KR20030063940A - Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current - Google Patents
Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current Download PDFInfo
- Publication number
- KR20030063940A KR20030063940A KR1020020004304A KR20020004304A KR20030063940A KR 20030063940 A KR20030063940 A KR 20030063940A KR 1020020004304 A KR1020020004304 A KR 1020020004304A KR 20020004304 A KR20020004304 A KR 20020004304A KR 20030063940 A KR20030063940 A KR 20030063940A
- Authority
- KR
- South Korea
- Prior art keywords
- blower
- power
- energy
- flow rate
- air
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 3
- 238000004378 air conditioning Methods 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000007664 blowing Methods 0.000 abstract description 19
- 230000001360 synchronised effect Effects 0.000 description 11
- 208000028659 discharge Diseases 0.000 description 8
- 239000012530 fluid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0276—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/04—Ventilation with ducting systems, e.g. by double walls; with natural circulation
- F24F7/06—Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
본 발명은 흡입용 송풍기 및 배기용 송풍기 설비에서 공기의 유량을 제어하고, 유입 또는 배출되는 유속에너지를 전기 에너지로 변환하는 발전 시스템에 관한 것으로서, 특히, 공기의 유동경로상에 풍차를 설치하여 풍차의 회전속도를 제어함으로써 유량을 제어하고, 또한 풍차의 회전운동을 전기에너지로 변환할 수 있는 발전시스템을 제공하기 위한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system that controls the flow rate of air in a suction blower and an exhaust blower, and converts inflow or discharge flow rate energy into electrical energy. It is to provide a power generation system that can control the flow rate by controlling the rotational speed of and also convert the rotational movement of the windmill into electrical energy.
종래의 송풍시스템은 도 4에 보인 바와 같이 냉각, 가열, 급기 및 배기의 생산처리공정수단(70)에 사용되는 공기를 유입 및 배출하기 위해서 상기 생산처리공정수단(70)의 전후에 흡입용 송풍기(20) 및 배출용 송풍기(21)를 각각 설치한 후 각 송풍기를 구동하는 유도전동기(10)와, 상기 유도전동기의 회전을 제어하는 가변전압가변주파수장치(VVVF)(120)로 구성되며, 상기 송풍기 전후에 연결되어 공기의 흐름을 유도하는 각 덕트(50, 40) 및 덕트 내에 각각 흡입밸브(60) 및 배출밸브(30)를 구비하고, 송풍기(20, 21)의 흡입측에는 가변날개(100)를 구비한다. 이와 같은 구성에 의해 생산처리공정에 사용되는 외부의 유체(공기)는 상기 흡입용 송풍기(20)에 의해 덕트를 따라 생산처리공정수단에 공급되고, 상기 생산처리공정수단에서 사용된 공기(유체)는 상기 배출용 송풍기(21)에 의해 덕트를 따라 외부로 배출된다.The conventional blower system is a suction blower before and after the production processing unit 70 to introduce and discharge air used in the production processing unit 70 of cooling, heating, supplying and exhausting as shown in FIG. 20 and an induction motor 10 for driving each blower after installing the blower 21 for discharge, and a variable voltage variable frequency device (VVVF) 120 for controlling the rotation of the induction motor, Each of the ducts 50 and 40 connected to the front and rear of the blower to induce the flow of air and the intake valve 60 and the discharge valve 30 in the duct, respectively, and the variable wing (in the intake side of the blower 20, 21) 100). By such a configuration, the external fluid (air) used in the production processing process is supplied to the production processing process means along the duct by the suction blower 20, and the air (fluid) used in the production processing process means. Is discharged to the outside along the duct by the discharge blower (21).
이러한 구성을 특징으로 하는 종래의 송풍시스템에 따라 풍량을 조절, 공급하는 방법은 다음과 같이 설명할 수 있다.The method of adjusting and supplying the air volume according to the conventional blowing system characterized by such a configuration can be described as follows.
① 가변핏치에 의한 풍량조절① Air volume control by variable pitch
이 방법은 송풍기(20, 21)의 내부에 설치된 임펠러(가변핏치)(110)의 날개 각도를 제어하여 풍량을 조절함으로써 공정(70)에 필요한 유량을 공급하는 방법이다.This method is a method of supplying the required flow rate to the process 70 by controlling the air volume by controlling the wing angle of the impeller (variable pitch) 110 installed in the blowers 20 and 21.
② 석션 베인(Suction Vane) 조절② Suction vane adjustment
이 방법은 송풍기(20, 21)의 케이싱(Casing) 흡입구에 설치한 가변날개(100)의 각도를 제어하여 풍량을 조절함으로써 공정(70)에 필요한 유량을 공급하는 방법이다.This method is a method of supplying the required flow rate to the process 70 by controlling the air volume by controlling the angle of the variable wing 100 provided in the casing inlet of the blowers 20 and 21.
③ 흡입측 밸브에 의한 풍량조절③ Air flow control by intake valve
이 방법은 송풍기(20, 21)의 공기 흡입측에 흡입밸브(60)를 설치하고 상기 흡입밸브의 개폐 각도를 제어하여 풍량을 조절함으로써 공정(70)에 필요한 유량을 공급하는 방법이다.This method is a method of supplying the required flow rate to the process 70 by providing an intake valve 60 on the air intake side of the blowers 20, 21, and controlling the air volume by controlling the opening and closing angle of the intake valve.
④ 배출측 밸브에 의한 풍량조절④ Airflow control by outlet valve
이 방법은 송풍기(20, 21)의 공기 배출측에 배출밸브(30)를 설치하고 상기 배출밸브의 개폐 각도를 제어하여 배출되는 유량이 조절되도록 하는 방법이다.This method is to install a discharge valve 30 on the air discharge side of the blower (20, 21) and to control the opening and closing angle of the discharge valve to control the discharge flow rate.
⑤ 송풍기의 회전수를 조절⑤ Adjust the speed of blower
이 방법은 송풍기(20, 21)를 구동하는 유도전동기(10)의 회전수를 가변전압가변주파수장치(120)를 통해 제어함으로써 송풍기의 배출 풍량을 조절하거나 유도전동기(10)의 극수를 변환하여 송풍기의 회전수를 제어하여 풍량을 조절하는 방법이다.In this method, by controlling the number of revolutions of the induction motor 10 driving the blowers 20 and 21 through the variable voltage variable frequency apparatus 120 to adjust the exhaust air volume of the blower or to convert the number of poles of the induction motor 10 It is a method of controlling the air volume by controlling the rotation speed of the blower.
그러나, 이상에서 설명한 상기 유량(풍량)을 제어하는 방법들은 풍량을 제어하기 위한 별도의 수단을 구비해야 하며, 이로 인해 송풍 시스템의 규모가 커지거나 과다한 비용이 지출되는 문제점이 있다. 또한, 생산처리공정수단에 공급되는 공기는 단순히 생산처리공정수단에 공급되어 생산처리공정에만 이용될 뿐 공기의 흐름에 따른 유속에너지는 재활용 되지 못하고 있는 실정이다.However, the above-described methods for controlling the flow rate (air flow rate) should have a separate means for controlling the air flow rate, which causes a problem that the size of the air blowing system is increased or excessive costs are spent. In addition, the air supplied to the production treatment process means is simply supplied to the production treatment process means used only in the production treatment process, the flow rate energy according to the flow of air is not recycled.
본 발명은 이상에서 설명한 문제점들을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 어떠한 송풍 시스템에서도 유량 또는 압력을 제어하기 위한 별도의 장치(예를 들어, 가변핏치, 석션베인, 배출밸브, 가변풀리, 유체커플링, VVVF 등)를 구비하지 않고도 풍차의 회전속도를 제어하여 공정이 요구하는 유량을 선형적으로 흡입 또는 배출하면서 유체가 가지는 유속에너지를 전력에너지로 변환할 수 있는 유량 제어 및 유속 에너지를 이용한 발전이 가능한 송풍기의 발전 시스템을 제공하기 위한 것이다.The present invention has been made to solve the problems described above, an object of the present invention is to provide a separate device for controlling the flow rate or pressure in any blowing system (for example, variable pitch, suction vane, discharge valve, variable pulley) Flow control and flow rate energy that can convert the flow rate energy of the fluid into power energy while linearly inhaling or discharging the flow rate required by the process by controlling the rotational speed of the windmill without having a fluid coupling, fluid coupling, VVVF, etc.) It is to provide a power generation system of the blower capable of generating power using.
도 1은 본 발명의 제1실시예에 따라 발전시스템이 흡입용 송풍기의 흡입덕트 전단과 연계되는 예를 보인 송풍 시스템 블록도이다.1 is a block diagram of a blowing system showing an example in which a power generation system is associated with a suction duct front end of a suction blower according to a first embodiment of the present invention.
도 2는 본 발명의 제2실시예에 따라 발전시스템이 배출용 송풍기의 흡입덕트 전단과 연계되는 예를 보인 송풍 시스템 블록도이다.FIG. 2 is a block diagram of a blowing system showing an example in which a power generation system is connected to a front end of a suction duct of a discharge blower according to a second embodiment of the present invention.
도 3은 본 발명의 제3실시예에 따라 발전시스템이 송풍 시스템의 최종 배출구에 별도로 구비되는 예를 보인 송풍 시스템 블록도이다.3 is a block diagram of an air blowing system showing an example in which a power generation system is separately provided at a final outlet of a blowing system according to a third embodiment of the present invention.
도 4는 종래의 송풍 시스템 블록도이다.4 is a block diagram of a conventional blowing system.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
10: 3상 유도전동기(IM)20: 흡입용 송풍기10: three-phase induction motor (IM) 20: suction blower
21: 배출용 송풍기30, 60: 밸브21: blower 30, 60: valve
40, 50: 덕트70: 생산처리공정수단40, 50: duct 70: production process means
100: 석션베인(Suction Vane)110: 가변핏치100: suction vane 110: variable pitch
120: VVVF200: 풍차120: VVVF200: windmill
210: 영구자석형 동기발전기220: 제어 컨버터210: permanent magnet synchronous generator 220: control converter
230: 정현파 컨버터240: 필터230: sine wave converter 240: filter
상기 목적을 달성하기 위하여 본 발명은, 공기의 유동 경로상에 구비되어 공기의 유속에너지를 회전에너지로 변환하고, 공기의 유량을 제어하는 풍차, 상기 풍차와 연결되어 풍차의 회전에너지를 전력에너지로 변환하고, 토크값에 따라 상기 풍차의 회전속도를 제어하는 전동기, 상기 전동기에서 발생한 교류전력을 직류전력으로 변환하고 상기 전동기의 토크값을 제어하는 제어 컨버터, 및 상기 제어 컨버터에서 제공되는 직류전력을 3상 교류전력으로 변환하는 정현파 컨버터를 포함하여 구성되는 것을 특징으로 한다.In order to achieve the above object, the present invention is provided on the flow path of the air to convert the flow rate energy of the air into rotational energy, the windmill for controlling the flow of air, connected to the windmill and the rotational energy of the windmill as power energy Converts the motor to control the rotational speed of the windmill according to the torque value, a control converter to convert the AC power generated by the motor into direct current power and to control the torque value of the motor, and a direct current power provided by the control converter. It characterized in that it comprises a sine wave converter for converting into three-phase AC power.
이하, 첨부한 도면을 참조하여 실시예와 더불어 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
단, 상기 종래의 송풍 시스템과 중복되는 부분은 설명을 생략하기로 한다.However, a description overlapping with the conventional blower system will be omitted.
도 1은 본 발명의 제1실시예에 따른 송풍 시스템 블록도로서, 흡입용 송풍기(20)의 흡입덕트(50) 전단에 풍차(200)를 구비한 예를 보인 것이다. 즉, 종래의 송풍시스템에서 유체의 물리적인 에너지를 전기적 에너지로 변환하기 위하여 흡입용 송풍기(20)의 공기 흡입덕트 전단에 유체의 유속에너지를 회전에너지로 변환하는 풍차(200), 상기 풍차와 연결되어 풍차의 회전에너지를 전력에너지로 변환하는 전동기(210), 상기 전동기에서 발생한 전력을 안정된 직류로 변환하는 제어 컨버터(220), 상기 제어 컨버터(220)에서 제공되는 직류를 3상 교류전력으로 변환하는 정현파 컨버터(230) 및 상기 정현파 컨버터(230)에서 제공되는 3상 교류전력에서 고주파 노이즈를 제거하는 필터(240)를 포함하여 구성된다.1 is a block diagram of a blowing system according to a first embodiment of the present invention, which shows an example in which a windmill 200 is provided in front of a suction duct 50 of a suction blower 20. That is, in the conventional blowing system, in order to convert the physical energy of the fluid into electrical energy, the windmill 200 for converting the flow velocity energy of the fluid into rotational energy in front of the air suction duct of the suction blower 20, the connection with the windmill The motor 210 converts the rotational energy of the windmill into power energy, the control converter 220 for converting the electric power generated by the motor into a stable direct current, and converts the direct current provided from the control converter 220 to three-phase AC power A sine wave converter 230 and a filter 240 for removing high frequency noise from the three-phase AC power provided by the sine wave converter 230 is configured.
이와 같은 구성을 통해, 흡입용 송풍기(20)에 상용전원을 인가하여 정격 회전수로 가동하면 송풍기의 공기 흡입덕트(50) 전단에 직결로 구비된 풍차(200)는 유체의 흐름에 따른 유속에너지로 인해 회전운동을 하게 되고, 그에 따라 이 풍차의 축에 연결된 영구 자석형 동기발전기(210)가 회전되어 3상 교류 전력을 발생시킨다. 여기서, 상기 영구 자석형 동기발전기는 회전자에 영구자석을 내장한 구조로서, 회전자측에 철손이 발생하지 않으므로 회전자를 지지하는 베어링의 온도 상승이 거의 없어 온도 상승에 의한 수명 단축이 없는 특징이 있다. 그러나, 동기발전기에서 발생되는 3상 교류전력은 공정에서 필요로 하는 유량의 변화에 따라 수시로 가변되므로 안정된 전력으로 사용하기에는 불완전하다. 따라서, 상기 동기 발전기에서 발전된 3상 교류 전원은 6개의 IGBT(Insulated Gate Bipolar Transistor)소자, 전력용 전해콘덴서, 마이크로 프로세서 등으로 구성되어 발전기의 토크(Torque)제어가 가능한 제어 컨버터(220)를 통하여 안정된 직류전력으로 변환되고, 상기 변환된 직류전력은 6개의 IGBT소자, 전력용 전해콘덴서, 마이크로 프로세서 등으로 구성된 정현파 컨버터(230)를 통하여 상용전력과 상호 계통연계가 가능하도록 3상의 상회전, 주파수, 전압의 크기, 역률 등을 제어하여 안정된 3상 교류전력으로 변환된다. 또한, 여기서 발생된 3상 전력은 50Hz 또는 60Hz 이외의 고주파 노이즈를 포함하고 있기 때문에 전력계통에 고주파 장해를 발생시킬 수 있으므로 필터(240)를 이용하여 3MHz 내지 300MHz 범위의 고주파 노이즈를 제거하여 깨끗한 품질의 3상 교류전력을 제공한다.Through such a configuration, when the commercial power is applied to the suction blower 20 and operated at the rated rotation speed, the windmill 200 directly provided in front of the air suction duct 50 of the blower has a flow rate energy according to the flow of the fluid. Due to the rotational movement, the permanent magnet synchronous generator 210 connected to the shaft of the windmill is rotated to generate three-phase AC power. Here, the permanent magnet synchronous generator is a structure in which the permanent magnet is built into the rotor, and since iron loss does not occur on the rotor side, there is almost no increase in the temperature of the bearing supporting the rotor, and thus there is no shortening of life due to the temperature increase. There is this. However, since the three-phase AC power generated in the synchronous generator is often changed in accordance with the flow rate required in the process, it is incomplete to use as a stable power. Accordingly, the three-phase AC power generated by the synchronous generator is composed of six Insulated Gate Bipolar Transistor (IGBT) elements, a power electrolytic capacitor, a microprocessor, and the like, through a control converter 220 capable of controlling torque of the generator. The DC power is converted into a stable DC power, the three-phase phase rotation, frequency so as to enable the grid connection with the commercial power through the sine wave converter 230 composed of six IGBT elements, power electrolytic capacitor, microprocessor, etc. It converts into stable three-phase AC power by controlling voltage magnitude and power factor. In addition, since the three-phase power generated here includes high frequency noise other than 50 Hz or 60 Hz, it may cause high frequency interference in the power system. Thus, the filter 240 may be used to remove high frequency noise in the range of 3 MHz to 300 MHz to provide clean quality. Provides three-phase AC power.
또한, 일반적인 송풍기 설비에 있어서 공정이 필요로 하는 유량보다 송풍기 시스템이 가지는 정격유량의 능력이 과대하나, 본 발명에 따르면 시스템 가동시에 다음과 같이 흡입 유량을 제어할 수 있다.In addition, although the capacity of the rated flow rate of the blower system is greater than the flow rate required for the process in the general blower installation, the suction flow rate can be controlled as follows when the system is operated.
즉, 송풍시스템이 가동되면 풍차(200)는 흡입되는 유량의 유속에너지에 의해 회전하게 되고, 이 회전력은 풍차의 축에 연결된 영구자석형 동기 발전시스템을 통해 전기에너지로 변환된다(210 내지 240). 이 때, 흡입되는 공기의 유속에너지에의하여 풍차가 회전하는 회전 토크를 정(+)방향이라고 가정하면, 송풍기가 정격 회전수로 회전하면서 흡입되는 유량은 일정한 상태이므로 풍차의 날개에 걸리는 회전토크도 정방향으로 일정한 값이 된다. 만일, 공정에서 필요로 하는 유량이 송풍기가 정격 회전수로 회전할 때 유량의 80%만 필요할 경우, 송풍기 전단에 설치된 풍차의 속도를 정격대비 80%만 회전하도록 제어 컨버터(220)에서 상기 영구자석형 동기발전기(210)의 토크를 제어한다. 즉, 공기의 흐름에 의하여 정방향으로 회전하는 영구자석형 동기발전기는 회생모드(Regenerative Mode)로 되어 회생전력(Regeneration Power)을 발생하게 된다. 그러므로, 제어 컨버터(220)에서 영구자석형 동기발전기(210)를 제어하는 토크값의 크기에 따라 상기 풍차가 회전하는 회전속도가 결정되므로 풍차(200)를 통과하여 송풍기(20)의 흡입구로 유입되는 유량이 결정됨과 동시에 동기 발전기에서 발전되는 전기에너지의 크기도 결정된다.That is, when the air blowing system is operated, the windmill 200 is rotated by the flow rate energy of the sucked flow rate, and the rotational force is converted into electrical energy through the permanent magnet synchronous power generation system connected to the shaft of the windmill (210 to 240). . At this time, assuming that the rotational torque of the windmill rotated by the flow velocity energy of the sucked air is positive (+) direction, the rotational torque applied to the blades of the windmill is also maintained because the flow rate of suction is constant while the blower rotates at the rated rotational speed. It is a constant value in the forward direction. If the flow rate required in the process requires only 80% of the flow rate when the blower rotates at the rated rotation speed, the permanent magnet in the control converter 220 rotates the speed of the windmill installed at the front of the blower only 80% of the rated flow rate. The torque of the type synchronous generator 210 is controlled. That is, the permanent magnet synchronous generator rotating in the forward direction by the flow of air is in the regenerative mode to generate the regeneration power. Therefore, since the rotation speed at which the windmill rotates is determined according to the magnitude of the torque value controlling the permanent magnet synchronous generator 210 in the control converter 220, it passes through the windmill 200 and enters the inlet of the blower 20. At the same time, the amount of electric energy generated by the synchronous generator is determined.
도 2는 본 발명의 제2실시예에 따른 송풍 시스템도로서, 배출용 송풍기(21)의 흡입덕트(50) 전단에 풍차(200)를 구비하여 상기 제1실시예와 달리 생산처리공정을 거친 유량의 유속에너지를 전기에너지로 변환하는 예를 보인 것이다. 본 실시예에 따른 발전시스템과 운용방법은 상기 도 1의 제1실시예와 동일하므로 자세한 설명은 생략하기로 한다.FIG. 2 is a view illustrating a blowing system according to a second embodiment of the present invention, which includes a windmill 200 in front of a suction duct 50 of a discharge blower 21 and undergoes a production process unlike the first embodiment. It shows an example of converting the flow rate energy of the flow rate into electrical energy. Since the power generation system and the operation method according to the present embodiment are the same as those of the first embodiment of FIG. 1, detailed description thereof will be omitted.
도 3은 본 발명의 제3실시예에 따른 송풍 시스템도로서, 배출용 송풍기(21)의 배출덕트(40) 후단에 풍차(200)를 구비하여 대기로 방출되는 유량의 유속에너지를 전기에너지로 변환하는 예를 보인 것이다. 본 실시예에 따른 발전시스템과 운용방법은 상기 도 1의 제1실시예와 동일하므로 자세한 설명은 생략하기로 한다.3 is a diagram of a blowing system according to a third embodiment of the present invention, provided with a windmill 200 at the rear end of the discharge duct 40 of the discharge blower 21 to convert the flow rate energy of the flow rate emitted into the atmosphere into electrical energy. Here is an example of conversion. Since the power generation system and the operation method according to the present embodiment are the same as those of the first embodiment of FIG. 1, detailed description thereof will be omitted.
이상에서 설명한 본 발명은 상기한 실시예에 한정되는 것은 아니며, 생산 설비의 환경에 따라 적절히 변형 응용할 수 있고, 이러한 응용은 본 발명의 기술적 사상을 벗어날 수 없음은 자명하다.The present invention described above is not limited to the above-described embodiment, it can be appropriately modified according to the environment of the production equipment, it is obvious that such application can not escape the technical spirit of the present invention.
이상에서 설명한 본 발명에 의하면 송풍시스템에서 풍차와 영구자석형 동기발전기를 포함하는 발전시스템을 구비함으로써 다음과 같은 효과를 기대할 수 있다.According to the present invention described above, by providing a power generation system including a windmill and a permanent magnet synchronous generator in a blowing system, the following effects can be expected.
첫째, 종래의 송풍시스템이 배출용 송풍기 설비의 최종 방출단에 회수가 가능한 유속에너지가 대기로 소모되고 있는 문제점을 해결하여 상기 배출되는 유속에너지를 재사용이 가능한 전력에너지로 변환하여 회수함으로써 에너지를 재활용할 수 있는 효과가 있다.First, the conventional blower system solves the problem that the flow rate energy that can be recovered to the final discharge stage of the blower equipment is exhausted to the atmosphere, and converts the discharged flow rate energy into reusable power energy to recover the energy. It can work.
둘째, 종래의 송풍시스템이 요구하는 유량제어수단에 비해 풍차와 연결된 토크값에 따라 풍차의 회전수를 제어함으로써 유량을 조절할 수 있고, 그에 따라 설비의 안정성, 장래의 증설, 생산공정의 운전형태 등을 고려하여 공정이 실제로 필요로 하는 용량보다 과대한 송풍 능력을 가지는 설비를 운용하는 문제점을 해결하여 효율적인 송풍능력을 제공할 수 있다.Second, the flow rate can be adjusted by controlling the rotation speed of the windmill according to the torque value connected to the windmill, compared to the flow control means required by the conventional blowing system, according to the stability of the equipment, future expansion, the operation mode of the production process, etc. In consideration of this, the problem of operating a facility having an excessive blowing capacity than the capacity actually required by the process can be solved to provide an efficient blowing capacity.
셋째, 종래의 송풍시스템에서 필요로 하는 유량제어수단으로서 고가의 제어밸브 또는 각종 수단을 본 발명의 간단한 발전시스템을 이용함으로써 비용의 절감을 도모할 수 있는 효과가 있다.Third, there is an effect that the cost can be reduced by using an expensive control valve or various means as the flow control means required in the conventional blowing system by using the simple power generation system of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020004304A KR20030063940A (en) | 2002-01-24 | 2002-01-24 | Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020004304A KR20030063940A (en) | 2002-01-24 | 2002-01-24 | Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030063940A true KR20030063940A (en) | 2003-07-31 |
Family
ID=32219279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020004304A KR20030063940A (en) | 2002-01-24 | 2002-01-24 | Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030063940A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081307A2 (en) * | 2009-12-31 | 2011-07-07 | Kim Juen Soo | Air turbine assembly for a wind-collecting tower wind power generator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420939A (en) * | 1982-07-16 | 1983-12-20 | Mccue James H | Solar building construction |
JPH0622573U (en) * | 1992-04-13 | 1994-03-25 | 重人 峰松 | Wind power generator for updraft application |
JPH0693956A (en) * | 1992-09-16 | 1994-04-05 | Haruji Kurogo | Method for saving energy generated through utilization of rotation of force draft fan for boiler |
JPH11299295A (en) * | 1998-04-13 | 1999-10-29 | Mitsubishi Heavy Ind Ltd | Control of wind power generator |
-
2002
- 2002-01-24 KR KR1020020004304A patent/KR20030063940A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420939A (en) * | 1982-07-16 | 1983-12-20 | Mccue James H | Solar building construction |
JPH0622573U (en) * | 1992-04-13 | 1994-03-25 | 重人 峰松 | Wind power generator for updraft application |
JPH0693956A (en) * | 1992-09-16 | 1994-04-05 | Haruji Kurogo | Method for saving energy generated through utilization of rotation of force draft fan for boiler |
JPH11299295A (en) * | 1998-04-13 | 1999-10-29 | Mitsubishi Heavy Ind Ltd | Control of wind power generator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081307A2 (en) * | 2009-12-31 | 2011-07-07 | Kim Juen Soo | Air turbine assembly for a wind-collecting tower wind power generator |
WO2011081307A3 (en) * | 2009-12-31 | 2011-11-03 | Kim Juen Soo | Air turbine assembly for a wind-collecting tower wind power generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106224268B (en) | DC permanent-magnetic brushless frequency conversion axial flow fan | |
WO2013127314A1 (en) | Cooling system and method for wind power generator and wind power generator set | |
CN104676832A (en) | Air conditioning system | |
CN105386990A (en) | Energy saving fan component | |
JP2005016452A (en) | Wind power generation system, wind power generation method and wind power generation device for artificial airflow | |
KR20030063940A (en) | Power generation system of a ventilator which can control the amount of flowing air and generate power using the speed of a current | |
Balasubramanian et al. | Variable frequency drive operated air blower in air handling unit of heating, ventilation and air conditioning systems | |
CN207406436U (en) | A kind of wind power plant | |
CN211370796U (en) | High-efficient mine ventilation machine | |
CN207638509U (en) | A kind of high-voltage generator rectification module mounting structure | |
KR20090041599A (en) | Fan motor controller of air conditioner and method for controlling the fan motor | |
CN103079384B (en) | Wind power generation self-starting silicon stack cooling system | |
CN201032234Y (en) | Water cooling air conditioner | |
JPH04241704A (en) | Rotary fluid machine | |
KR20060025257A (en) | Power generation system by wind from cooling tower | |
CN219622912U (en) | Brushless direct current type ventilator | |
CN110212823A (en) | Bus voltage control method, fan bus control circuit and air conditioner | |
JP5966143B2 (en) | Blower and electric device equipped with the same | |
JP2005299479A (en) | Wind power generating device to be installed in engine generator | |
CN211859858U (en) | High-efficiency energy-saving synchronous motor | |
CN221074456U (en) | Power generation device | |
CN216518619U (en) | Energy-saving screw blower | |
CN203039498U (en) | Integrated DC brushless condenser fan of bus air condition | |
CN106152385A (en) | The control method of a kind of blower motor and the control method of a kind of air-conditioning | |
CN206412916U (en) | A kind of DC Brushless Motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |