCGCGAGCGTGCCGGTTTTGAGGTTCGTGACGTTCATACAACGCAT
14)14) Legionella geestianaLegionella geestiana (ATCC 49504)(ATCC 49504)
AGTGTTGGTGAAATGGCCGAAAACCAGTTCCGCGTGGGCCTTGTACGCGTTGAGCGAGCTGTTAAGGAGCGGCTAAGTCTTGCAGAATCCGAGAATCTGATGCCACAGGATCTCGTTAACGCAAAACCCGTTTCTGCAGCTGTTAAGGAATTTTTTGGTTCAAGCCAGCTGTCGCAATTTATGGATCAGGTGAACCCTCTGTCAGGTGTAACGCATAAACGACGCGTCTCAGCACTTGGACCAGGCGGTCTTACCCGTGAGCGTGCAGGTTTTGAGGTACGGGACGTTCACACTACACACAGTGTTGGTGAAATGGCCGAAAACCAGTTCCGCGTGGGCCTTGTACGCGTTGAGCGAGCTGTTAAGGAGCGGCTAAGTCTTGCAGAATCCGAGAATCTGATGCCACAGGATCTCGTTAACGCAAAACCCGTTTCTGCAGCTGTTAAGGAATTTTTTGGTTCAAGCCAGCTGTCGCAATTTATGGATCAGGTGAACCCTCTGTCAGGTGTAACGCATAAACGACGCGTCTCAGCACTTGGACCAGGCGGTCTTACCCGTGAGCGTGCAGGTTTTGAGGTACGGGACGTTCACACTACACAC
15)15) Legionella gormaniiLegionella gormanii (ATCC 33297)(ATCC 33297)
AGCGTTGGTGAAATGACTGAAAACCAGTTTAGAGTAGGCCTTGTTCGTGTTGAAAGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAATCTGATGCCTCAAGATTTAATTAACGCAAAACCAGTATCTGCAGCGATTAAAGAGTTTTTTGGTTCCAGCCAGTTGTCACAGTTTATGGATCAAGTAAACCCCTTATCAGGTGTTACCCATAAACGAAGTGTTTCTGCATTAGGCCCAGGTGGTTTAACTCGTGAGCGTGCAGGGTTTGAAGTACGTGACGTACATACAACTCACAGCGTTGGTGAAATGACTGAAAACCAGTTTAGAGTAGGCCTTGTTCGTGTTGAAAGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAATCTGATGCCTCAAGATTTAATTAACGCAAAACCAGTATCTGCAGCGATTAAAGAGTTTTTTGGTTCCAGCCAGTTGTCACAGTTTATGGATCAAGTAAACCCCTTATCAGGTGTTACCCATAAACGAAGTGTTTCTGCATTAGGCCCAGGTGGTTTAACTCGTGAGCGTGCAGGGTTTGAAGTACGTGACGTACATACAACTCAC
16)16) Legionella gratianaLegionella gratiana (ATCC 49413)(ATCC 49413)
AGCGTCGGTGAAATGACCGAAAATCAATTTAGGGTTGGTTTGGTTCGTGTTGAAAGAGCTGTTAAAGAACGATTAAGCTTAGTAGAGTCCGAAAATCTAATGCCACAGGATTTAATTAATGCTAAACCTGTGTCTGCTGCGATTAAAGAGTTTTTTGGCTCAAGCCAACTATCCCAATTTATGGATCAAGTAAATCCACTATCAGGAGTAACTCATAAACGAAGAGTTTCAGCTTTAGGACCAGGCGGTTTAACTCGTGAGCGTGCTGGCTTTGAAGTTCGTGACGTCCATACTACACACAGCGTCGGTGAAATGACCGAAAATCAATTTAGGGTTGGTTTGGTTCGTGTTGAAAGAGCTGTTAAAGAACGATTAAGCTTAGTAGAGTCCGAAAATCTAATGCCACAGGATTTAATTAATGCTAAACCTGTGTCTGCTGCGATTAAAGAGTTTTTTGGCTCAAGCCAACTATCCCAATTTATGGATCAAGTAAATCCACTATCAGGAGTAACTCATAAACGAAGAGTTTCAGCTTTAGGACCAGGCGGTTTAACTCGTGAGCGTGCTGGCTTTGAAGTTCGTGACGTCCATACTACACAC
17)17) Legionella hackeliaeLegionella hackeliae serogroup 1 (ATCC 35250)serogroup 1 (ATCC 35250)
AGCGTTGGCGAGATGGCTGAAAACCAATTCCGCGTTGGTCTTGTTCGCGTTGAGCGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAACTTAATGCCACAAGATTTAATTAACGCAAAACCAGTTTCGGCTGCGGTGAAAGAATTCTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAAGTAAATCCACTATCCGGGGTAACTCATAAACGTCGTGTTTCAGCGCTTGGCCCAGGTGGTTTAACTAGAGAGCGTGCAGGTTTTGAGGTGCGTGACGTACATACTACTCACAGCGTTGGCGAGATGGCTGAAAACCAATTCCGCGTTGGTCTTGTTCGCGTTGAGCGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAACTTAATGCCACAAGATTTAATTAACGCAAAACCAGTTTCGGCTGCGGTGAAAGAATTCTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAAGTAAATCCACTATCCGGGGTAACTCATAAACGTCGTGTTTCAGCGCTTGGCCCAGGTGGTTTAACTAGAGAGCGTGCAGGTTTTGAGGTGCGTGACGTACATACTACTCAC
18)18) Legionella hackeliaeLegionella hackeliae serogroup 2 (UOEH 11368)serogroup 2 (UOEH 11368)
AGCGTTGGCGAGATGGCTGAAAACCAATTCCGCGTTGGTCTTGTTCGCGTTGAGCGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAACTTAATGCCACAAGATTTAATTAACGCAAAACCAGTTTCGGCTGCGGTGAAAGAATTCTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAAGTAAATCCACTATCCGGGGTAACTCATAAACGTCGTGTTTCAGCGCTTGGCCCAGGTGGTTTAACTAGAGAGCGTGCAGGTTTTGAGGTGCGTGACGTACATACTACTCACAGCGTTGGCGAGATGGCTGAAAACCAATTCCGCGTTGGTCTTGTTCGCGTTGAGCGAGCTGTTAAAGAGCGTTTAAGTTTGGTTGAGTCTGAAAACTTAATGCCACAAGATTTAATTAACGCAAAACCAGTTTCGGCTGCGGTGAAAGAATTCTTCGGCTCAAGCCAATTGTCACAATTTATGGATCAAGTAAATCCACTATCCGGGGTAACTCATAAACGTCGTGTTTCAGCGCTTGGCCCAGGTGGTTTAACTAGAGAGCGTGCAGGTTTTGAGGTGCGTGACGTACATACTACTCAC
19)19) Legionella israelensisLegionella israelensis (ATCC 43119)(ATCC 43119)
AGCGTTGGTGAAATGACCGAAAATCAGTTTCGTGTGGGATTGGTTCGTGTTGAACGGGCTGTTAAAGAGCGATTGAGTCTTGTGGAATCTGAAAATTTAATGCCACAGGATTTAATTAACGCAAAACCTGTTTCTGCAGCNATAAAAGAATTCTTTGGTTCCAGTCAATTGTCTCAGTTTATGGACCAGGTCAATCCATTATCCGGCGTTACTCATAAACGTAGGGTTTCAGCACTTGGACCAGGAGGTTTAACAAGAGAGCGTGCAGGTTTTGAAGTTCGTGACGTACACACTACCCATAGCGTTGGTGAAATGACCGAAAATCAGTTTCGTGTGGGATTGGTTCGTGTTGAACGGGCTGTTAAAGAGCGATTGAGTCTTGTGGAATCTGAAAATTTAATGCCACAGGATTTAATTAACGCAAAACCTGTTTCTGCAGCNATAAAAGAATTCTTTGGTTCCAGTCAATTGTCTCAGTTTATGGACCAGGTCAATCCATTATCCGGCGTTACTCATAAACGTAGGGTTTCAGCACTTGGACCAGGAGGTTTAACAAGAGAGCGTGCAGGTTTTGAAGTTCGTGACGTACACACTACCCAT
20)20) Legionella jamestownensisLegionella jamestownensis (ATCC 35298)(ATCC 35298)
AGTGTTGGTGAAATGACTGAGAATCAATTCCGCGTGGGATTGGTAAGAGTTGAACGTGCGGTGAAAGAAAGGTTAAGCCTGGCTGAATCAGAAAGCCTGATGCCGCAGGATTTAATTAACGCCAAGCCTGTATCTGCTGCCATCAAAGAATTTTTTGGCTCAAGTCAGCTTTCCCAGTTTATGGATCAGGTTAATCCCCTGTCAGGTGTCACCCATAAGCGCAGGGTTTCCGCGCTTGGTCCTGGTGGATTGACTCGAGAGCGAGCAGGGTTTGAAGTACGGGACGTACACACTACCCACAGTGTTGGTGAAATGACTGAGAATCAATTCCGCGTGGGATTGGTAAGAGTTGAACGTGCGGTGAAAGAAAGGTTAAGCCTGGCTGAATCAGAAAGCCTGATGCCGCAGGATTTAATTAACGCCAAGCCTGTATCTGCTGCCATCAAAGAATTTTTTGGCTCAAGTCAGCTTTCCCAGTTTATGGATCAGGTTAATCCCCTGTCAGGTGTCACCCATAAGCGCAGGGTTTCCGCGCTTGGTCCTGGTGGATTGACTCGAGAGCGAGCAGGGTTTGAAGTACGGGACGTACACACTACCCAC
21)21) Legionella jordanisLegionella jordanis (HM 7000)(HM 7000)
AGCGTAGGTGAAATGGCTGAAAACCAATACCGCGTGGGTTTAGTCCGTGTGGAAAGAGCGGTCAAAGAACGCTTAAGTCTTGTTGAATCTGAAAATCTTATGCCACAAGATTTAATTAATGCAAAACCCGTTTCAGCGGCAATCAAAGAGTTCTTTGGTTCAAGTCAGCTTTCCCAATTTATGGATCAGGTTAATCCACTATCTGGAGTAACCCATAAACGCCGTGTATCAGCTCTTGGTCCAGGCGGATTAACGCGTGAACGTGCTGGATTTGAAGTTCGTGACGTTCATACCACTCACAGCGTAGGTGAAATGGCTGAAAACCAATACCGCGTGGGTTTAGTCCGTGTGGAAAGAGCGGTCAAAGAACGCTTAAGTCTTGTTGAATCTGAAAATCTTATGCCACAAGATTTAATTAATGCAAAACCCGTTTCAGCGGCAATCAAAGAGTTCTTTGGTTCAAGTCAGCTTTCCCAATTTATGGATCAGGTTAATCCACTATCTGGAGTAACCCATAAACGCCGTGTATCAGCTCTTGGTCCAGGCGGATTAACGCGTGAACGTGCTGGATTTGAAGTTCGTGACGTTCATACCACTCAC
22)22) Legionella lansingensisLegionella lansingensis (ATCC 49751)(ATCC 49751)
AGTGTAGGTGAAATGGCGGAAAACCAATTCCGGGTTGGCCTTGTAAGGGTTGAACGAGCTGTCAAGGAACGTTTAAGCTTGGTGGAATCCGAAAATTTGATACCGCAAGATTTAATCAACGCAAAACCTGTTTCTGCTGCAGTAAAAGAATTCTTTGGTTCAAGTCAATTGTCGCAATTTATGGATCAAGTTAACCCCTTATCAGGTGTTACACACAAGCGACGTGTTTCTGCTCTTGGTCCAGGTGGATTGACAAGAGAGCGAGCTGGATTTGAGGTTCGTGACGTACACACGACTCTCAGTGTAGGTGAAATGGCGGAAAACCAATTCCGGGTTGGCCTTGTAAGGGTTGAACGAGCTGTCAAGGAACGTTTAAGCTTGGTGGAATCCGAAAATTTGATACCGCAAGATTTAATCAACGCAAAACCTGTTTCTGCTGCAGTAAAAGAATTCTTTGGTTCAAGTCAATTGTCGCAATTTATGGATCAAGTTAACCCCTTATCAGGTGTTACACACAAGCGACGTGTTTCTGCTCTTGGTCCAGGTGGATTGACAAGAGAGCGAGCTGGATTTGAGGTTCGTGACGTACACACGACTCTC
23)23) Legionella londiniensisLegionella londiniensis (ATCC 49505)(ATCC 49505)
AGTGTTGGTGAAATGACTGAGAATCAATTCCGCGTGGGATTGGTAAGAGTTGAACGTGCGGTGAAAGAAAGGTTAAGCCTGGCTGAATCAGAAAGCCTGATGCCGCAGGATTTAATTAACGCCAAGCCTGTATCTGCTGCCATTAAGGAATTTTTTGGCTCAAGTCAGCTTTCCCAGTTTATGGATCAGGTTAATCCCCTGTCAGGTGTCACCCATAAGCGCAGGGTTTCCGCGCTTGGTCCTGGTGGATTGACGCGAGAGCGAGCAGGGTTTGAAGTACGGGATGTACACACTACCCACAGTGTTGGTGAAATGACTGAGAATCAATTCCGCGTGGGATTGGTAAGAGTTGAACGTGCGGTGAAAGAAAGGTTAAGCCTGGCTGAATCAGAAAGCCTGATGCCGCAGGATTTAATTAACGCCAAGCCTGTATCTGCTGCCATTAAGGAATTTTTTGGCTCAAGTCAGCTTTCCCAGTTTATGGATCAGGTTAATCCCCTGTCAGGTGTCACCCATAAGCGCAGGGTTTCCGCGCTTGGTCCTGGTGGATTGACGCGAGAGCGAGCAGGGTTTGAAGTACGGGATGTACACACTACCCAC
24)24) Legionella longbeachaeLegionella longbeachae serogroup 1 (ATCC 33462)serogroup 1 (ATCC 33462)
AGCGTTGGTGAAATGACTGAAAACCAATTTAGAGTTGGTCTTGTACGCGTTGAAAGAGCAGTTAAAGAGCGATTGAGTTTAGTTGAATCTGAAAATTTAATGCCTCAAGATTTAATTAATGCAAAACCGGTTTCTGCTGCGATTAAGGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAATCCACTATCAGGTGTAACGCATAAGCGCAGGGTATCAGCTTTGGGCCCAGGTGGATTGACTCGAGAGCGTGCTGGCTTTGAAGTCCGTGACGTACATACCACCCACAGCGTTGGTGAAATGACTGAAAACCAATTTAGAGTTGGTCTTGTACGCGTTGAAAGAGCAGTTAAAGAGCGATTGAGTTTAGTTGAATCTGAAAATTTAATGCCTCAAGATTTAATTAATGCAAAACCGGTTTCTGCTGCGATTAAGGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAATCCACTATCAGGTGTAACGCATAAGCGCAGGGTATCAGCTTTGGGCCCAGGTGGATTGACTCGAGAGCGTGCTGGCTTTGAAGTCCGTGACGTACATACCACCCAC
25)25) Legionella longbeachaeLegionella longbeachae serogroup 2 (ATCC 33484)serogroup 2 (ATCC 33484)
AGCGTTGGTGAAATGACTGAAAACCAATTTAGAGTTGGTCTTGTACGCGTTGAAAGAGCAGTTAAAGAGCGATTGAGTTTAGTTGAATCTGAAAATTTAATGCCTCAAGATTTAATTAATGCAAAACCGGTTTCTGCTGCGATTAAGGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAATCCACTATCAGGTGTAACGCATAAGCGCAGGGTATCAGCTTTGGGCCCAGGTGGATTGACTCGAGAGCGTGCTGGCTTTGAAGTCCGTGACGTACATACCACCCACAGCGTTGGTGAAATGACTGAAAACCAATTTAGAGTTGGTCTTGTACGCGTTGAAAGAGCAGTTAAAGAGCGATTGAGTTTAGTTGAATCTGAAAATTTAATGCCTCAAGATTTAATTAATGCAAAACCGGTTTCTGCTGCGATTAAGGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAATCCACTATCAGGTGTAACGCATAAGCGCAGGGTATCAGCTTTGGGCCCAGGTGGATTGACTCGAGAGCGTGCTGGCTTTGAAGTCCGTGACGTACATACCACCCAC
26)26) Legionella maceacherniiLegionella maceachernii (ATCC 35300)(ATCC 35300)
TCTGTAGGTGAGATGGCTGAAAATCAATTTCGGGTTGGATTGGTGAGAGTTGAGCGCGCCGTTAAAGAGCGGTTAAGTCTTGTAGAGTCTGAAAATTTAATGCCTCAGGATTTAATTAATGCCAAACCAGTCTCTGCCGCAGTGAAAGAGTTCTTTGGATCTAGCCAGTTATCGCAGTTTATGGATCAAGTTAACCCACTTTCTGGAGTCACTCATAAACGACGTGTTTCTGCACTTGGCCCAGGTGGCTTAACCCGAGAACGTGCTGGCTTTGAAGTGCGTGACGTGCATACGACACACTCTGTAGGTGAGATGGCTGAAAATCAATTTCGGGTTGGATTGGTGAGAGTTGAGCGCGCCGTTAAAGAGCGGTTAAGTCTTGTAGAGTCTGAAAATTTAATGCCTCAGGATTTAATTAATGCCAAACCAGTCTCTGCCGCAGTGAAAGAGTTCTTTGGATCTAGCCAGTTATCGCAGTTTATGGATCAAGTTAACCCACTTTCTGGAGTCACTCATAAACGACGTGTTTCTGCACTTGGCCCAGGTGGCTTAACCCGAGAACGTGCTGGCTTTGAAGTGCGTGACGTGCATACGACACAC
27)27) Legionella micdadeiLegionella micdadei (ATCC 33218)(ATCC 33218)
tCAGTTGGTGAAATGGCTGAAAACCAGTTTCGAGTCGGATTAGTCAGGGTTGAGCGCGCTGTTAAGGAACGTTTAAGTCTAGTAGAGTCCGAAAACTTGATGCCTCAAGATCTAATAAACGCTAAACCAGTTTCAGCTGCAGTGAAAGAGTTTTTCGGGTCCAGTCAGCTATCACAATTCATGGACCAAGTTAACCCACTATCCGGCGTCACTCACAAACGGCGCGTTTCTGCACTGGGCCCAGGCGGTTTAACTCGAGAGCGAGCGGGTTTTGAAGTGCGTGACGTGCATACTACCCATtCAGTTGGTGAAATGGCTGAAAACCAGTTTCGAGTCGGATTAGTCAGGGTTGAGCGCGCTGTTAAGGAACGTTTAAGTCTAGTAGAGTCCGAAAACTTGATGCCTCAAGATCTAATAAACGCTAAACCAGTTTCAGCTGCAGTGAAAGAGTTTTTCGGGTCCAGTCAGCTATCACAATTCATGGACCAAGTTAACCCACTATCCGGCGTCACTCACAAACGGCGCGTTTCTGCACTGGGCCCAGGCGGTTTAACTCGAGAGCGAGCGGGTTTTGAAGTGCGTGACGTGCATACTACCCAT
28)28) Legionella moravicaLegionella moravica (ATCC 43877)(ATCC 43877)
AGTGTTGGCGAGATGGCTGAAAATCAATTCAGAGTTGGTTTGGTGCGCGTTGAACGAGCAGTCAAAGAACGTTTGAGCCTTGTAGAATCTGAAAATCTGATGCCACAAGACCTAATCAATGCCAAGCCAGTATCTGCAGCAGTAAAAGAGTTTTTTGGATCCAGCCAATTATCGCAGTTTATGGATCAGGTAAATCCTCTATCAGGAGTTACTCATAAACGACGTGTTTCTGCACTAGGCCCAGGTGGATTGACCAGAGAGCGAGCTGGTTTTGAAGTACGTGACGTACATACCACTCACAGTGTTGGCGAGATGGCTGAAAATCAATTCAGAGTTGGTTTGGTGCGCGTTGAACGAGCAGTCAAAGAACGTTTGAGCCTTGTAGAATCTGAAAATCTGATGCCACAAGACCTAATCAATGCCAAGCCAGTATCTGCAGCAGTAAAAGAGTTTTTTGGATCCAGCCAATTATCGCAGTTTATGGATCAGGTAAATCCTCTATCAGGAGTTACTCATAAACGACGTGTTTCTGCACTAGGCCCAGGTGGATTGACCAGAGAGCGAGCTGGTTTTGAAGTACGTGACGTACATACCACTCAC
29)29) Legionella nautarumLegionella nautarum (ATCC 49506)(ATCC 49506)
TCAGTAGGAGAAATGGCAGAAAACCAATTCCGAGTTGGTTTAGTAAGAGTGGAACGAGCTGTGAAAGAGCGTTTAAGTCTTGTCGAGTCAGAAAATTTGATGCCTCAAGATTTAATTAACGCTAAACCAGTTTCTGCAGCTGTAAAAGAATTTTTCGGCTCTAGCCAGTTATCACAGTTTATGGATCAGGTTAATCCACTCTCTGGAGTAACTCACAAACGCCGTGTTTCAGCACTTGGCCCCGGTGGTTTAACTCGCGAACGCGCTGGTTTTGAAGTGCGTGACGTTCATACTACCCACTCAGTAGGAGAAATGGCAGAAAACCAATTCCGAGTTGGTTTAGTAAGAGTGGAACGAGCTGTGAAAGAGCGTTTAAGTCTTGTCGAGTCAGAAAATTTGATGCCTCAAGATTTAATTAACGCTAAACCAGTTTCTGCAGCTGTAAAAGAATTTTTCGGCTCTAGCCAGTTATCACAGTTTATGGATCAGGTTAATCCACTCTCTGGAGTAACTCACAAACGCCGTGTTTCAGCACTTGGCCCCGGTGGTTTAACTCGCGAACGCGCTGGTTTTGAAGTGCGTGACGTTCATACTACCCAC
30)30) Legionella oakridgensisLegionella oakridgensis (HM 7002)(HM 7002)
AGTGTTGGTGAAATGACCGAAAACCAATTTAGAGTTGGTCTTGTTCGTGTTGAACGGGCTGTAAAAGAACGCTTAAGCTTGGTTGAATCTGAAAATCTGATGCCACAGGACTTAATTAACGCAAAACCAGTTTCTGCCGCAATTAAAGAATTTTTTGGTTCCAGTCAATTATCCCAATTTATGGACCAAGTGAATCCATTATCTGGTGTCACACACAAACGACGGGTTTCAGCGCTGGGTCCAGGTGGTTTAACACGTGAACGGGCTGGCTTTGAAGTTCGTGACGTTCATACCACGCACAGTGTTGGTGAAATGACCGAAAACCAATTTAGAGTTGGTCTTGTTCGTGTTGAACGGGCTGTAAAAGAACGCTTAAGCTTGGTTGAATCTGAAAATCTGATGCCACAGGACTTAATTAACGCAAAACCAGTTTCTGCCGCAATTAAAGAATTTTTTGGTTCCAGTCAATTATCCCAATTTATGGACCAAGTGAATCCATTATCTGGTGTCACACACAAACGACGGGTTTCAGCGCTGGGTCCAGGTGGTTTAACACGTGAACGGGCTGGCTTTGAAGTTCGTGACGTTCATACCACGCAC
31)31) Legionella parisiensisLegionella parisiensis (UOEH 11745)(UOEH 11745)
AGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGACTTGTACGTGTTGAAAGAGCGGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCGATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGATCAAGTTAATCCGTTATCGGGTGTAACACACAAACGTAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACGCGTGAACGTGCAGGATTTGAAGTTCGCGACGTTCATACCACACACAGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTCGGACTTGTACGTGTTGAAAGAGCGGTTAAAGAACGTTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAAGATTTAATCAATGCAAAACCAGTTTCTGCTGCGATTAAAGAATTTTTTGGCTCAAGCCAGTTATCACAATTTATGGATCAAGTTAATCCGTTATCGGGTGTAACACACAAACGTAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACGCGTGAACGTGCAGGATTTGAAGTTCGCGACGTTCATACCACACAC
32)32) Legionella pneumophilaLegionella pneumophila serogroup 1 (ATCC 33152)serogroup 1 (ATCC 33152)
AGTGTTGGCGAAATGACCGAAAATCAGTTTAGAGTAGGTCTTGTTCGAGTTGAACGTGCTGTTAAAGAGCGCTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAGGACTTAATTAACGCAAAACCAGTATCCGCCGCAATTAAAGAGTTTTTTGGATCCAGTCAGTTATCACAGTTTATGGATCAAGTGAATCCATTATCTGGTGTTACGCATAAAAGACGTGTATCAGCTCTTGGGCCAGGTGGTTTAACACGTGAGCGGGCTGGATTTGAAGTCCGTGACGTACATACAACTCACAGTGTTGGCGAAATGACCGAAAATCAGTTTAGAGTAGGTCTTGTTCGAGTTGAACGTGCTGTTAAAGAGCGCTTAAGTTTGGTTGAATCTGAAAATCTGATGCCACAGGACTTAATTAACGCAAAACCAGTATCCGCCGCAATTAAAGAGTTTTTTGGATCCAGTCAGTTATCACAGTTTATGGATCAAGTGAATCCATTATCTGGTGTTACGCATAAAAGACGTGTATCAGCTCTTGGGCCAGGTGGTTTAACACGTGAGCGGGCTGGATTTGAAGTCCGTGACGTACATACAACTCAC
33)33) Legionella quinlivaniiLegionella quinlivanii (ATCC 43830)(ATCC 43830)
AGAGTTGGTGAAATGACCGAAAATCAGTTTAGAGTTGGTTTGGTTCGTGTTGAACGAGCTGTTAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCTCAGAACTTGATTAATGCCAAGCCTGTATCTGCGGCTATTAAAGAATTTTTCGGATCCAGTCAGTTATCGCAATTTATGGATCAGGTTAACCCTTTATCGGGAGTGACCCATAAACGCCGTGTTTCAGCACTTGGCCCAGGTGGACTCACCCGTGAACGAGCCGGCTTTGAAGTCCGTGACGTTCACACTACTCATAGAGTTGGTGAAATGACCGAAAATCAGTTTAGAGTTGGTTTGGTTCGTGTTGAACGAGCTGTTAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCTCAGAACTTGATTAATGCCAAGCCTGTATCTGCGGCTATTAAAGAATTTTTCGGATCCAGTCAGTTATCGCAATTTATGGATCAGGTTAACCCTTTATCGGGAGTGACCCATAAACGCCGTGTTTCAGCACTTGGCCCAGGTGGACTCACCCGTGAACGAGCCGGCTTTGAAGTCCGTGACGTTCACACTACTCAT
34)34) Legionella rubrilucensLegionella rubrilucens (ATCC 35304)(ATCC 35304)
AGCGTGGGTGAAATGACGGAAAACCAGTTCCGTGTTGGTTTAGTTCGTGTTGAGCGTGCGGTCAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCCCAGGATTTGATAAACGCAAAGCCTGTTTCTGCCGCAATCAAAGAATTTTTTGGCTCAAGCCAGTTATCGCAGTTTATGGATCAGGTTAACCCGCTTTCCGGAGTGACTCACAAAGCGCGTGTTTCAGCCCTTGGGCCAGGCGGGTTAACTCGAGAACGCGCAGGATTTGAAGTCCGTGACGTTCACACCACTCatAGCGTGGGTGAAATGACGGAAAACCAGTTCCGTGTTGGTTTAGTTCGTGTTGAGCGTGCGGTCAAAGAGCGTTTAAGCCTGGTTGAATCTGAAAATCTGATGCCCCAGGATTTGATAAACGCAAAGCCTGTTTCTGCCGCAATCAAAGAATTTTTTGGCTCAAGCCAGTTATCGCAGTTTATGGATCAGGTTAACCCGCTTTCCGGAGTGACTCACAAAGCGCGTGTTTCAGCCCTTGGGCCAGGCGGGTTAACTCGAGAACGCGCAGGATTTGAAGTCCGTGACGTTCACACCACTCat
35)35) Legionella sainthelensiLegionella sainthelensi (ATCC 35248)(ATCC 35248)
AGTGTCGGTGAAATGACTGAAAATCAATTTAGGGTAGGACTTGTTCGTGTTGAAAGAGCAGTTAAAGAGCGACTAAGTTTAGTTGAATCTGAAAATTTAATGCCGCAAGATTTAATAAATGCAAAACCGGTTTCAGCAGCGATTAAAGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAACCCATTATCAGGGGTAACTCATAAACGCAGAGTCTCTGCTTTGGGACCAGGCGGTTTGACACGTGAACGTGCTGGCTTTGAAGTCCGTGACGTCCATACCACACACAGTGTCGGTGAAATGACTGAAAATCAATTTAGGGTAGGACTTGTTCGTGTTGAAAGAGCAGTTAAAGAGCGACTAAGTTTAGTTGAATCTGAAAATTTAATGCCGCAAGATTTAATAAATGCAAAACCGGTTTCAGCAGCGATTAAAGAATTTTTTGGTTCAAGTCAGTTATCTCAATTTATGGATCAAGTAAACCCATTATCAGGGGTAACTCATAAACGCAGAGTCTCTGCTTTGGGACCAGGCGGTTTGACACGTGAACGTGCTGGCTTTGAAGTCCGTGACGTCCATACCACACAC
36)36) Legionella santicrucisLegionella santicrucis (UOEH 11746)(UOEH 11746)
AGTGTTGGTGAAATGACAGAAAACCAATTTAGGGTTGGTCTTGTTCGCGTTGAAAGAGCAGTTAAAGAGCGACTAAGTTTAGTTGAATCTGAAAACTTAATGCCACAAGATTTAATTAATGCAAAGCCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGTTCAAGTCAGTTATCCCAATTTATGGATCAAGTAAATCCATTATCAGGTGTAACCCATAAGCGAAGAGTATCTGCTTTAGGCCCAGGCGGATTAACTCGTGAACGCGCTGGCTTTGAAGTCCGTGACGTACATACAACGCATAGTGTTGGTGAAATGACAGAAAACCAATTTAGGGTTGGTCTTGTTCGCGTTGAAAGAGCAGTTAAAGAGCGACTAAGTTTAGTTGAATCTGAAAACTTAATGCCACAAGATTTAATTAATGCAAAGCCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGTTCAAGTCAGTTATCCCAATTTATGGATCAAGTAAATCCATTATCAGGTGTAACCCATAAGCGAAGAGTATCTGCTTTAGGCCCAGGCGGATTAACTCGTGAACGCGCTGGCTTTGAAGTCCGTGACGTACATACAACGCAT
37)37) Legionella shakespeareiLegionella shakespearei (ATCC 49655)(ATCC 49655)
AGTGTTGGCGAAATGGCAGAAAACCAGTTCAGAGTTGGTTTGGTACGTGTTGAGCGTGCTGTTAAGGAGCGTCTGAGTCTGGTTGAGTCCGAAAATCTGATGCCTCAGAATTTGATCAATGCCAAACCTGTATCTGCTGCTGTTAAAGAGTTCTTTGGTTCGAGCCAGTTATCACAATTTATGGATCAGGTTAATCCTTTATCAGGTGTGACACACAAGCGAAGAGTTTCAGCATTAGGCCCAGGTGGTTTGACACGTGAGCGTGCCGGATTTGAAGTTCGTGACGTACATACAACTCACAGTGTTGGCGAAATGGCAGAAAACCAGTTCAGAGTTGGTTTGGTACGTGTTGAGCGTGCTGTTAAGGAGCGTCTGAGTCTGGTTGAGTCCGAAAATCTGATGCCTCAGAATTTGATCAATGCCAAACCTGTATCTGCTGCTGTTAAAGAGTTCTTTGGTTCGAGCCAGTTATCACAATTTATGGATCAGGTTAATCCTTTATCAGGTGTGACACACAAGCGAAGAGTTTCAGCATTAGGCCCAGGTGGTTTGACACGTGAGCGTGCCGGATTTGAAGTTCGTGACGTACATACAACTCAC
38)38) Legionella spiritensisLegionella spiritensis (UOEH 11199)(UOEH 11199)
AGCGTTGGCGAGATGACTGAAAATCAATTCAGAGTCGGGTTGGTAAGAGTCGAGCGCGCCGTAAAAGAACGGTTAAGTCTGGTAGAGTCCGAAAATTTAATGCCTCAGGACTTGATCAATGCCAAGCCGGTCTCCGCCGCTATCAAGGAATTTTTTGGCTCAAGCCAGCTCTCGCAATTTATGGATCAAGTTAATCCATTGTCCGGGGTTACTCATAAGCGACGGGTTTCAGCGCTTGGCCCGGGTGGCTTGACTCGTGAACGGGCCGGATTCGAAGTTCGGGATGTGCATACCACTCACAGCGTTGGCGAGATGACTGAAAATCAATTCAGAGTCGGGTTGGTAAGAGTCGAGCGCGCCGTAAAAGAACGGTTAAGTCTGGTAGAGTCCGAAAATTTAATGCCTCAGGACTTGATCAATGCCAAGCCGGTCTCCGCCGCTATCAAGGAATTTTTTGGCTCAAGCCAGCTCTCGCAATTTATGGATCAAGTTAATCCATTGTCCGGGGTTACTCATAAGCGACGGGTTTCAGCGCTTGGCCCGGGTGGCTTGACTCGTGAACGGGCCGGATTCGAAGTTCGGGATGTGCATACCACTCAC
39)39) Legionella steigerwaltiiLegionella steigerwaltii (UOEH 11747)(UOEH 11747)
AGCGTTGGTGAAATGACTGAAAACCAATTCAGAGTCGGCCTTGTACGTGTTGAAAGAGCGGTAAAAGAGCGGTTGAGTCTGGTTGAATCTGAAAATCTTATGCCACAAGATTTAATTAATGCCAAACCGGTTTCTGCTGCTATTAAAGAGTTTTTTGGTTCAAGCCAATTATCACAATTTATGGATCAGGTTAACCCATTATCTGGTGTTACCCATAAAAGAAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACACGAGAACGTGCAGGATTTGAGGTTCGTGACGTACATACAACACACAGCGTTGGTGAAATGACTGAAAACCAATTCAGAGTCGGCCTTGTACGTGTTGAAAGAGCGGTAAAAGAGCGGTTGAGTCTGGTTGAATCTGAAAATCTTATGCCACAAGATTTAATTAATGCCAAACCGGTTTCTGCTGCTATTAAAGAGTTTTTTGGTTCAAGCCAATTATCACAATTTATGGATCAGGTTAACCCATTATCTGGTGTTACCCATAAAAGAAGGGTTTCTGCATTAGGCCCAGGTGGTTTAACACGAGAACGTGCAGGATTTGAGGTTCGTGACGTACATACAACACAC
40)40) Legionella tucsonensis (Legionella tucsonensis ( ATCC 49180)ATCC 49180)
AGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTTGGTCTTGTACGTGTTGAAAGGGCTGTAAAAGAACGTCTAAGCTTGGTTGAGTCTGAAAATCTGATGCCACAGGATTTAATTAATGCAAAACCAGTTTCTGCTGCAATTAAAGAATTTTTTGGTTCAAGTCAATTATCCCAATTTATGGACCAAGTTAATCCATTATCTGGTGTCACACACAAACGTCGGGTTTCAGCGTTGGGTCCAGGTGGTTTAACACGTGAACGGGCTGGCTTTGAAGTTCGTGACGTTCATACCACACACAGTGTTGGTGAAATGACAGAAAACCAATTTAGAGTTGGTCTTGTACGTGTTGAAAGGGCTGTAAAAGAACGTCTAAGCTTGGTTGAGTCTGAAAATCTGATGCCACAGGATTTAATTAATGCAAAACCAGTTTCTGCTGCAATTAAAGAATTTTTTGGTTCAAGTCAATTATCCCAATTTATGGACCAAGTTAATCCATTATCTGGTGTCACACACAAACGTCGGGTTTCAGCGTTGGGTCCAGGTGGTTTAACACGTGAACGGGCTGGCTTTGAAGTTCGTGACGTTCATACCACACAC
41)41) Legionella wadsworthiiLegionella wadsworthii (ATCC 33877)(ATCC 33877)
AGCGTAGGTGAAATGACTGAAAACCAATTCCGAGTTGGTTTGGTGCGTGTTGAAAGAGCTGTGAAGGAACGTTTAAGTCTTGTCGAATCAGAAAATTTAATGCCTCAAGATTTAATTAACGCCAAGCCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGCTCTAGCCAACTGTCCCAATTCATGGATCAGGTAAATCCCTTATCCGGTGTGACACATAAGCGCAGAGTATCCGCTTTAGGCCCAGGTGGATTAACAAGAGAGCGCGCAGGCTTCGAAGTACGCGACGTTCATACAACCCATAGCGTAGGTGAAATGACTGAAAACCAATTCCGAGTTGGTTTGGTGCGTGTTGAAAGAGCTGTGAAGGAACGTTTAAGTCTTGTCGAATCAGAAAATTTAATGCCTCAAGATTTAATTAACGCCAAGCCTGTTTCTGCTGCAATTAAAGAGTTTTTTGGCTCTAGCCAACTGTCCCAATTCATGGATCAGGTAAATCCCTTATCCGGTGTGACACATAAGCGCAGAGTATCCGCTTTAGGCCCAGGTGGATTAACAAGAGAGCGCGCAGGCTTCGAAGTACGCGACGTTCATACAACCCAT
42)42) Legionella worsleiensisLegionella worsleiensis (ATCC 49508)(ATCC 49508)
AGTGTTGGCAAGATGACAGAAAACCAGTTCAGAGTTGGTTTAGTTCGAGTTGAACGTGCTGTTAAAGAACGCTTGAGTCTTGTTGAGTCTGAAAACTTGATGCCACAGGATCTCATTAATGCCAAACCTGTTTCGGCTGCAGTTAAAGAGTTTTTTGGTTCCAGTCAGTTATCCCAGTTTATGGATCAGGTTAATCCATTATCCGGTGTAACTCATAAACGACGTGTTTCTGCATTAGGCCCAGGCGGTCTGACTCGTGAGCGAGCAGGGTTTGAGGTTCGTGACGTTCACACAACACACAGTGTTGGCAAGATGACAGAAAACCAGTTCAGAGTTGGTTTAGTTCGAGTTGAACGTGCTGTTAAAGAACGCTTGAGTCTTGTTGAGTCTGAAAACTTGATGCCACAGGATCTCATTAATGCCAAACCTGTTTCGGCTGCAGTTAAAGAGTTTTTTGGTTCCAGTCAGTTATCCCAGTTTATGGATCAGGTTAATCCATTATCCGGTGTAACTCATAAACGACGTGTTTCTGCATTAGGCCCAGGCGGTCTGACTCGTGAGCGAGCAGGGTTTGAGGTTCGTGACGTTCACACAACACAC
상기의 서열 번호 제1 내지 제42의 염기서열은, 레지오넬라의 34가지 균종의 rpoB 유전자의 일부 분절 34개와 레지오넬라의 또 다른 4가지 균종의 각 2가지 아종의 rpoB 유전자의 일부 분절 8개로 이루어진다. 이들 42개의 염기서열들을 기준으로하여 분석대상 레지오넬라 균종들의 계통 관계를 분석할 수 있다(도 4참조).The base sequences of SEQ ID NOs: 1 to 42 are composed of 34 partial segments of the rpoB gene of 34 species of Legionella and 8 partial segments of the rpoB gene of each of two subspecies of 4 other strains of Legionella. Based on these 42 base sequences, the lineage relationship of the Legionella species to be analyzed can be analyzed (see FIG. 4).
본 발명의 또 다른 목적은, 분석대상의 레지오넬라균의 rpoB DNA 일부분을 상기의 프라이머를 사용하여 증폭하는 단계; 이렇게 증폭된 레지오넬라균의 rpoB DNA 분절내에 존재하는 특정 제한 효소 인식부위에 특정 제한효소를 가하는 단계; 상기의 특정 제한 효소에 의하여 상기 분절의 절단 여부를 확인하는 단계를 포함하는 균종 판별 방법을 제공함으로써 달성된다.Another object of the present invention, amplifying the rpoB DNA portion of the Legionella bacteria to be analyzed using the primers; Adding a specific restriction enzyme to a specific restriction enzyme recognition site present in the rpoB DNA fragment of the amplified Legionella bacteria; It is achieved by providing a bacterial species discrimination method comprising the step of checking whether the segment is cleaved by the specific restriction enzyme.
이러한 균종 판정 방법에 있어서도, 판정 대상 레지오넬라균의 rpoB DNA 일부분을 서열번호 제43 및 제44의 정방향 및 역방향의 프라이머를 혼합하여 사용하여 분절을 증폭하며, 이렇게 증폭된 분절에 각 균종에 따라 특정되는 제한 효소를 가하여 그 제한 효소에 의하여 절단되는 부위가 존재하는지 여부를 판별하여 분석 대상 레지오넬라균이 어떤 균종에 속하는지를 판단한다.Also in this type of species determination method, a portion of the Legionella bacterium rpoB DNA to be judged is mixed with the forward and reverse primers of SEQ ID NOs: 43 and 44 to amplify the fragments, and the amplified fragments are identified according to each species. The restriction enzyme is added to determine whether or not the site to be cleaved by the restriction enzyme exists to determine which species belong to the Legionella bacterium to be analyzed.
각 레지오넬라 균종들에 있어서, 제한 효소에 의한 절단 여부 및 부위가 상이하므로 증폭된 분절에 특정 제한 효소로 처리(RFLP-Restriction Fragment Length Polymorphism)하고, 그 처리된 혼합물을 전기영동으로 분리한 결과를 분석하여 절단된 분절의 크기 및 분리된 밴드의 수에 따라 레지오넬라균의 균종을 판별할 수 있게 된다.For each Legionella species, the cleavage and site of restriction enzymes were different, so the amplified fragments were treated with a specific restriction enzyme (RFLP-Restriction Fragment Length Polymorphism), and the treated mixture was subjected to electrophoresis. The species of Legionella can be determined according to the size of the cut segment and the number of separated bands.
본 발명의 또 다른 목적은 레지오넬라 뉴모필라종의 rpoB DNA만을 선택적으로 증폭시키는 서열번호 제44 및 제45의 염기서열을 갖는 프라이머쌍을 제공하므로써 달성된다.Another object of the present invention is achieved by providing a primer pair having the nucleotide sequences of SEQ ID NOs: 44 and 45 which selectively amplify only rpoB DNA of Legionella pneumophila species.
5'TCAGTTTAGAGTAGGTCTT3',5'CCCAAGRGCCGATACACG3' 5 ' TCAGTTTAGAGTAGGTCTT 3' , 5 ' CCCAAGRGCCGATACACG 3'
레지오넬라 뉴모필라종의 rpoB DNA만을 선택적으로 증폭시키는 서열번호 제44 및 제45의 염기서열을 갖는 프라이머 쌍은 서열 번호 제32의 레지오넬라 뉴모필라의 염기 서열로부터 이들의 특징적 염기서열을 확인하여, 레지오넬라 뉴모필라종의 rpoB 유전자의 일부 분절을 선택적으로 증폭시키는 프라이머 쌍을 제조하였다. Primer pairs having base sequences of SEQ ID NOs: 44 and 45 that selectively amplify only rpoB DNA of Legionella pneumophila species identified their characteristic base sequences from the base sequences of Legionella pneumophila of SEQ ID NO: 32 Primer pairs were prepared to selectively amplify some segments of the rpoB gene of Philae species.
본 발명의 또 다른 목적은 서열 번호 45 및 46의 염기서열을 갖는 프라이머 쌍을 포함하는, 레지오넬라속 뉴모필라균을 선택적으로 판별하기 위한 진단 시약을 제공하는 것이다. It is another object of the present invention to provide a diagnostic reagent for selectively discriminating Legionella pneumophila, comprising primer pairs having the nucleotide sequences of SEQ ID NOs: 45 and 46.
본 발명의 다른 목적은 레지오넬라 뉴모필라종의 rpoB DNA 분절을 증폭시키는 단계를 포함하는 레지오넬라 뉴모필라종 검출 및 동정방법을 제공하므로써 달성된다.Another object of the present invention is achieved by providing a method for detecting and identifying Legionella pneumophila species comprising amplifying an rpoB DNA segment of Legionella pneumophila species.
이 경우, 레지오넬라 뉴모필라종의 rpoB DNA의 일부분을 선택적으로 증폭시키는 단계에서는 서열번호 제44 및 제45의 정방향 프라이머 (5'TCAGTTTAGAGTAGGTCTT3') 및 역방향 프라이머(5'CCCAAGRGCCGATACACG3')가 혼합되어 사용될 수 있다.In this case, in the step of selectively amplifying a part of the rpoB DNA of Legionella pneumophila species, the forward primers ( 5 ' TCAGTTTAGAGTAGGTCTT 3' ) and the reverse primers ( 5 ' CCCAAGRGCCGATACACG 3' ) of SEQ ID NOs: 44 and 45 are mixed and used. Can be.
상기의 프라이머는 레지오넬라 뉴모필라종의 rpoB 유전자의 일부 분절만을 선택적으로 증폭시키므로, 레지오넬라의 다른 균종들로부터 레지오넬라 뉴모필라종을 선택적으로 검출 및 동정할 수 있게 된다. 상기의 프라이머쌍을 사용하여 PCR을 수행하여 레지오넬라 뉴모필라의 rpoB DNA 분절(217-bp)만이 증폭되고 다른 레지오넬라 균종에서는 증폭산물이 없으므로 레지오넬라 뉴모필라종을 선택적으로 검출 및 동정할 수 있다.Since the primer selectively amplifies only a portion of the rpoB gene of Legionella pneumophila species, it is possible to selectively detect and identify Legionella pneumophila species from other species of Legionella. By performing PCR using the primer pairs described above, only rpoB DNA fragment (217-bp) of Legionella pneumophila is amplified and other Legionella strains can be selectively detected and identified because Legionella pneumophila species are not amplified.
본 발명의 또 다른 목적은 레지오넬라 뉴모필라종의 rpoB DNA 분절을 증폭하는 단계; 증폭된 레지오넬라 뉴모필라종의 rpoB DNA 분절 내에 존재하는 특정 제한 효소 인식 부위의 절단을 확인하기 위하여 상기의 유전자 분절에 특정 제한 효소를 부가하는 단계; 상기 특정 제한 효소에 의한 상기 유전자 분절의 절단 여부를 분석하는 단계를 포함하는 레지오넬라 뉴모필라 아종 판별 방법을 제공함으로써 달성된다.Another object of the present invention is to amplify the rpoB DNA segment of Legionella pneumophila species; Adding a specific restriction enzyme to said gene segment to identify cleavage of the specific restriction enzyme recognition site present in the rpoB DNA segment of the amplified Legionella pneumophila species; It is achieved by providing a Legionella pneumophila subspecies discrimination method comprising analyzing whether the gene segment is cleaved by the specific restriction enzyme.
이 경우에는, 레지오넬라 뉴모필라종의 rpoB DNA의 일부분을 선택적으로 증폭시키는 단계에서는 서열번호 제44 및 제45의 정방향 프라이머 (5'TCAGTTTAGAGTAGGTCTT3') 및 역방향 프라이머(5'CCCAAGRGCCGATACACG3')가 혼합되어 사용될 수 있다.In this case, in the step of selectively amplifying a portion of rpoB DNA of Legionella pneumophila species, the forward primers ( 5 ' TCAGTTTAGAGTAGGTCTT 3' ) and the reverse primers ( 5 ' CCCAAGRGCCGATACACG 3' ) of SEQ ID NOs: 44 and 45 are mixed. Can be used.
레지오넬라 뉴모필라 균종들간에도 rpoB DNA 분절 내에 존재하는 특정 제한 효소의 인식 부위가 상이하므로 상기에서 증폭된 rpoB DNA 분절에 제한효소를 부가하여(RFLP-Restriction Fragment Length Polymorphism) 전기영동한 결과로 레지오넬라 뉴모필라 아종을 판별할 수 있다.Since Legionella pneumophila species have different recognition sites for specific restriction enzymes present in rpoB DNA fragments, they were added to the amplified rpoB DNA fragments (RFLP-Restriction Fragment Length Polymorphism). Subspecies can be determined.
레지오넬라 뉴모필라에 선택적인 상기의 프라이머를 사용한 PCR에 의해 217-bp의 rpoB DNA 분절이 증폭되었으며, 이어서BamHI 제한 효소에 의한 절단으로 다른 균주들은 모두 절단되어 136-bp와 81-bp의 DNA 절편을 보이나, serogroup 4, 5, 그리고 15만이 절단되지 않은 채 남게 된다. 이를 통해, 이 세가지 균주는 subsp.fraseri에 속하고, 나머지는 subsp.pneumophila에 속하는 균주들임을 판별할 수 있다.217-bp rpoB DNA fragments were amplified by PCR using the above primers selective for Legionella pneumophila, followed by digestion with Bam HI restriction enzymes, which resulted in the cleavage of all other strains, resulting in 136-bp and 81-bp DNA fragments. However, only serogroups 4, 5, and 15 remain uncut. Through these three strains, subsp. fraseri and the rest are subsp. It can be determined that the strains belong to pneumophila .
이하 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 본 발명의 범위가 하기 실시예의 내용으로 한정되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.
실시예 1Example 1 : 사용 균주: Strains Used
총 38 균종 (54 strain)의 레지오넬라 관련 균주를 사용하였다(표 1참조). 균종간의 계통관계를 비교해 보기 위한 16S rRNA 유전자와mip의 염기서열은 GenBank 등록된 것을 사용하였다. 분리균주들은 한국의 환자(3 주; Kp1, Kp2, Kp3)로부터 분리되거나 환경에서 분리된 균주(76 주)들로서 생화학적 검사 방법으로 동정된 것을 사용하였다. PCR의 특이성을 검정하기 위한 대조 균종들로는 레지오넬라 균종들처럼 폐렴을 일으키거나 인체 호흡기나 위장관에서 분리될 수 있는 균종들(Bacillus subtilis,Bacteroides fragilis,Branhamella catarrhalis,Corynebacterium diphtheriae,Escherichia coli,Haemophilus influenzae,Helicobacter pylori,Mycobacterium fortuitum,Neisseria sicca,Staphylococcus aureus,Streptococcus faecalis,Streptococcus pyogenes)을 사용하였다.A total of 38 strains of Legionella related strains were used (see Table 1). GenBank-registered 16S rRNA gene and mip sequence were used to compare strains between strains. Isolates were used as biochemical assays as strains isolated from Korean patients (3 weeks; Kp1, Kp2, Kp3) or in the environment (76 weeks). Control species for testing the specificity of PCR include, as Legionella strains, Bacillus subtilis , Bacteroides fragilis , Branhamella catarrhalis , Corynebacterium diphtheriae , Escherichia coli , Haemophilus influenzer pylori , Helicobacter spp . , Mycobacterium fortuitum , Neisseria sicca , Staphylococcus aureus , Streptococcus faecalis , Streptococcus pyogenes ).
실시예 2:Example 2: 각 균종으로부터의 DNA 추출DNA extraction from each species
DNA 추출은 비드 비터(bead beater) 페놀 추출 방법(Kimet al., 1999)을 사용하였다. 100 μl의 세균 부유액을 2.0 ml 스크류 캡(screw-capped)의 미세 원심분리(microcentrifuge) 튜브에 넣고 100 μl의 페놀-클로로포름-이소프로필 알코올(50:49:1)과 100 μl(packed volume)의 유리 구슬(glass bead)을 넣었으며 튜브를 미니 비드 비터에서 30초간 진탕하여(5,000 rpm) 세균을 파쇄하였다. 다시 튜브를 15,000 rpm에서 10 분간 원심분리하고 상등액을 새 튜브에 옮겼다. DNA는 동일 부피의 이소프로필알코올로 침전시켜 60 μl의 증류수에 녹여 PCR에 사용하였다.DNA extraction was performed using a bead beater phenol extraction method (Kim et al ., 1999). 100 μl of bacterial suspension is placed in a 2.0 ml screw-capped microcentrifuge tube and 100 μl of phenol-chloroform-isopropyl alcohol (50: 49: 1) and 100 μl (packed volume) of Glass beads were added and the tube was shaken (5,000 rpm) for 30 seconds on a mini bead beater to disrupt bacteria. The tube was again centrifuged for 10 minutes at 15,000 rpm and the supernatant was transferred to a new tube. DNA was precipitated with the same volume of isopropyl alcohol, dissolved in 60 μl of distilled water, and used for PCR.
실시예 3Example 3 : rpoB 유전자의 PCR을 통한 증폭: Amplification by PCR of rpoB gene
GenBank에 등록된Escherichia coli(Acession no. V00340),Coxiella burnetii(U86688), 그리고L. pneumophila(AF087812)등의 rpoB 염기서열로부터 리팜핀 내성(rif r) 지역(Severinovet al., 1993; Kimet al., 1999; Nielsenet al., 2000)을 포함하는 DNA(369-bp) 분절이 증폭되도록 레지오넬라에 선택적인 프라이머(5'GATGATATCGATCAYCTDGG3',5'TTCVGGCGTTCAATNGGAC3')를 제작하였다.Rifampin resistance ( rif r ) region (Severinov et al ., 1993; Kim et al . From the rpoB sequences such as Escherichia coli (Acession no. V00340), Coxiella burnetii (U86688), and L. pneumophila (AF087812) registered in GenBank. , 1999; Nielsen et al ., 2000) were prepared primers ( 5 ' GATGATATCGATCAYCTDGG 3' , 5 ' TTCVGGCGTTCAATNGGAC 3' ) to Legionella to amplify DNA (369-bp) fragments, including.
이미 알려진 바대로B. subtilis와E. coli의 rpoB는 4곳의 보존 영역(conserved domains, C1∼C4)과 3곳의 가변 영역(variable domains, V1∼V3)으로 구성되어 있는데, 대장균과 결핵균의 리팜핀 내성과 관련된 rif r 부위(코돈 507∼533,E. colinumbering)이 포함된C2의 고도의 보존 영역(highly conserved region,HCR5; 444∼454,HCR6;547∼577)에 전방향 프라이머와 역방향 프라이머가위치하게 하였다(도1 참조).As already knownB. subtilisWowE. coliRpoB It consists of four conserved domains (C1 to C4) and three variable domains (V1 to V3). Associated with rifampin resistance rif r part(Codons 507-533,E. colinumbering)C2Highly conserved region,HCR5; 444-454,HCR6;547-577), the forward primer and the reverse primer were positioned (see Fig. 1).
PCR은 주형 DNA 50 ng과 각 프라이머 20 pmol을TaqDNA 중합효소 1 유닛, 각 디옥시뉴클레오시드 트리포스페이트(deoxynucleoside triphosphate)가 250 μM, Tris-HCl(pH 8.3) 50 mM, KCl 40 mM, MgCl21.5 mM, 그리고 gel loading dye가 포함된 PCR 반응 혼합물이 담긴 용기(AccuPower PCR PreMix; Bioneer, Korea)에 넣고 최종 부피가 20 μl 되게 증류수로 맞춘 다음, 9700 Thermocycler(Perkin-Elmer Cetus)를 이용하여 30싸이클을 시행하였다(denaturation 95℃ 30 초, annealing 55℃ 30 초, extension 72℃ 1 분, final extension 72℃ 5 분).PCR consists of 50 ng of template DNA and 20 pmol of each primer, 1 unit of Taq DNA polymerase, 250 μM of each deoxynucleoside triphosphate, 50 mM of Tris-HCl (pH 8.3), KCl 40 mM, MgCl 2 Put in a vessel containing the PCR reaction mixture containing 1.5 mM, and gel loading dye (AccuPower PCR PreMix; Bioneer, Korea) to distilled water to a final volume of 20 μl, using a 9700 Thermocycler (Perkin-Elmer Cetus) Thirty cycles were performed (denaturation 95 ° C. 30 sec, annealing 55 ° C. 30 sec, extension 72 ° C. 1 min, final extension 72 ° C. 5 min).
증폭 산물은 1.5 % 아가로즈 겔상에서 전기 영동하여 확인하였으며, 염기 서열 결정을 위해 QIAEX II 겔 추출 키트(QIAGEN, Hilden, Germany)로 정제하였다.Amplification products were identified by electrophoresis on 1.5% agarose gel and purified by QIAEX II gel extraction kit (QIAGEN, Hilden, Germany) for sequencing.
실시예 4Example 4 : rpoB 유전자의 염기 서열 결정: Base Sequence Determination of rpoB Gene
정제한 PCR 산물은 Applied Biosystems model 377 automated sequencer와 BigDye Terminator Cycle Sequencing kit(Perkin-Elmer Applied Biosystems, Warrington, United Kingdom)를 이용하여 전방향 프라이머와 역방향 프라이머로 직접 결정하였다. 시퀀싱 반응은 30 ng의 정제한 PCR 산물과 각 프라이머 2.5 pmol, 그리고 BigDye Terminator RR mix(Perkin-Elmer Applied Biosystems; part no. 4303153) 4 μl를 섞고 증류수로 최종 부피가 10 μl가 되게 하였다. 반응은 5% (vol/vol) 다이메틸 설폭시드를 넣고 95℃ 15초, 50℃ 5초, 그리고 60℃ 4분간을한 싸이클로 하여 30싸이클을 시행하였다.Purified PCR products were directly determined by forward and reverse primers using Applied Biosystems model 377 automated sequencer and BigDye Terminator Cycle Sequencing kit (Perkin-Elmer Applied Biosystems, Warrington, United Kingdom). Sequencing reactions were mixed with 30 ng of purified PCR product, 2.5 pmol of each primer, and 4 μl of BigDye Terminator RR mix (Perkin-Elmer Applied Biosystems; part no. 4303153) and the final volume was 10 μl with distilled water. The reaction was carried out for 30 cycles with 5% (vol / vol) dimethyl sulfoxide in a cycle of 95 ° C. 15 seconds, 50 ° C. 5 seconds, and 60 ° C. for 4 minutes.
레지오넬라 간 균종간의 rpoB DNA 염기서열 동질성은 71.0%(L.geestiana-L. spiritensis)부터 98.7%(L. jametownensis-L. londiniensis)에 이르렀다. rpoB 염기서열이 각 균종간의 계통적 관계를 잘 나타내어 동정에 유용성, 즉 균종 감별력이 있으려면 각 염기서열이 잘 보관된 가운데 균종에 따른 변화가 조금씩 있어야 한다. 따라서, rpoB DNA의 divergence를 기존에 사용됐던 16S rRNA 유전자와 mip서열에 비교하여 pairwise distance를 살펴 보았다(도3참조). rpoB sequence divergence는 16S rRNA 유전자에 비하여 3.5배 컸으며, 이는 rpoB가 조금더 변화가 있다는 것을 의미하며, rpoB에 비하여 mip 염기서열은 1.5배 더 커서, rpoB 염기서열이 레지오넬라 균종감별에 필요한 적절한 변별력을 갖추고 있음을 알 수 있다.The rpoB DNA sequence homology between Legionella hepatic species ranged from 71.0% (L.geestiana-L. Spiritensis) to 98.7% (L. jametownensis-L. Londiniensis). The rpoB sequence shows the systematic relationship between each species, so that in order to be useful for identification, that is, discrimination of species, each sequence must be well maintained and there must be little change according to the species. Therefore, the pairwise distance was examined by comparing the divergence of rpoB DNA with the 16S rRNA gene and mip sequence previously used (see FIG. 3). The rpoB sequence divergence was 3.5 times larger than that of the 16S rRNA gene, which means that the rpoB had a little change, and that the mip sequence was 1.5 times larger than that of rpoB. It can be seen that.
사용한 균주들은 생화학적 검사로 동정된 것들이지만 별도로 16S rRNA 유전자의 3' end 쪽 400-bp를 PCR로 증폭하고 시퀀싱하여 GenBank에 등록된 염기서열들과 비교하여 레지오넬라 균종이라는 것을 확인하였다(Hookeyet al., 1996). 결정된 서열을 서열 번호 1내지 42로 나타내었다.The strains used were identified by biochemical tests, but the amplification and sequencing of 400-bp of 3 'end of 16S rRNA gene by PCR was confirmed to be Legionella species compared with the nucleotide sequences registered in GenBank (Hookey et al. ., 1996). The determined sequences are shown in SEQ ID NOs: 1-42.
실시예 5Example 5 : 계통 분석: Systematic Analysis
rpoB 염기서열이 레지오넬라 균종 분류와 동정에 유용하다는 것을 보이기 위해, PCR로 증폭된 369-bp의 rpoB DNA 분절 가운데 300-bp에 해당하는 염기서열로 레지오넬라 균종들의 계통관계를 분석하였다. 이 염기서열들은 GenBank에 등록하였다(표 1참조).rpoB In order to show that the nucleotide sequence is useful for classification and identification of Legionella species, the lineage of Legionella strains was analyzed by the nucleotide sequence corresponding to 300-bp among 369-bp rpoB DNA fragments amplified by PCR. These sequences were registered in GenBank (see Table 1).
이 염기서열들은 다중 정렬 프로그램인 CLUSTAL X(Thompsonet al., 1997)로 정열하고 PAUP 프로그램의 neighbor-joining(NJ) method(Saitou & Nei, 1987)와 parsimony method(Swofford, 1999)등으로 계통수(phylogenetic tree)를 구성하였다. NJ method에서 pairwise distance는 maximum likelihood option으로 계산하였고 parsiomony analysis에서는 heuristic search를 하였는데, tree bisection reconstruction(TBR) branch swapping option을 선택하였다. Q fever의 원인균인Coxiella burnetii을 외집단으로 하였으며 1000 bootstrap replication으로(Felsenstein, 1985; Hillis & Bull, 1993) 분지 지지 값(branch supporting value)을 구하였다. 각 균종은 잘 분지하고 있었으며, 자기형광(autofuorescence)이나 세포벽의 지방산 성분, 유비퀴논 그룹등 기존의 표현형에 따른 구별법과 비교하여 볼 때 비슷한 종끼리 가까이 뭉치는 것을 볼 수 있었다(도 4 참조). 도 4의 밑의 눈금자는 사이트 당 추론된 치환 수(number of inferred substitutions per site)이다. 각 균종들의 자기형광(BW, brown-white; YG, yellow-green; R, red), 유비퀴논 그룹(A to F), 지방산 그룹(I to IV)은 해당되는 레지오넬라 균종의 오른쪽에 표시하였다.These sequences were sequenced by CLUSTAL X (Thompson et al ., 1997), a multi-alignment program, and the tree tree by the neighbor-joining (NJ) method (Saitou & Nei, 1987) and parsimony method (Swofford, 1999) of the PAUP program. phylogenetic tree). In the NJ method, the pairwise distance was calculated as the maximum likelihood option and heuristic search was performed in the parsiomony analysis. The tree bisection reconstruction (TBR) branch swapping option was selected. Coxiella burnetii , the causative agent of Q fever, was used as an out-group and branch supporting value was obtained by 1000 bootstrap replication (Felsenstein, 1985; Hillis & Bull, 1993). Each species was well branched, and similar species were clustered closer to each other in comparison with conventional phenotypes such as autofuorescence, fatty acid components of cell walls, and ubiquinone groups (see FIG. 4). The bottom ruler of FIG. 4 is the number of inferred substitutions per site. The autofluorescence of each species (BW, brown-white; YG, yellow-green; R, red), ubiquinone group (A to F), and fatty acid group (I to IV) are indicated to the right of the corresponding Legionella species.
한국 환자 분리균주 Kp1, Kp2, 그리고 Kp3의 rpoB 염기 서열 모두L. pneumophilasubsp.pneumophila와 뭉치는 것을 볼 수 있어서 이 균주들은 쉽게L. pneumophilasubsp.pneumophila로 동정하였다(도 5참조).RpoB of Kp1, Kp2, and Kp3 isolates from Korean patients Base sequence allL. pneumophilasubsp.pneumophilaCan be seen in clusters with these strainsL. pneumophilasubsp.pneumophila(See FIG. 5).
또한, rpoB, 16S rRNA gene, 그리고mipdata set들이 서로 일치하는지 비교하였다. 도 3에서 그래프 상의 점들은 레지오넬라 각 균종들과 외집단으로 사용한Coxiella burnetii의 pairwise distance를 나타낸다. (A) rpoB와 16S rRNA gene, (B)mip과 16S rRNA gene, (C)rpoB와mip을 서로 비교하였다.mip과 16S rRNA gene의 경우 (B), 선형 관계를 보이는 데 반하여, rpoB와 16S rRNA gene (A), rpoB와mip(B)의 비교에서는 비선형 관계를 보인다. 이는 rpoB가 DNA 수준에서 유사 변이가 자주 일어났음을 의미한다. 여기서 Pairwise distance는 PAUP (Swofford, 1999)의 maximum likelihood option으로 계산하였으며, 이러한 분석은 PAUP program(Swofford, 1999)을 사용하였다.In addition, rpoB, 16S rRNA gene, andmipThe data sets were compared to see if they matched each other. In FIG. 3, the points on the graph were used as outliers with each Legionella species.Coxiella burnetiiIt represents the pairwise distance of. (A) rpoB and 16S rRNA gene, (B)mipAnd 16S rRNA gene, (C)rpoBWowmipWere compared with each other.mipIn the case of the 16S rRNA gene (B), the linear relationship is shown, whereas rpoB and 16S rRNA gene (A),mipComparison of (B) shows a nonlinear relationship. This means that rpoB has frequently undergone similar variations at the DNA level. The pairwise distance was calculated using the maximum likelihood option of PAUP (Swofford, 1999), and this analysis was performed using the PAUP program (Swofford, 1999).
* 인체병원성* Human pathogenicity
L.pneumophilasubsp.pnemophila는 Lpn-p, subsp.fraseri는 Lpn-f로 나타내었다. L.pneumophila subsp. pnemophila is Lpn -p, subsp. fraseri is represented by Lpn-f.
실시예 6:Example 6: 레지오넬라 균종에 선택적인 프라이머 및 중합효소연쇄반응Selective Primer and Polymerase Chain Reaction for Legionella Species
실시예 4의 염기서열들이 중요한 것은 비단 앞서 보인 것과 같이 염기서열 자체의 동질성을 비교하여 균종을 판별할 수 있는 것 뿐 아니라, 각 균종들만이 갖는 특징적인 염기서열로 인하여, 균종 판별용 PCR-restriction 분석이나 PCR 또는 교잡용 프로브를 제작할 수 있다는 것이다. 이들 목적으로 사용할 수 있는 고유의염기서열 부분을 확인할 수 있었다(표 2참조). 즉, 레지오넬라 rpoB 염기서열들로부터 레지오넬라 뉴모필라를 비롯한 인체감염을 흔히 일으키는 균종들이 갖는 고유 염기(signature nucleotide)를 찾았으며, 이들을 근거로 레지오넬라 균종들을 선택적으로 증폭시킬 수 있는 프라이머(5'GATGATATCGATCAYCTDGG3', 5'CACCNGATACNGGRTTHA3')를 만들어 PCR을 하였다(30 cycle; denaturation 95℃ 30 초, annealing 58℃ 30 초, extension 72℃ 30초, final extension 72℃ 5 분).It is important to note that the nucleotide sequences of Example 4 are not only able to determine the species by comparing the homogeneity of the nucleotide sequences themselves as shown above, but also due to the characteristic nucleotide sequences unique to each species, PCR-restriction for species identification. Probes for analysis, PCR, or hybridization can be constructed. Unique base sequences were identified that could be used for these purposes (see Table 2). That is, from the Legionella rpoB sequences, we found a signature nucleotide of the species that commonly causes human infection, including Legionella pneumophila.5 'GATGATATCGATCAYCTDGG3 ', 5 'CACCNGATACNGGRTTHA3 ') Was PCR (30 cycles; denaturation 95 ℃ 30 seconds, annealing 58 ℃ 30 seconds, extension 72 ℃ 30 seconds, final extension 72 ℃ 5 minutes).
3% 아가로즈 겔상에서 전기 영동을 시행한 결과 레지오넬라 균종들로부터는(도 2의A 참조) 374 bp의 PCR 증폭산물이 나타나고 있으나, 다른 일반세균에서는(도 2의B 참조) 증폭산물이 없었다. 도 2의 A에서M1, 100 bp DNA ladder;M2, ΦX174 RF DNA/HaeIII marker.pn,L. pneumophila;an,L. anisa;bi,L. birminghamensis;ci,L. cincinnatiensis;du,L. dumoffii;go,L. gormanii;is,L. israelensis;jo,L. jordanis;la,L. lansingensis;lo,L. longbeachae;mi,L. micdadei;pa,L. parisiensis;sa,L. sainthelensi;tu,L. tucsonensis를 나타내며, 도2의 B에서M, 100 bp DNA ladder;1,L. pneumophila;2,L. longbeachae;3,S. aureus;4,E. coli;5,B. subtilis;6,C. diphtheriae;7,M. fortuitum;8,N. sicca;9,B. catahalis;10,S. feacalis;11,H. influenzae;12,S. pyogens;13,B. fragilis;14,Norcardiasp.;15,H. pylori를 나타낸다.Electrophoresis on 3% agarose gel showed 374 bp PCR amplification products from Legionella spp. (See A of FIG. 2), but no amplification products in other general bacteria (see FIG. 2B). In Figure 2 A, M1 , 100 bp DNA ladder; M2 , ΦX174 RF DNA / Hae III marker. pn , L. pneumophila ; an , L. anisa ; bi , L. birminghamensis ; ci , L. cincinnatiensis ; du , L. dumoffii ; go , L. gormanii ; is , L. israelensis ; jo , L. jordanis ; la , L. lansingensis ; lo , L. longbeachae ; mi , L. micdadei ; pa , L. parisiensis ; sa , L. saint helensi ; tu , L. tucsonensis , M in Figure 2, 100 bp DNA ladder; 1 , L. pneumophila ; 2 , L. longbeachae ; 3 , S. aureus ; 4 , E. coli ; 5 , B. subtilis ; 6 , C. diphtheriae ; 7 , M. fortuitum ; 8 , N. sicca ; 9 , B. catahalis ; 10 , S. feacalis ; 11 , H. influenzae ; 12 , S. pyogens ; 13 , B. fragilis ; 14 , Norcardia sp .; 15 , H. pylori .
실시예 7:Example 7: 레지오넬라 뉴모필라에 선택적인 프라이머Selective primers to Legionella pneumophila
각 균종들만이 갖는 특징적인 염기서열로 인하여, 균종 판별용 PCR-restriction 분석이나 PCR 또는 교잡용 프로브를 제작하였다. 이들 목적으로 사용할 수 있는 특징적인 염기서열 부분을 확인할 수 있었다(표 1참조). 즉, 레지오넬라 뉴모필라 rpoB 염기서열들로부터 특징적 염기서열 부위를 찾았으며, 이들을 근거로 임상적 의의가 가장 큰 레지오넬라 뉴모필라만을 선택적으로 증폭시킬 수 있는 정방향 프라이머(5'TCAGTTTAGAGTAGGTCTT3')와 역방향 프라이머(5'CCCAAGRGCCGATACACG3')를 제조하였다.Due to the unique nucleotide sequence of each species, PCR-restriction analysis or PCR or hybridization probe for species identification was made. Characteristic nucleotide sequences that can be used for these purposes were identified (see Table 1). That is, the characteristic sequence region was found from the Legionella pneumophila rpoB sequences, and the forward primer ( 5 ' TCAGTTTAGAGTAGGTCTT 3' ) and the reverse primer capable of selectively amplifying only Legionella pneumophila having the largest clinical significance based on these were found. ( 5 ′ CCCAAGRGCCGATACACG 3 ′ ) was prepared.
실시예 8:Example 8: 레지오넬라 뉴모필라 선택적 검출방법Legionella Pneumophila Selective Detection Method
레지오넬라 뉴모필라와 레지오넬라의 다른 균종들을 대상으로 레지오넬라 뉴모필라의 특징적인 뉴클레오티드에 근거한 프라이머를 사용한 PCR을 하였다(30 cycle; denaturation 95℃ 30 초, annealing 58℃ 30 초, extension 72℃ 30초, final extension 72℃ 5 분).Legionella pneumophila and other species of Legionella were subjected to PCR using primers based on the characteristic nucleotides of Legionella pneumophila (30 cycles; denaturation 95 ° C 30 seconds, annealing 58 ° C 30 seconds, extension 72 ° C 30 seconds, final extension). 72 ° C. 5 minutes).
레지오넬라 뉴모필라 균종의 rpoB DNA의 일부분을 선택적으로 증폭시키는 단계에서는 정방향 프라이머(5'TCAGTTTAGAGTAGGTCTT3') 와 역방향 프라이머 (5'CCCAAGRGCCGATACACG3')를 혼합되어 사용되었다.In the step of selectively amplifying a portion of the rpoB DNA of the Legionella pneumophila strain, a forward primer ( 5 ' TCAGTTTAGAGTAGGTCTT 3' ) and a reverse primer ( 5 ' CCCAAGRGCCGATACACG 3' ) were used.
이 때, 레지오넬라 뉴모필라만(lanes 1, 2, 5, 6, 15) rpoB DNA 분절(217-bp)이 증폭되고 다른 레지오넬라 균종에서는(lanes bo, du, go, jo, lo, mi, pa) 증폭산물이 없었다(도 1참조).At this time, Legionella pneumophila only (lanes 1, 2, 5, 6, 15) rpoB DNA segment (217-bp) is amplified and in other Legionella species (lanes bo, du, go, jo, lo, mi, pa) There was no amplification product (see FIG. 1).
한국 환자에서 분리된 3 균주도(Kp1, Kp2, Kp3) 동일 증폭산물이 있어, 이들이 레지오넬라 뉴모필라임을 알 수 있었다. 사진에 포함되지 않은 레지오넬라 균종들도 역시 증폭산물은 없었다(도 1참조:M1, 100-bp DNA ladder;M2, ΦX174 RF DNA/HaeIII digest; Lanes (1, 2, 5, 6, 15),L. pneumophilaserogroup 1, 2, 5, 6, 15;bo,L. bozemanii;du,L. dumoffii;go,L. gormanii;jo,L. jordanis;lo,L. longbeachae;mi,L. micdadei;pa,L. parisiensis;Kp1,Kp2, 그리고Kp3, 한국 환자 분리균주).Three isolates (Kp1, Kp2, Kp3) isolated from Korean patients also had the same amplification products, indicating that they are Legionella pneumophila. Legionella strains not included in the photograph also had no amplification products (see FIG. 1).M1, 100-bp DNA ladder;M2, ΦX174 RF DNA /HaeIII digest; Lanes (1, 2, 5, 6, 15),L. pneumophilaserogroup 1, 2, 5, 6, 15;bo,L. bozemanii;du,L. dumoffii;go,L. gormanii;jo,L. jordanis;lo,L. longbeachae;mi,L. micdadei;pa,L. parisiensis;Kp1,Kp2, AndKp3, Korean patient isolates).
실시예 9:Example 9: 레지오넬라 뉴모필라Legionella Pneumophila 아종(subspecies)의 판별Discrimination of subspecies
레지오넬라 뉴모필라의 아종 구분은 염기 서열상에서 MapDraw program으로 찾아낸 제한 부위에 해당하는 제한 효소BamHI을 사용하였다.Subspecies of Legionella pneumophila was identified using the restriction enzyme Bam HI corresponding to the restriction site found by the MapDraw program on the nucleotide sequence.
레지오넬라 뉴모필라에 대하여 선택적인 프라이머를 사용하여 증폭한 217-bp DNA를BamHI으로 절단하였다. 레지오넬라 뉴모필라 표준균주들을 대상으로 레지오넬라 뉴모필라에 특이적인 PCR을 시행한 후BamHI으로 절단한 결과, 레지오넬라 뉴모필라의 특징적 뉴클레오티드에 근거한 PCR에 의해 모든 표준균주에서 217-bp의 rpoB DNA 분절이 증폭되었으며, 이어서 시행한BamHI 절단으로 다른 균주들은 모두 절단되어 136-bp와 81-bp의 DNA 절편을 보이고 있으나, serogroup 4, 5, 그리고 15만이 절단되지 않은 채 남아있다. 이 세 균주는 subsp.fraseri에 속하고 나머지는 subsp.pneumophila에 속하는 균주들이다(도 7 참조:M1, 100-bp DNA ladder;M2, ΦX174 RF DNA/HaeIII digest; Lanes1∼15,L. pneumophilaserogroup 1∼15).217-bp DNA amplified using primers selective for Legionella pneumophila was digested with Bam HI. Legionella pneumophila standard strains were subjected to specific PCR for Legionella pneumophila and cleaved with Bam HI to amplify the 217-bp rpoB DNA segment in all standard strains by PCR based on the characteristic nucleotides of Legionella pneumophila. Following Bam HI cleavage, all other strains were cleaved to show 136-bp and 81-bp DNA fragments, but only serogroups 4, 5, and 15 remained uncut. These three strains were subsp. fraseri and the rest are subsp. are strains belonging to pneumophila (see Fig. 7: M1, 100-bp DNA ladder ; M2, ΦX174 RF DNA / Hae III digest; Lanes 1~15, L. pneumophila serogroup 1 ~1 5).
본 발명의 방법을 통하여 rpoB DNA 분절에 대한 프라이머로서 레지오넬라 각 균종의 rpoB 염기서열을 얻었으며, 이를 통하여 레지오넬라 rpoB DNA 분절에 선택적인 프라이머를 제작하고 이에 의해 증폭된 rpoB DNA 분절이 균종 판별 방법을 제공한다. 이는 RFLP를 이용한 레지오넬라 균종 판별 방법을 제공한다.Through the method of the present invention, rpoB sequences of each species of Legionella were obtained as primers for rpoB DNA fragments, and thus, selective primers were prepared for Legionella rpoB DNA fragments, and the amplified rpoB DNA fragments thereby provide a method for discriminating species. do. This provides a Legionella species determination method using RFLP.
또한, 본 발명의 방법을 통하여 레지오넬라 뉴모필라 rpoB DNA 분절에 선택적인 프라이머를 제조하고 이를 사용하여 레지오넬라 뉴모필라 균종의 rpoB DNA의선택적 증폭하여 레지오넬라 뉴모필라 균종의 선택적 검출 및 동정이 가능하다. 또한 RFLP분석을 통하여 레지오넬라 뉴모필라 균종 중에서도 가장 대표적 병원성균인 레지오넬라 뉴모필라 serogroup1등의 아종 판별이 정확하게 이루어진다.In addition, through the method of the present invention, a selective primer is prepared for the Legionella pneumophila rpoB DNA segment, and the selective amplification of the rpoB DNA of the Legionella pneumophila species enables selective detection and identification of the Legionella pneumophila species. In addition, subtypes of Legionella pneumophila serogroup1, which are the most representative pathogenic bacteria among Legionella pneumophila species, are accurately identified through RFLP analysis.
따라서, 폐렴 환자나 주변 환경으로부터 레지오넬라로 의심되는 미지의 균이 분리되었을 때 염기서열을 결정하여 이미 확보한 표준 균주들의 염기서열과 비교하므로써 균종을 판별하는 방법이 종래의 균종 동정 방법에 비해 보다 정확하게 이루어지게 되어 레지오넬라 균에 감염된 환자의 치료 방침이 신속하게 결정될 수 있다.Therefore, when unknown bacteria suspected to be Legionella are isolated from pneumonia patients or the surrounding environment, the method of determining the species by comparing the nucleotide sequences of the standard strains already obtained and comparing them with the standard strains is more accurate than the conventional species identification method. This can be used to quickly determine the course of treatment for patients infected with Legionella.
더 나아가, 레지오넬라 균이 분리되었을 때 레지오넬라 뉴모필라 rpoB 유전자 분절에 선택적인 프라이머를 사용하여 레지오넬라의 다른 균종들로부터 레지오넬라 뉴모필라를 보다 정확하게 검출 및 동정하게 되어 레지오넬라 뉴모필라 균에 감염된 환자의 치료 방침이 신속하게 결정될 수 있으며, 레지오넬라 뉴모필라 아종의 판별도 간단한 방법으로 가능하게 되었다.Furthermore, when Legionella is isolated, the use of selective primers on the Legionella pneumophila rpoB gene segment can be used to more accurately detect and identify Legionella pneumophila from other Legionella strains, thus improving the treatment of patients infected with Legionella pneumophila. Determination of Legionella pneumophila subspecies has become possible in a simple manner.
Claims (57)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020006297A KR100874744B1 (en) | 2002-02-04 | 2002-02-04 | Deoxyribonucleic Acid Segments of Ribonucleic Acid Polymerase Beta Subunits of Legionella Bacillus, and Primers Selective to the Legionella Bacillus |
PCT/KR2003/000247 WO2003067319A1 (en) | 2002-02-04 | 2003-02-04 | Dnas which encode rna polymerase beta-subunit gene of legionella species, primers specific to the dnas and discrimination method for legionella species by using the same |
AU2003206236A AU2003206236A1 (en) | 2002-02-04 | 2003-02-04 | Dnas which encode rna polymerase beta-subunit gene of legionella species, primers specific to the dnas and discrimination method for legionella species by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020006297A KR100874744B1 (en) | 2002-02-04 | 2002-02-04 | Deoxyribonucleic Acid Segments of Ribonucleic Acid Polymerase Beta Subunits of Legionella Bacillus, and Primers Selective to the Legionella Bacillus |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030066120A true KR20030066120A (en) | 2003-08-09 |
KR100874744B1 KR100874744B1 (en) | 2008-12-19 |
Family
ID=27725686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020006297A KR100874744B1 (en) | 2002-02-04 | 2002-02-04 | Deoxyribonucleic Acid Segments of Ribonucleic Acid Polymerase Beta Subunits of Legionella Bacillus, and Primers Selective to the Legionella Bacillus |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100874744B1 (en) |
AU (1) | AU2003206236A1 (en) |
WO (1) | WO2003067319A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995614B1 (en) * | 2012-09-19 | 2016-03-25 | Dendris | BIOPUCE FOR THE DETECTION AND / OR IDENTIFICATION OF BACTERIA OF THE GENUS LEGIONELLA, KIT AND METHOD OF USE |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5816677A (en) * | 1905-03-01 | 1998-10-06 | Canon Kabushiki Kaisha | Backlight device for display apparatus |
US5629784A (en) * | 1994-04-12 | 1997-05-13 | Ois Optical Imaging Systems, Inc. | Liquid crystal display with holographic diffuser and prism sheet on viewer side |
KR100234975B1 (en) | 1997-07-28 | 1999-12-15 | 국윤호 | Identification of mycobacterial species by pcr-rflp of the rna polymerase gene(rpob) |
KR100363615B1 (en) | 1999-10-27 | 2002-12-06 | 주식회사 제니스라이프사이언스 | rpoB gene fragments and method for the diagnosis and identification of Mycobacterium tuberculosis and non-tuberculosis Mycobacterial strains |
GB2358512A (en) * | 2000-01-18 | 2001-07-25 | Screen Technology Ltd | Production of a collimated beam |
-
2002
- 2002-02-04 KR KR1020020006297A patent/KR100874744B1/en not_active IP Right Cessation
-
2003
- 2003-02-04 WO PCT/KR2003/000247 patent/WO2003067319A1/en not_active Application Discontinuation
- 2003-02-04 AU AU2003206236A patent/AU2003206236A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR100874744B1 (en) | 2008-12-19 |
AU2003206236A1 (en) | 2003-09-02 |
WO2003067319A1 (en) | 2003-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Van Berkum et al. | Molecular evolutionary systematics of the Rhizobiaceae | |
Gorkiewicz et al. | Species-specific identification of campylobacters by partial 16S rRNA gene sequencing | |
Li et al. | A newly developed PCR assay of H. pylori in gastric biopsy, saliva, and feces: evidence of high prevalence of H. pylori in saliva supports oral transmission | |
JP3109599B2 (en) | Hybridization probe for detecting non-viral microorganisms derived from spacer region between 16S and 23S rRNA genes | |
Ikryannikova et al. | Misidentification of alpha-hemolytic streptococci by routine tests in clinical practice | |
Li et al. | Differentiation of Helicobacter pylori strains directly from gastric biopsy specimens by PCR-based restriction fragment length polymorphism analysis without culture | |
Conrads et al. | Simultaneous detection of Bacteroides forsythus and Prevotella intermedia by 16S rRNA gene-directed multiplex PCR | |
US20110287965A1 (en) | Methods and compositions to detect clostridium difficile | |
Jacobs et al. | The Streptococcus anginosus species comprises five 16S rRNA ribogroups with different phenotypic characteristics and clinical relevance. | |
US6355435B1 (en) | Methods for detecting and enumerating Campylobacter jejuni in environmental samples and for identifying antibiotic-resistant strains | |
JP5610395B2 (en) | Genetic methods for species identification of Campylobacter | |
US20110256535A1 (en) | Optimized oligonucleotides and methods of using same for the detection, isolation, amplification, quantification, monitoring, screening and sequencing of clostridium difficile genes encoding toxin b, and/or toxin a and/or binary toxin | |
Pourshafie et al. | Molecular epidemiological study of Vibrio cholerae isolates from infected patients in Teheran, Iran | |
Tiveljung et al. | Identification of Helicobacter in gastric biopsies by PCR based on 16S rDNA sequences: a matter of little significance for the prediction of H. pylori-associated gastritis? | |
US7601822B2 (en) | Molecular identification of bacteria of genus Streptococcus and related genera | |
JP5395674B2 (en) | Genetic methods for species identification of Campylobacter | |
KR100874744B1 (en) | Deoxyribonucleic Acid Segments of Ribonucleic Acid Polymerase Beta Subunits of Legionella Bacillus, and Primers Selective to the Legionella Bacillus | |
Mahant et al. | Geographically distinct North-East Indian Helicobacter pylori strains are highly sensitive to clarithromycin but are levofloxacin resistant | |
Pan et al. | Phenotypic and genotypic diversity of Streptococcus sanguis in infants | |
Ko et al. | Detection and identification of Legionella pneumophila by PCR-restriction fragment length polymorphism analysis of the RNA polymerase gene (rpoB) | |
Garofolo et al. | Development of a real time PCR taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum | |
Cloeckaert et al. | DNA polymorphism and taxonomy of Brucella species | |
JP2010512728A (en) | Rapid detection of highly pathogenic ST-17 clones of BSTREPTOCOCCUS | |
US20030157696A1 (en) | Method for the detection of salmonella enterica serovar enteritidis | |
US20090253129A1 (en) | Identification of usa300 community-associated methicillin-resistant staphylococcus aureus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111007 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |