KR20030065018A - Check valve made of aluminum alloy - Google Patents

Check valve made of aluminum alloy Download PDF

Info

Publication number
KR20030065018A
KR20030065018A KR1020020005153A KR20020005153A KR20030065018A KR 20030065018 A KR20030065018 A KR 20030065018A KR 1020020005153 A KR1020020005153 A KR 1020020005153A KR 20020005153 A KR20020005153 A KR 20020005153A KR 20030065018 A KR20030065018 A KR 20030065018A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
check valve
aluminum
properties
stress corrosion
Prior art date
Application number
KR1020020005153A
Other languages
Korean (ko)
Inventor
신현익
Original Assignee
(주) 우리산업기계
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 우리산업기계 filed Critical (주) 우리산업기계
Priority to KR1020020005153A priority Critical patent/KR20030065018A/en
Publication of KR20030065018A publication Critical patent/KR20030065018A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Abstract

PURPOSE: A check valve made of aluminum alloy capable of obtaining stabilization of stress corrosion breaking and tension characteristics as maintaining superior casting properties or mechanical or physical properties by applying aluminum alloy to check valve is provided. CONSTITUTION: The aluminum alloy for valves comprises 90 wt.% of aluminum, 7.4 to 8.4 wt.% of magnesium, 1.2 to 1.7 wt.% of zinc, 0.1 to 0.2 wt.% of copper and 0.2 to 0.3 wt.% of manganese. The check valve is made of an aluminum alloy comprising 90 wt.% of aluminum, 7.4 to 8.4 wt.% of magnesium, 1.2 to 1.7 wt.% of zinc, 0.1 to 0.2 wt.% of copper and 0.2 to 0.3 wt.% of manganese, wherein the check valve is manufactured by performing CNC screw processing and anodizing film treatment on the formed aluminum alloy after forming the aluminum alloy by die-casting.

Description

알루미늄합금의 체크밸브 {Check valve made of aluminum alloy}Check valve made of aluminum alloy

본 발명은 알루미늄합금으로 제조된 체크밸브에 관한 것으로, 특히 응력부식균열과 인장특성의 안정화를 더욱 향상시킨 새로운 알루미늄합금의 체크밸브에 관한 것이다.The present invention relates to a check valve made of an aluminum alloy, and more particularly to a new aluminum alloy check valve further improved the stress corrosion cracking and stabilization of tensile properties.

일반적으로, 체크밸브는 유체의 역류를 방지하는 기구로 사용되거나, 압력차단에 따른 유동방향으로의 누출을 방지하는 기구로 사용되고 있다. 체크밸브를 폐쇄시키는 데에 필요한 밀봉력은 스프링에 의해 발생되거나, 체크밸브가 수직으로 설치된 경우에는 폐쇄부재 자체의 중량에 의해 발생될 수 있으며, 체크밸브내의 압력차가 상기 밀봉력을 극복하여 폐쇄부재를 밀어부침으로써 밸브가 개방되도록 되어 있는 것이 일반적이다.In general, the check valve is used as a mechanism for preventing the back flow of the fluid, or as a mechanism for preventing leakage in the flow direction due to the pressure block. The sealing force necessary to close the check valve may be generated by a spring or, if the check valve is installed vertically, by the weight of the closing member itself, and the pressure difference in the check valve overcomes the sealing force so that the closing member It is common for the valve to open by pushing on.

예컨대, 에어콤프레셔 등에 사용되는 체크밸브는 황동과 같은 재료로 제조되는 바, 이는 재료를 절단하고 가열하여 단조처리한 후 트리밍(trimming)과 쇼트 블라스트(shot blast)에 이어서 CNC선반가공 및 별도의 전용기계로 나사가공한 다음, 니플(nipple)구멍 등을 형성시키고 도금하여 완성된다.For example, check valves used in air compressors, etc., are made of a material such as brass, which is cut, heated, forged, trimmed and shot blasted, followed by CNC lathe machining and a separate dedicated machine. After screwing by machine, nipple hole and the like are formed and plated to complete.

하지만, 종래의 황동으로 주조된 체크밸브는 그 재료의 중량이 커서 체크밸브 자체가 무겁게 되고, 결국 이러한 체크밸브가 사용된 장치의 전체 무게를 불필요하게 증대시키는 문제점이 있었다.However, the conventional check valve cast of brass has a problem that the weight of the material is large, the check valve itself is heavy, and eventually increase the total weight of the device in which such a check valve is used.

한편, 알루미늄합금이 가벼우면서도 뛰어난 연성과 인장강도 및 내식성을 갖고 있기에 이를 이용한 주조가 다양하게 제안되었으며, 특히 90%의 알루미늄과 10%의 마그네슘으로 된 주조용 합금이 전술된 바와 같이 가볍고도 우수한 기계적 성질을 유지하는 요구에 부합되는 것으로 알려져 있다.On the other hand, since aluminum alloys are lightweight and have excellent ductility, tensile strength and corrosion resistance, various castings have been proposed. Especially, casting alloys made of 90% aluminum and 10% magnesium are light and excellent mechanical as described above. It is known to meet the needs of maintaining properties.

하지만, 상기 Al-Mg합금은 시간이 흐름에 따라 그 기계적 성질이 변화하며, 매우 장시간이 경과된 후에는 연성에서 중대한 감소가 일어나는 문제점이 있었다.However, the Al-Mg alloy has a problem in that its mechanical properties change with time, and a significant decrease in ductility occurs after a very long time.

이에 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 체크밸브에 알루미늄합금을 적용하되, 우수한 주조성질이나 기계적 또는 물리적 성질을 유지하면서 응력부식균열과 인장특성의 안정화를 도모할 수 있는 새로운 알루미늄합금으로 된 체크밸브를 제공하는 데에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, the application of the aluminum alloy to the check valve, while maintaining excellent casting properties or mechanical or physical properties, the new aluminum that can promote the stress corrosion cracking and tensile properties stabilization The purpose is to provide a check valve made of alloy.

상기와 같은 목적을 성취하기 위한 본 발명은 90%의 알루미늄과, 7.4%~8.4%의 마그네슘, 1.2%~1.7%의 아연, 0.1%~0.2%의 구리, 0.2%~0.3%의 망간으로 된 밸브용 알루미늄합금으로 체크밸브를 제조함으로써 이루어진다.The present invention for achieving the above object consists of 90% aluminum, 7.4% -8.4% magnesium, 1.2% -1.7% zinc, 0.1% -0.2% copper, 0.2% -0.3% manganese It is made by manufacturing a check valve made of aluminum alloy for valves.

이하 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 체크밸브는 전술된 바와 같은 종래의 Al-Mg합금에서, 10%의 Mg함량에 변화를 주고 Zn, Cu, Mn을 함유한 알루미늄합금으로 제조된다. 이들 성분의 바람직한 함유량을 결정하기 위해서 본 출원인은 Mg을 8%로, 그리고 Zn을 1.5%로 고정한 후에 Cu, Mn의 함량에 변화를 주면서 응력부식시험을 수행하였는 바, 결정미세화를 위하여 Ti-B이 약간 첨가되었으며 용해와 주조 동안 산화를 억제하기 위해 Be이 다소 함유되었다. 또한, 용탕은 496℃에서 8시간 가열되며, 주조입 온도가 440℃로 하강되었을 때 염화가스로서 전반적으로 분출시켰다. 2단 용체화열처리는 최소한 440℃에서 8시간 가열한 다음에, 496℃에서 8시간을 지속시키고, 496℃에서 완전한 비등수에 소입을 행한다. 주물이 매우 두꺼운 부분으로 되기 때문에 소입균열의 가능성을 제거하기 위해 소입전에 440℃에서 냉각시킬 수도 있다.The check valve according to the present invention is made of an aluminum alloy containing Zn, Cu, and Mn in a conventional Al-Mg alloy as described above with a change in Mg content of 10%. In order to determine the preferred content of these components, the Applicant performed stress corrosion test while changing the contents of Cu and Mn after fixing Mg to 8% and Zn to 1.5%. It was added slightly and contained some Be to inhibit oxidation during dissolution and casting. The molten metal was heated at 496 ° C for 8 hours, and was generally ejected as chlorine gas when the casting temperature was lowered to 440 ° C. The two-stage solution heat treatment is heated for at least 440 ° C for 8 hours, followed by 8 hours at 496 ° C, and quenching to complete boiling water at 496 ° C. Because the casting is very thick, it can be cooled at 440 ° C before quenching to eliminate the possibility of quench cracking.

여기서, 상기 응력부식시험은 실험실에서 항장력의 약 75%의 응력에 해당하는 소성변형을 인장시편에 하중을 가하여 지속시키는데, 상기 시편은 5.3%의 염화나트륨과 0.3%의 과산화수소의 부식액에 계속적으로 놓이게 된다. 만일 응력부식균열이 14일 동안에 일어나지 않았다면 그 재질은 응력부식균열에 뛰어난 저항성을 갖는 것으로 판단한다. 소입 후 100℃에서 30시간 가열된 시편이 직접적으로 시험되었다.Here, the stress corrosion test is continued in the laboratory by applying a load on the tensile specimens corresponding to a stress of about 75% of the tensile force, the specimen is continuously placed in a corrosion solution of 5.3% sodium chloride and 0.3% hydrogen peroxide. . If stress corrosion cracking has not occurred in 14 days, the material is considered to have excellent resistance to stress corrosion cracking. The specimens heated for 30 hours at 100 ° C. after quenching were tested directly.

전술한 바와 같은 시험에 의해, 90%의 Al과, 7.4%~8.4%의 Mg, 1.2%~1.7%의 Zn, 0.1%~0.2%의 Cu, 0.2%~0.3%의 Mn으로 된 알루미늄합금이 바람직한 것으로 결정되었으며, 더욱 바람직한 조성으로는 90%의 Al, 8%의 Mg, 1.5%의 Zn, 0.15%의 Cu,0.25%의 Mn으로 결정되었다.By the test described above, an aluminum alloy consisting of 90% Al, 7.4%-8.4% Mg, 1.2%-1.7% Zn, 0.1%-0.2% Cu, 0.2%-0.3% Mn Preferred compositions were determined to be 90% Al, 8% Mg, 1.5% Zn, 0.15% Cu, 0.25% Mn.

다음의 표 1에서, 완전 비등수와 상온에서 본 발명에 따른 알루미늄합금의 시편은 결함없이 14일 동안 견디어 내었음을 알 수 있다.In the following Table 1, it can be seen that the specimen of the aluminum alloy according to the present invention at full boiling water and room temperature was tolerated for 14 days without defects.

14일간 시험14 day trial 소입Hardening 종래Conventional 본 발명The present invention 완전 비등수Perfect boiling water 1일1 day 결함 없음No defect 방해된 비등수Hindered boiling water 결함 없음No defect 결함 없음No defect

상기 조성으로부터 근소한 오차에 대한 허용치는 대량생산에 필요하게 될 것이다. 7.4%~8.4%의 Mg과 1.2%~1.7%의 Zn의 한계는 응력부식시험의 결과에 의해 우선 설정된 것으로, 본 발명에 따른 알루미늄합금의 인장과 항장력은 Mg과 Zn의 증가에 따라 증가한다.Tolerances to minor errors from this composition will be needed for mass production. The limits of Mg of 7.4% to 8.4% and Zn of 1.2% to 1.7% are first set by the results of the stress corrosion test, and the tensile and tensile strength of the aluminum alloy according to the present invention increases with increasing Mg and Zn.

한편, Mg을 8%로, Zn을 1.5%로 고정한 후에 Cu와 Mn이 다양한 조성한계내에서 인장특성과 응력부식에 미치는 영향을 아래의 표 2에 나타내었다.Meanwhile, after fixing Mg to 8% and Zn to 1.5%, the effects of Cu and Mn on tensile properties and stress corrosion within various composition limits are shown in Table 2 below.

Cu와 Mn의 영향Influence of Cu and Mn Cu(%)Cu (%) Mn(%)Mn (%) 인장강도(psi)Tensile strength (psi) 항복점(psi)Yield Point (psi) 신율(%)% Elongation 14일 응력부식14 days stress corrosion 0.010.01 0.010.01 5270052700 2850028500 2424 10일10 days 0.150.15 0.010.01 5410054100 2850028500 2020 결함없음No defect 0.350.35 0.010.01 4940049400 2710027100 1414 2일2 days 0.150.15 0.250.25 5640056400 2950029500 1010 결함없음No defect 0.150.15 0.500.50 5290052900 3220032200 1313 10일10 days

여기서, 0.15% Cu의 첨가는 응력부식균열에 대한 저항을 증가시키는 데에 중요하며, 인장특성에도 개선이 나타남을 볼 수 있고, 0.25% Mn의 첨가는 응력부식균열에 대한 저항에 효과적이고 인장특성에 도움이 된다. 반면에 Cu와 Mn의 과도한증가는 인장특성과 응력부식에 대한 저항성을 방해하기 때문에, 0.1%~0.2%의 Cu와 0.2%~0.3%의 Mn의 한계가 채택되었다.Here, the addition of 0.15% Cu is important for increasing the resistance to stress corrosion cracking, it can be seen that the improvement in the tensile properties, the addition of 0.25% Mn is effective in the resistance to stress corrosion cracking and tensile properties It helps. On the other hand, excessive increases of Cu and Mn interfere with tensile properties and resistance to stress corrosion, so the limits of 0.1% to 0.2% Cu and 0.2% to 0.3% Mn are adopted.

전술된 바와 같은 조성에 따른 알루미늄합금의 기계적 성질은 다음과 같다.Mechanical properties of the aluminum alloy according to the composition as described above are as follows.

인장강도(psi)Tensile strength (psi) 인장항복항력(psi)Tensile Yield Drag (psi) 신율(%)% Elongation 브리넬 경도(psi)Brinell Hardness (psi) 압축항복항장력(psi)Compression Yield Tension (psi) 전단강도(psi)Shear strength (psi) 5500055000 2800028000 1818 9090 3000030000 3500035000

또한, 물리적인 성질은 다음과 같다.In addition, the physical properties are as follows.

비열specific heat 2.642.64 전기전도율(국제표준 Cu의 %)Conductivity (% of international standard Cu) 2424 중량(bl/cuin)Weight (bl / cuin) 0.0950.095 25℃에서의 열전도율Thermal Conductivity at 25 ℃ 0.240.24 열팽창의 평균계수Mean coefficient of thermal expansion 68~212℉68 ~ 212 ℉ 13.4X10e-613.4X10e-6 68~392℉68 ~ 392 ℉ 14.1X10e-614.1X10e-6 68~572℉68 ~ 572 ℉ 14.5X10e-614.5X10e-6 용해범위(℉)Melting Range (℉) 850~1135850-1135

더구나, 본 발명에 따른 알루미늄합금을 앤시스(Ansys) 5.6 프로그램으로 컴퓨터해석을 이행하였는데, 상기 합금을 대략 파이프 형태로 형성한 후 내압(10bar 이상)에 대한 응력분포를 해석하였다. 여기서, 탄성계수는 73GPa이고, 프와송의 비는 0.33이며, 항장력을 325GPa로 하였다. 이에 대한 해석결과 중 소정의 압력에 대한 최대 및 최소응력이 아래의 표 5에 나타나 있다.Moreover, computer analysis of the aluminum alloy according to the present invention was carried out by the Ansys 5.6 program. The alloy was formed in a pipe shape, and then the stress distribution with respect to internal pressure (10 bar or more) was analyzed. Here, the modulus of elasticity was 73 GPa, the ratio of Poisson was 0.33, and the tensile strength was set to 325 GPa. The maximum and minimum stresses for a given pressure among the analysis results are shown in Table 5 below.

10(bar)10 (bar) 12(bar)12 (bar) 15(bar)15 (bar) 20(bar)20 (bar) 30(bar)30 (bar) 50(bar)50 (bar) MaxMax 4.8MPa4.8 MPa 5.76MPa5.76 MPa 7.21MPa7.21 MPa 9.61MPa9.61 MPa 14.4MPa14.4 MPa 24MPa24 MPa MinMin 0.750.75 0.9MPa0.9 MPa 1.14MPa1.14 MPa 1.51MPa1.51 MPa 2.27MPa2.27 MPa 3.79MPa3.79 MPa

이러한 해석결과에 따르면, 본 발명에 따른 알루미늄합금은 좋은 연성과 높은 인장강도 및 뛰어난 내식성이 요구되는 체크밸브에 매우 적합할 것으로 판단되었다.According to the results of the analysis, it is determined that the aluminum alloy according to the present invention is very suitable for the check valve requiring good ductility, high tensile strength and excellent corrosion resistance.

이제, 본 발명에 따른 알루미늄합금의 체크밸브의 제조에 대해 설명하되, 이의 제조는 이미 널리 알려진 다이캐스팅(die casting)을 기본으로 함을 밝혀두는 바, 우선 전술된 바와 같은 조성에 따른 재료들을 준비하여 용해하고 성형하여 열처리한다. 이어서, CNC로 나사가공한 다음, 양극산화 피막처리로 마무리한다. 이와 같이 다이캐스팅 후에 간단히 나사가공 및 피막처리만 하여 제조되기 때문에, 전체 제조공정이 간략하게 됨은 물론 제조비용과 제조시간이 절감될 수 있다.Now, the production of the check valve of the aluminum alloy according to the present invention will be described, but the production thereof is based on the well-known die casting (die casting), first prepared by the materials according to the composition as described above Melt, shape and heat treatment. Subsequently, it is threaded by CNC and then finished by anodizing. As such, since the die is simply manufactured by screwing and coating after the die casting, the overall manufacturing process may be simplified, and manufacturing cost and manufacturing time may be reduced.

이상과 같이 본 발명에 의하면, 체크밸브에 알루미늄합금을 적용하되, Mg의 함량을 줄이고 대신에 Zn, Mn, Cu 등을 첨가함으로써 우수한 주조성질이나 기계적 또는 물리적 성질은 유지하면서 응력부식균열과 인장특성의 안정화에 큰 효과가 있게 된다. 따라서, 좋은 연성과 높은 인장강도 및 뛰어난 내식성이 요구되는 체크밸브에 매우 적합하다. 또한, 체크밸브의 제조공정이 간략하게 되고 이에 따라 제조비용과 제조시간이 절감될 수 있는 효과가 있다.As described above, according to the present invention, by applying an aluminum alloy to the check valve, by reducing the content of Mg and by adding Zn, Mn, Cu, etc. instead of maintaining excellent casting properties or mechanical or physical properties stress corrosion cracking and tensile properties There is a great effect on stabilization of. Therefore, it is very suitable for the check valve requiring good ductility, high tensile strength and excellent corrosion resistance. In addition, the manufacturing process of the check valve is simplified, thereby reducing the manufacturing cost and manufacturing time.

Claims (3)

90%의 알루미늄과, 7.4%~8.4%의 마그네슘, 1.2%~1.7%의 아연, 0.1%~0.2%의 구리, 0.2%~0.3%의 망간으로 이루어진 밸브용 알루미늄합금.Aluminum alloy for valves consisting of 90% aluminum, 7.4% to 8.4% magnesium, 1.2% to 1.7% zinc, 0.1% to 0.2% copper and 0.2% to 0.3% manganese. 체크밸브에 있어서,In the check valve, 90%의 알루미늄과, 7.4%~8.4%의 마그네슘, 1.2%~1.7%의 아연, 0.1%~0.2%의 구리, 0.2%~0.3%의 망간으로 이루어진 알루미늄합금으로 된 것을 특징으로 하는 체크밸브.A check valve comprising an aluminum alloy consisting of 90% aluminum, 7.4% to 8.4% magnesium, 1.2% to 1.7% zinc, 0.1% to 0.2% copper and 0.2% to 0.3% manganese. 제 2항에 있어서, 상기 알루미늄합금을 다이캐스팅으로 성형한 후 CNC 나사가공 및 양극산화 피막처리함으로써 제조되는 것을 특징으로 하는 체크밸브.3. The check valve according to claim 2, wherein the aluminum alloy is manufactured by die casting, followed by CNC threading and anodizing.
KR1020020005153A 2002-01-29 2002-01-29 Check valve made of aluminum alloy KR20030065018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020005153A KR20030065018A (en) 2002-01-29 2002-01-29 Check valve made of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020005153A KR20030065018A (en) 2002-01-29 2002-01-29 Check valve made of aluminum alloy

Publications (1)

Publication Number Publication Date
KR20030065018A true KR20030065018A (en) 2003-08-06

Family

ID=32219774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020005153A KR20030065018A (en) 2002-01-29 2002-01-29 Check valve made of aluminum alloy

Country Status (1)

Country Link
KR (1) KR20030065018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230068A (en) * 2019-12-31 2020-06-05 湖北三江航天红阳机电有限公司 High-strength aluminum alloy precision casting molding technology for large thin-wall wing body fused special-shaped cabin shell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861246A (en) * 1981-10-06 1983-04-12 Mitsuo Sohgoh Kenkyusho Kk Aluminum alloy
JPS60141846A (en) * 1983-12-28 1985-07-26 Nippon Light Metal Co Ltd High-strength cast aluminum alloy for electrolytic color development
JPH04341537A (en) * 1991-04-18 1992-11-27 Sumitomo Light Metal Ind Ltd Aluminum alloy having high strength and wear resistance and excellent in cold forgeability
JPH11210906A (en) * 1998-01-20 1999-08-06 Fujikoki Corp Check valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861246A (en) * 1981-10-06 1983-04-12 Mitsuo Sohgoh Kenkyusho Kk Aluminum alloy
JPS60141846A (en) * 1983-12-28 1985-07-26 Nippon Light Metal Co Ltd High-strength cast aluminum alloy for electrolytic color development
JPH04341537A (en) * 1991-04-18 1992-11-27 Sumitomo Light Metal Ind Ltd Aluminum alloy having high strength and wear resistance and excellent in cold forgeability
JPH11210906A (en) * 1998-01-20 1999-08-06 Fujikoki Corp Check valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230068A (en) * 2019-12-31 2020-06-05 湖北三江航天红阳机电有限公司 High-strength aluminum alloy precision casting molding technology for large thin-wall wing body fused special-shaped cabin shell

Similar Documents

Publication Publication Date Title
US7625454B2 (en) Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings
JP5442961B2 (en) Heat resistant aluminum alloy
KR101127090B1 (en) Creep resistant magnesium alloy
US20050238528A1 (en) Heat treatable Al-Zn-Mg-Cu alloy for aerospace and automotive castings
EP3026135B1 (en) Alloy casting material and method for manufacturing alloy object
JP3737105B2 (en) Method for manufacturing hollow body
KR20200023073A (en) A aluminum alloy and for die casting and method for manufacturing the same, die casting method
CA2574962A1 (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
CN107829000B (en) Die-casting aluminum alloy material and preparation method thereof
KR20070022610A (en) High temperature aluminium alloy
EP2582855B1 (en) Castable heat resistant aluminium alloy
US20120045359A1 (en) Wear-resistant aluminum alloy extruded material exhibiting excellent fatigue strength and machinability
Möller et al. Natural and artificial aging response of semisolid metal processed Al–Si–Mg alloy A356
EP2865774B1 (en) Aluminium casting alloy
US4055417A (en) Hyper-eutectic aluminum-silicon based alloys for castings
JPH01180938A (en) Wear-resistant aluminum alloy
KR20030065018A (en) Check valve made of aluminum alloy
KR101274089B1 (en) High strength aluminum alloys for die casting
KR20130012643A (en) Brass alloy of unleaded free cutting with advanced corrosion resistance and superplastic formability and shape memory ability
US20190062875A1 (en) Copper alloy containing tin, method for producing same, and use of same
RU2348720C2 (en) Machinable alloy on basis of copper and method of its manufacturing
JPWO2005024079A1 (en) Aluminum alloy extruded material with excellent machinability, caulking properties, and wear resistance
CN108048768B (en) Heat treatment method of extrusion casting aluminum alloy and extrusion casting aluminum alloy material
CN106884111B (en) A kind of aluminium alloy and preparation method thereof
KR20190120487A (en) Aluminium alloy for die casting and manufacturing method for aluminium alloy casting using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application