JP2005016452A - Wind power generation system, wind power generation method and wind power generation device for artificial airflow - Google Patents

Wind power generation system, wind power generation method and wind power generation device for artificial airflow Download PDF

Info

Publication number
JP2005016452A
JP2005016452A JP2003183786A JP2003183786A JP2005016452A JP 2005016452 A JP2005016452 A JP 2005016452A JP 2003183786 A JP2003183786 A JP 2003183786A JP 2003183786 A JP2003183786 A JP 2003183786A JP 2005016452 A JP2005016452 A JP 2005016452A
Authority
JP
Japan
Prior art keywords
wind power
power generation
building
artificial airflow
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003183786A
Other languages
Japanese (ja)
Inventor
Fumio Yamamoto
文雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Power Technology Ltd
Original Assignee
Tokyo Electric Power Environmental Engineering Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Environmental Engineering Co Inc filed Critical Tokyo Electric Power Environmental Engineering Co Inc
Priority to JP2003183786A priority Critical patent/JP2005016452A/en
Publication of JP2005016452A publication Critical patent/JP2005016452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide wind power generation technique allowing stable power generation and capable of constantly ensuring certain electricity generation, particularly the wind power generation technique allowing implementation in a form of accompanying an electric power system of a building and having effect in electric power cost reduction in the building. <P>SOLUTION: A wind power generation system uses artificial air flow and has a wind mill 10 rotatably arranged opposite to an air jet 8a for forming the artificial airflow, a generator 11 driven by the windmill 10, and an electric energy control means 2 controlling electric energy obtained from the generator 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、たとえば発電所のタービン建屋内や半導体製品などの製造工場内、公共施設や娯楽施設などの大規模建物内に形成される空調用の人工気流を利用した風力発電技術に関するものである。
【0002】
【発明が解決しようとする課題】
近年、クリーンで、しかも枯渇することのないエネルギー源として風力が注目されており、本格的な商業発電も始まっている。しかし、風すなわち自然気流は風速や風向が一定しておらず、ときには長い時間にわたって止んでしまうこともあり、安定した発電が非常に難しい。
【0003】
ところで、発電所の建屋など大規模な建物内には、比較的消費電力の小さな電気機器が数多く設置されている。たとえば、照明器具などは各階に多数配備されている。したがって、出力の小さな風力発電装置であっても、それを連続運転させて常時一定の発電量を確保できれば、そして、こうして得た電力を用いて照明器具などの電気機器を機能させることができれば、建物内の電力コスト削減に極めて大きな効果を発揮する。
【0004】
したがって、本発明が解決しようとする課題は、安定した発電が可能で、恒常的に一定の発電量を確保できる風力発電技術を提供することである。特に、建物の電力系統に付帯した形で実施が可能であり、建物内の電力コスト削減に効果を発揮する風力発電技術を提供することである。
【0005】
【課題を解決するための手段】
ところで、上記の課題を解決するべく鋭意研究を進める過程で、本発明者は、建物内に常時形成されている空調用の気流(人工気流)を風力発電に利用できるのではないかとの閃きを手にした。
【0006】
すなわち、発電所の建屋など大規模な建物では、関係法規によって、建物内の空気を入れ替えるための空調設備の設置が義務付けられている。この空調設備の働きによって、建物内には空気が一定流量で常に供給されており、また同時に、それとバランスする量の空気が建物外に排出されている。
【0007】
そして、本発明者は、建物内でこうした役割を果たしている空調ダクトの給気口(空気の吹出し口)に対向するよう風車を配置し、人工気流の持つエネルギーの一部を回収して発電することを思い付いたのである。すなわち、建物内には常に空気が供給され、したがって絶えず人工気流が形成されているわけであるから、これは、風速や風向が一定していない自然気流を利用する従来の風力発電技術に比べて、格段に安定したエネルギー源になる。つまり、問題となるような出力変動を伴わない安定した風力発電が可能となり、恒常的に一定の発電量を確保することができる。
【0008】
特に、本発明に係る風力発電技術は、空調ダクトの給気口と風車とが対になるよう配置され、その結果、必然的に建物の電力系統に付帯する形で実施されることになる。よって、得られた電力を用いて、建物内の照明器具など電気機器を作動させることが可能で、建物内の電力コスト削減に大きな効果を発揮する。
【0009】
本発明に係る風力発電技術によれば、さらに次のような効果も奏される。本発明に係る風力発電技術がエネルギー源として利用する人工気流は、向きや流速(流量)が、おおむね一定に保たれている。ところで、従来型の風力発電装置は、向きや流速が絶えず変化する自然気流に対応可能でなければならず、実際にもそのように設計されており、構造は複雑である。しかしながら、向きや流速がほぼ一定の人工気流を利用する場合には、こうした従来型のものに比べ、装置の構造を著しく簡素化することができる。
【0010】
しかも、本発明では、ある特定の流速にのみ対応するような、言い換えれば、その流速で最大効率を発揮するような形状・構造の風車を採用できるので、発電効率をさらに向上させることも可能である。
【0011】
本発明は、上述したような新知見に基づいてなされたものであり、上記の課題は、人工気流を利用した風力発電システムであって、人工気流を形成する空気の吹出し口に対向するよう配設された風車と、この風車によって駆動される発電機と、この発電機から得られた電気エネルギーを統御する電気エネルギー統御手段とを具備してなることを特徴とする風力発電システムによって解決される。
【0012】
本発明に係る風力発電システムにあっては、電気エネルギー統御手段が、蓄電池を構成要素として具備してなるとともに、この電気エネルギー統御手段は、発電機から得られた電気エネルギーを蓄電池に充電し、あるいは直流電流または交流電流として電力供給対象(電気機器)に供給するよう構成されてなることが好ましい。
【0013】
こうすることで、さらに安定した電力供給が可能となる。また、直流・交流の別なく電気機器の電源として使用でき、利便性にも優れる。ただし、上記発電機として交流式のものを採用した場合には、蓄電池への充電に先立ち、整流回路などを用いて、交流電流が直流電流に変換されることになる。
【0014】
ひるがえって、上記の課題は、人工気流を利用した風力発電方法であって、人工気流を形成する空気の吹出し口に対向するよう配設された風車を、人工気流の作用によって回転させ、この回転力によって、風車の回転軸と接続された発電機を駆動して電気エネルギーを得ることを特徴とする風力発電方法によって解決される。
【0015】
また、同じく上記の課題は、人工気流を利用した風力発電に用いられる装置であって、人工気流を受けて回転する風車と、入力軸が風車の回転軸と接続された発電機と、風車および発電機を、風車が人工気流を形成する空気の吹出し口に対向するよう支持する支持手段とを具備してなることを特徴とする人工気流用風力発電装置によって解決される。
【0016】
なお、本発明に係る風力発電システム、風力発電方法、そして人工気流用風力発電装置のいずれに関しても、人工気流を形成する空気の吹出し口としては、建物内に設置された空調ダクトの給気口を挙げることができる。また、この人工気流を形成する空気の吹出し口としては、建物内の空気を建物外に排出するための排気口を挙げることができる。ただし、建物内に設置された空調ダクトの給気口に対向して風車を設置する場合と、建物内の空気を建物外に排出するための排気口に対向して風車を設置する場合とを比べると、風車が外風の影響を受け難い点において、建物内に設置された空調ダクトの給気口に対向して風車を設置する場合の方が好ましい。
【0017】
【発明の実施の形態】
以下、本発明に係る風力発電技術について、それを大規模な建物である発電所のタービン建屋内にて実施した場合を例に挙げ、図1および図2を用いて具体的に説明する。なお、図1は本実施形態に係る風力発電システムの構成を示す概念図、図2は風車と空調ダクトの給気口との位置関係を示す概略図である。
【0018】
ただし、これは本発明の一つの形態であり、タービン建屋以外のさまざまな建物内においても同じようにして、あるいは発明の技術的思想を逸脱しない範囲で適宜変更を加えて実施することができる。
【0019】
本実施形態に係る風力発電システム(以下、本風力発電システムと言う)は、タービン建屋内の空調用の人工気流を利用したものであり、図1からわかるように、概して、人工気流用の風力発電装置1と電気エネルギー統御手段2とから構成されている。このうち電気エネルギー統御手段2は、後述する風力発電装置1の発電機から得られた電気エネルギーを統御する役割を果たす。本実施形態では、この電気エネルギー統御手段2を、充放電コントローラ3と、これに接続された蓄電池4およびインバータ5とから構成している。
【0020】
充放電コントローラ3には、出力用の電源端子が二つ接続されている。その一つは、電力供給対象である直流式電気機器(図示せず)に直流電流を供給するための直流電源端子6であり、これは充放電コントローラ3に直結されている。もう一つの出力用電源端子は、電力供給対象である交流式電気機器(図示せず)に交流電流を供給するための交流電源端子7であり、これは上記インバータ5を介して充放電コントローラ3に接続されている。
【0021】
上記電気エネルギー統御手段2は、風力発電装置1の発電機から得られた電気エネルギーを蓄電池3に充電したり、直流電源端子6あるいは交流電源端子7に供給(すなわち直流電流あるいは交流電流として電力供給対象に供給)したりする役割を果たす。電気エネルギー統御手段2はさらに、必要に応じて蓄電池3を放電させ、直流電源端子6あるいは交流電源端子7に所要の電力を供給する。なお本実施形態では、インバータ5の働きで、交流電源端子7から電圧が100Vの交流電流を得られるようになっている。
【0022】
ちなみに、図1においては、直流電流が流れる送電ラインを破線にて、一方、交流電流が流れる送電ラインを二点鎖線にて示している。ところで、電力供給対象を直流式電気機器のみに限定する場合は、上記システムの構造をさらに簡素化することができる。つまり、インバータ5および交流電源端子7を省略できる。これに対して、電力供給対象を交流式電気機器のみに限定する場合には、直流電源端子6を省略できる。
【0023】
さて、本実施形態に係る風力発電装置(以下、本風力発電装置と言う)1は、1本の空調ダクト8に対して複数基設置される。すなわち、図1においては本風力発電装置1を2基しか示していないが、実際には、空調ダクト8が有する給気口8aと同数だけ設けられている。本実施形態にあっては、このように、建物内に設置された空調ダクト8の給気口8aが、上記人工気流を形成する空気の吹出し口となっている。
【0024】
人工気流を利用した風力発電に用いられる本風力発電装置1は、図2に示すように概して、プロペラ型の風車10、発電機11、そして支持具(支持手段)12から構成されている。このうち風車10は、人工気流を形成する空気の吹出し口、すなわち上記給気口8aに対向するように配設されている。すなわち、給気口8aから常に所定方向に吹き出されて来る風に向けて風車10が配置されていて、給気口8aからの風によって風車10の羽根が回転するように構成されている。
【0025】
本実施形態では、風車10として、複数の羽根を回転軸10aの周りに放射状に配したものを用いた。だが、これ以外にも、たとえば複数の羽根を鉛直回転軸の軸方向に沿って、それを取り囲むように配してなる風車などを用いてもよい。すなわち風車は、さまざまな条件を考慮して、最適なものが選定されることになる。
【0026】
発電機11の入力軸(図示せず)には、風車10の回転軸10aが接続されており、したがって発電機11は、風車10を定位置で回転自在に支持する。この発電機11は、言うまでもなく、人工気流を受けて回転する風車10によって駆動される。なお、ここで用いた発電機11は交流式のものであるが、整流回路(図示せず)を内蔵しており、したがって本風力発電装置1は、発生させた電気エネルギーを直流電流の形で出力する。
【0027】
支持具12は、金属パイプなどを折り曲げて構成されたものであり、その先端側には発電機11が取り付けられている。また、支持具12の基端側は、空調ダクト8に固定されている。この支持具12は、風車10および発電機11を、風車10が、人工気流を形成する空気の吹出し口である給気口8aに対向するよう支持する役割を果たす。
【0028】
本実施形態では、給気口8aと風車10との距離Lを、たとえば風車10の直径Dの0.5〜3倍程度に設定した。だが、これは、人工気流の流速(風量)や給気口8aの寸法・形状、さらには周囲の環境などを考慮して決定される。またここでは、発電機11を、支持具12を介して空調ダクト8に固定した場合を例に挙げたが、むろん、建物の天井や床面、壁面(建物が階層構造である場合には各階の天井や床面、壁面)に適当な支持手段を用いて固定してもよい。
【0029】
さらに言えば、本実施形態では、空調ダクト8として天井から吊り下げられたものを例に挙げたが、もしそれが床面や壁面に沿って配置されている場合でも、やはり先と同じようにして本風力発電装置1が設置されることになる。
【0030】
このように本風力発電システムを用いた発電手法では、言い換えれば本実施形態に係る風力発電方法では、建物内の空調用の人工気流がエネルギー源として利用される。そして、この人工気流を形成する空気の吹出し口、つまり空調ダクト8の給気口8aに対向するよう回転自在に配設された風車10を、人工気流の作用によって回転させ、この回転力によって、風車10の回転軸10aと接続された発電機11を駆動して、所要の電気エネルギーを得るようになっている。
【0031】
さて、本実施形態に係る風力発電技術を用いた場合、タービン建屋などの建物内には、絶えず一定流速の人工気流が形成されているわけであるから、風速や風向が一定していない自然気流を利用する従来技術に比べ、極めて安定した風力発電が可能となり、恒常的に一定の発電量を確保することができる。
【0032】
また、本実施形態に係る風力発電技術は、空調ダクト8の給気口8aと風車10とが対になるよう配置されるので、当然のことながら、建物の電力系統に付帯する形で実施されることになる。ゆえに、得られた電力を用いて建物内の照明器具など電気機器を作動させることが可能で、建物内の電力コスト削減に大きな効果を発揮する。
【0033】
加えて、本実施形態に係る風力発電技術がエネルギー源として利用する人工気流は、向きや流速(流量)が、おおむね一定に保たれている。したがって、人工気流を利用する場合には、向きや流速が絶えず変化する自然気流に対応可能でなければならず、実際にもそのように設計されている従来型装置に比べ、装置構造を著しく簡素化することができる。しかも、ある特定の流速にのみ対応し、その流速で最大効率を発揮するような形状・構造の風車を採用できるので、発電効率をさらに向上させることが可能である。
【0034】
なお、本実施形態では、人工気流を形成する空気の吹出し口として、建物内に設置された空調ダクトの給気口を用いた場合を例に挙げた。しかしながら、人工気流を形成する空気の吹出し口は、こうしたものに限定されるわけではない。本発明の他実施形態としては、たとえば建物内の空気を建物外に排出するための排気口を、人工気流を形成する空気の吹出し口として利用したものが挙げられる。つまり、排気口付近に生じている人工気流を風力発電のエネルギー源として利用することもできる。
【0035】
【発明の効果】
本発明によれば、安定した風力発電が可能で、恒常的に一定の発電量を確保することができる。特に、建物の電力系統に付帯する形で風力発電が可能であり、建物内の電力コスト削減に効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る風力発電システムの構成を示す概念図
【図2】風車と空調ダクトの給気口との位置関係を示す概略図
【符号の説明】
1 風力発電装置(人工気流用風力発電装置)
2 電気エネルギー統御手段
3 充放電コントローラ
4 蓄電池
5 インバータ
6 直流電源端子
7 交流電源端子
8 空調ダクト
8a 空調ダクトの給気口(人工気流を形成する空気の吹出し口)
10 風車
10a 風車の回転軸
11 発電機
12 支持具(支持手段)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a wind power generation technology using an artificial airflow for air conditioning formed in a turbine building of a power plant, a manufacturing factory for semiconductor products, etc., or a large-scale building such as a public facility or amusement facility. .
[0002]
[Problems to be solved by the invention]
In recent years, wind power has attracted attention as an energy source that is clean and does not run out, and full-scale commercial power generation has begun. However, the wind speed, that is, the natural airflow, does not have a constant wind speed and direction and sometimes stops for a long time, so that stable power generation is very difficult.
[0003]
By the way, in a large-scale building such as a building of a power plant, many electric devices with relatively small power consumption are installed. For example, many lighting fixtures are arranged on each floor. Therefore, even if it is a wind power generator with a small output, if it can be operated continuously and a constant power generation amount can be secured at all times, and if electric equipment such as lighting equipment can be functioned using the power thus obtained, It is extremely effective in reducing power costs in buildings.
[0004]
Therefore, the problem to be solved by the present invention is to provide a wind power generation technique capable of stable power generation and capable of constantly securing a constant power generation amount. In particular, it is possible to provide a wind power generation technique that can be implemented in a form attached to the power system of the building and that is effective in reducing the power cost in the building.
[0005]
[Means for Solving the Problems]
By the way, in the process of advancing earnest research to solve the above-mentioned problems, the present inventor flashes that air-conditioning airflow (artificial airflow) that is constantly formed in a building can be used for wind power generation. I got it.
[0006]
That is, in a large-scale building such as a building of a power plant, installation of air-conditioning equipment for exchanging air in the building is obligated by related laws and regulations. By the function of this air conditioning equipment, air is constantly supplied into the building at a constant flow rate, and at the same time, a balanced amount of air is discharged outside the building.
[0007]
And this inventor arrange | positions a windmill so as to oppose the air supply opening (air blowing opening) of the air-conditioning duct which plays such a role in a building, collect | recovers a part of energy which artificial airflow has, and generates electric power I came up with that. In other words, air is constantly supplied into the building, and therefore an artificial airflow is constantly formed. This is compared to conventional wind power generation technology that uses natural airflow with a constant wind speed and direction. It becomes a much more stable energy source. That is, stable wind power generation that does not cause a problem of output fluctuation is possible, and a constant power generation amount can be secured constantly.
[0008]
In particular, the wind power generation technology according to the present invention is arranged such that the air supply duct of the air conditioning duct and the wind turbine are paired, and as a result, is necessarily implemented in a form incidental to the power system of the building. Therefore, it is possible to operate electric devices such as lighting fixtures in the building using the obtained electric power, which is very effective in reducing the power cost in the building.
[0009]
According to the wind power generation technology according to the present invention, the following effects are further exhibited. The direction and flow velocity (flow rate) of the artificial airflow used as an energy source by the wind power generation technology according to the present invention are generally kept constant. By the way, the conventional wind power generator must be able to cope with a natural airflow whose direction and flow velocity constantly change, and is actually designed as such, and its structure is complicated. However, when an artificial airflow having a substantially constant direction and flow velocity is used, the structure of the apparatus can be remarkably simplified as compared with the conventional type.
[0010]
In addition, in the present invention, it is possible to employ a wind turbine having a shape and structure that corresponds only to a specific flow rate, in other words, that exhibits the maximum efficiency at that flow rate, so that it is possible to further improve the power generation efficiency. is there.
[0011]
The present invention has been made on the basis of the above-described new knowledge, and the above-described problem is a wind power generation system using an artificial airflow, and is arranged to face an air outlet that forms the artificial airflow. Solved by a wind power generation system comprising an installed windmill, a generator driven by the windmill, and electrical energy control means for controlling electrical energy obtained from the generator .
[0012]
In the wind power generation system according to the present invention, the electrical energy management means comprises a storage battery as a component, and the electrical energy management means charges the storage battery with electrical energy obtained from the generator, Or it is preferable to be comprised so that it may supply to an electric power supply object (electric equipment) as a direct current or an alternating current.
[0013]
This makes it possible to supply more stable power. In addition, it can be used as a power source for electrical equipment regardless of whether it is direct current or alternating current, and it is excellent in convenience. However, when an AC type generator is used as the generator, an AC current is converted into a DC current using a rectifier circuit or the like prior to charging the storage battery.
[0014]
On the other hand, the above-mentioned problem is a wind power generation method using an artificial airflow, in which a windmill arranged to face an air outlet that forms the artificial airflow is rotated by the action of the artificial airflow, and this rotational force Thus, the wind power generation method is characterized in that the generator connected to the rotating shaft of the windmill is driven to obtain electric energy.
[0015]
Similarly, the above-mentioned problem is a device used for wind power generation using artificial airflow, which is a windmill that rotates by receiving an artificial airflow, a generator in which an input shaft is connected to a rotation shaft of the windmill, a windmill, This is solved by a wind power generator for artificial airflow, characterized in that the generator is provided with support means for supporting the wind turbine so as to face an air outlet that forms an artificial airflow.
[0016]
In addition, in regard to any of the wind power generation system, the wind power generation method, and the wind power generator for artificial airflow according to the present invention, as the air outlet for forming the artificial airflow, the air supply duct of the air conditioning duct installed in the building Can be mentioned. In addition, examples of the air outlet that forms the artificial airflow include an exhaust outlet for discharging the air in the building to the outside of the building. However, there are cases where a windmill is installed opposite the air supply duct of an air conditioning duct installed in the building, and where a windmill is installed opposite the exhaust outlet for discharging the air inside the building outside the building. In comparison, it is preferable that the windmill is installed facing the air supply port of the air conditioning duct installed in the building in that the windmill is not easily affected by the external wind.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the wind power generation technology according to the present invention will be specifically described with reference to FIGS. 1 and 2 by taking as an example a case where the wind power generation technology is implemented in a turbine building of a power plant that is a large-scale building. FIG. 1 is a conceptual diagram showing the configuration of the wind power generation system according to the present embodiment, and FIG. 2 is a schematic diagram showing the positional relationship between the windmill and the air supply port of the air conditioning duct.
[0018]
However, this is one form of the present invention, and it can be carried out in the same manner in various buildings other than the turbine building or with appropriate modifications without departing from the technical idea of the invention.
[0019]
The wind power generation system according to the present embodiment (hereinafter referred to as the present wind power generation system) uses an artificial airflow for air conditioning in a turbine building, and as can be seen from FIG. It is comprised from the electric power generating apparatus 1 and the electrical energy control means 2. FIG. Among these, the electric energy control means 2 plays a role of controlling electric energy obtained from a generator of the wind power generator 1 described later. In this embodiment, this electric energy control means 2 is comprised from the charging / discharging controller 3, the storage battery 4 and the inverter 5 which were connected to this.
[0020]
Two power supply terminals for output are connected to the charge / discharge controller 3. One of them is a DC power supply terminal 6 for supplying a DC current to a DC electric device (not shown) as a power supply target, which is directly connected to the charge / discharge controller 3. Another output power supply terminal is an AC power supply terminal 7 for supplying an AC current to an AC electric device (not shown) that is a power supply target, and this is connected to the charge / discharge controller 3 via the inverter 5. It is connected to the.
[0021]
The electric energy control means 2 charges the storage battery 3 with electric energy obtained from the generator of the wind power generator 1 or supplies it to the DC power supply terminal 6 or AC power supply terminal 7 (that is, supplies power as DC current or AC current). To supply the target). The electric energy management means 2 further discharges the storage battery 3 as necessary to supply required power to the DC power supply terminal 6 or the AC power supply terminal 7. In the present embodiment, an AC current having a voltage of 100 V can be obtained from the AC power supply terminal 7 by the action of the inverter 5.
[0022]
Incidentally, in FIG. 1, a power transmission line through which a direct current flows is indicated by a broken line, while a power transmission line through which an alternating current flows is indicated by a two-dot chain line. By the way, in the case where the power supply target is limited to only the DC electric equipment, the structure of the system can be further simplified. That is, the inverter 5 and the AC power supply terminal 7 can be omitted. On the other hand, when the power supply target is limited only to the AC type electric device, the DC power supply terminal 6 can be omitted.
[0023]
Now, a plurality of wind turbine generators (hereinafter referred to as “wind turbine generators”) 1 according to this embodiment are installed in one air conditioning duct 8. That is, in FIG. 1, only two wind power generators 1 are shown, but in reality, the same number as the air supply ports 8 a of the air conditioning duct 8 is provided. In the present embodiment, the air supply port 8a of the air conditioning duct 8 installed in the building is thus an air outlet that forms the artificial airflow.
[0024]
As shown in FIG. 2, the wind power generator 1 used for wind power generation using an artificial airflow generally includes a propeller-type windmill 10, a generator 11, and a support (support means) 12. Among these, the windmill 10 is arrange | positioned so that the blower outlet of the air which forms an artificial airflow, ie, the said air supply port 8a, may be opposed. That is, the windmill 10 is arranged toward the wind that is always blown out from the air supply port 8a in a predetermined direction, and the blades of the windmill 10 are rotated by the wind from the air supply port 8a.
[0025]
In the present embodiment, a wind turbine 10 in which a plurality of blades are arranged radially around the rotation shaft 10a is used. However, besides this, for example, a windmill in which a plurality of blades are arranged so as to surround the axial direction of the vertical rotation axis may be used. In other words, the optimum wind turbine is selected in consideration of various conditions.
[0026]
The rotating shaft 10a of the windmill 10 is connected to the input shaft (not shown) of the generator 11, and therefore the generator 11 rotatably supports the windmill 10 at a fixed position. Needless to say, the generator 11 is driven by a windmill 10 that rotates by receiving an artificial airflow. The generator 11 used here is an AC type, but has a built-in rectifier circuit (not shown), and therefore the wind power generator 1 converts the generated electrical energy into a DC current. Output.
[0027]
The support 12 is configured by bending a metal pipe or the like, and the generator 11 is attached to the tip side thereof. Further, the proximal end side of the support 12 is fixed to the air conditioning duct 8. The support 12 serves to support the windmill 10 and the generator 11 so that the windmill 10 faces the air supply port 8a that is an air outlet that forms an artificial airflow.
[0028]
In the present embodiment, the distance L between the air inlet 8a and the windmill 10 is set to about 0.5 to 3 times the diameter D of the windmill 10, for example. However, this is determined in consideration of the flow velocity (air volume) of the artificial airflow, the size / shape of the air supply port 8a, and the surrounding environment. Moreover, although the case where the generator 11 was fixed to the air-conditioning duct 8 via the support 12 was taken as an example here, of course, the ceiling, floor, wall surface of the building (if the building has a hierarchical structure, each floor May be fixed using appropriate support means.
[0029]
Furthermore, in the present embodiment, the air-conditioning duct 8 suspended from the ceiling is taken as an example. However, even if it is arranged along the floor or wall surface, the same as before. This wind power generator 1 is installed.
[0030]
As described above, in the power generation method using the wind power generation system, in other words, in the wind power generation method according to the present embodiment, the artificial airflow for air conditioning in the building is used as an energy source. And the wind turbine 10 rotatably arranged so as to face the air outlet, that is, the air supply port 8a of the air conditioning duct 8, that forms this artificial air current is rotated by the action of the artificial air current, and by this rotational force, The generator 11 connected to the rotating shaft 10a of the windmill 10 is driven to obtain required electrical energy.
[0031]
Now, when the wind power generation technology according to the present embodiment is used, an artificial airflow having a constant flow velocity is constantly formed in a building such as a turbine building, so a natural airflow in which the wind speed and direction are not constant. Compared with the prior art using the power generation, extremely stable wind power generation is possible, and a constant power generation amount can be secured constantly.
[0032]
In addition, the wind power generation technology according to the present embodiment is arranged so that the air supply port 8a of the air conditioning duct 8 and the wind turbine 10 are paired. Will be. Therefore, it is possible to operate electric equipment such as a lighting fixture in the building using the obtained electric power, and it has a great effect on reducing the power cost in the building.
[0033]
In addition, the direction and flow velocity (flow rate) of the artificial airflow used as an energy source by the wind power generation technology according to the present embodiment is generally kept constant. Therefore, when using artificial airflow, it must be able to cope with natural airflow whose direction and flow velocity are constantly changing, and in fact, the structure of the device is significantly simplified compared to conventional devices designed as such. Can be In addition, since it is possible to employ a wind turbine having a shape and structure that can be used only at a specific flow rate and exhibits maximum efficiency at that flow rate, it is possible to further improve power generation efficiency.
[0034]
In the present embodiment, the case where an air supply port of an air conditioning duct installed in a building is used as an air outlet for forming an artificial airflow is taken as an example. However, the air outlet that forms the artificial airflow is not limited to this. As other embodiment of this invention, what utilized the exhaust port for discharging the air in a building outside a building as an air outlet which forms an artificial airflow, for example is mentioned. In other words, the artificial airflow generated near the exhaust port can be used as an energy source for wind power generation.
[0035]
【The invention's effect】
According to the present invention, stable wind power generation is possible, and a constant power generation amount can be secured constantly. In particular, wind power generation is possible in the form accompanying the power system of the building, which is effective in reducing the power cost in the building.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a configuration of a wind power generation system according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a positional relationship between a wind turbine and an air supply port of an air conditioning duct.
1 Wind power generator (wind power generator for artificial airflow)
2 Electric energy control means 3 Charge / discharge controller 4 Storage battery 5 Inverter 6 DC power supply terminal 7 AC power supply terminal 8 Air conditioning duct 8a Air supply duct of air conditioning duct (air outlet for forming an artificial air flow)
DESCRIPTION OF SYMBOLS 10 Windmill 10a Rotating shaft 11 of a windmill Generator 12 Support tool (support means)

Claims (10)

人工気流を利用した風力発電システムであって、
前記人工気流を形成する空気の吹出し口に対向するよう配設された風車と、
この風車によって駆動される発電機と、
この発電機から得られた電気エネルギーを統御する電気エネルギー統御手段
とを具備してなることを特徴とする風力発電システム。
A wind power generation system using artificial airflow,
A windmill disposed to face an air outlet that forms the artificial airflow;
A generator driven by this windmill,
A wind power generation system comprising an electric energy control means for controlling electric energy obtained from the generator.
電気エネルギー統御手段は、蓄電池を構成要素として具備してなるとともに、発電機から得られた電気エネルギーを前記蓄電池に充電し、あるいは直流電流または交流電流として電力供給対象に供給するよう構成されてなることを特徴とする請求項1に記載の風力発電システム。The electric energy management means comprises a storage battery as a constituent element, and is configured to charge the electric energy obtained from the generator to the storage battery or supply it to a power supply target as a direct current or an alternating current. The wind power generation system according to claim 1. 人工気流を形成する空気の吹出し口が、建物内に設置された空調ダクトの給気口であることを特徴とする請求項1または請求項2に記載の風力発電システム。The wind power generation system according to claim 1 or 2, wherein the air outlet that forms the artificial airflow is an air supply port of an air conditioning duct installed in a building. 人工気流を形成する空気の吹出し口が、建物内の空気を建物外に排出するための排気口であることを特徴とする請求項1または請求項2に記載の風力発電システム。The wind power generation system according to claim 1 or 2, wherein the air outlet that forms the artificial airflow is an exhaust outlet for discharging air in the building to the outside of the building. 人工気流を利用した風力発電方法であって、
前記人工気流を形成する空気の吹出し口に対向するよう配設された風車を、前記人工気流の作用によって回転させ、この回転力によって、前記風車の回転軸と接続された発電機を駆動して電気エネルギーを得ることを特徴とする風力発電方法。
A wind power generation method using artificial airflow,
A windmill disposed to face the air outlet that forms the artificial airflow is rotated by the action of the artificial airflow, and a generator connected to the rotating shaft of the windmill is driven by this rotational force. A wind power generation method characterized by obtaining electrical energy.
人工気流を形成する空気の吹出し口が、建物内に設置された空調ダクトの給気口であることを特徴とする請求項5に記載の風力発電方法。The wind power generation method according to claim 5, wherein the air outlet that forms the artificial airflow is an air supply port of an air-conditioning duct installed in the building. 人工気流を形成する空気の吹出し口が、建物内の空気を建物外に排出するための排気口であることを特徴とする請求項5に記載の風力発電方法。6. The wind power generation method according to claim 5, wherein the air outlet that forms the artificial airflow is an exhaust outlet for discharging the air inside the building to the outside of the building. 人工気流を利用した風力発電に用いられる装置であって、
前記人工気流を受けて回転する風車と、
入力軸が前記風車の回転軸と接続された発電機と、
前記風車および前記発電機を、前記風車が前記人工気流を形成する空気の吹出し口に対向するよう支持する支持手段と
を具備してなることを特徴とする人工気流用風力発電装置。
A device used for wind power generation using artificial airflow,
A windmill that rotates in response to the artificial airflow;
A generator whose input shaft is connected to the rotating shaft of the windmill;
A wind power generator for artificial airflow, comprising: support means for supporting the windmill and the generator so that the windmill faces an air outlet that forms the artificial airflow.
人工気流を形成する空気の吹出し口が、建物内に設置された空調ダクトの給気口であることを特徴とする請求項8に記載の人工気流用風力発電装置。The wind power generator for artificial airflow according to claim 8, wherein the air outlet that forms the artificial airflow is an air supply port of an air conditioning duct installed in the building. 人工気流を形成する空気の吹出し口が、建物内の空気を建物外に排出するための排気口であることを特徴とする請求項8に記載の人工気流用風力発電装置。The wind power generator for artificial airflow according to claim 8, wherein the air outlet that forms the artificial airflow is an air outlet for discharging air inside the building to the outside of the building.
JP2003183786A 2003-06-27 2003-06-27 Wind power generation system, wind power generation method and wind power generation device for artificial airflow Pending JP2005016452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183786A JP2005016452A (en) 2003-06-27 2003-06-27 Wind power generation system, wind power generation method and wind power generation device for artificial airflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183786A JP2005016452A (en) 2003-06-27 2003-06-27 Wind power generation system, wind power generation method and wind power generation device for artificial airflow

Publications (1)

Publication Number Publication Date
JP2005016452A true JP2005016452A (en) 2005-01-20

Family

ID=34183738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183786A Pending JP2005016452A (en) 2003-06-27 2003-06-27 Wind power generation system, wind power generation method and wind power generation device for artificial airflow

Country Status (1)

Country Link
JP (1) JP2005016452A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023777A (en) * 2005-07-12 2007-02-01 Aiwa Sangyo Kk Wind power generating device for outdoor unit
US7538447B1 (en) * 2008-03-05 2009-05-26 Berenda Robert M Energy recovery system including a flow guide apparatus
CN101749186A (en) * 2008-12-08 2010-06-23 王晓川 Wing tip jet energizing speed-regulating wind power generation
WO2010130965A1 (en) * 2009-05-14 2010-11-18 Kerting Air purification device
CN101943124A (en) * 2010-08-28 2011-01-12 沈群华 Wind-driven generating device and air conditioner using same
CN102312790A (en) * 2010-05-05 2012-01-11 冯刚克 Novel ventilating pipeline wind power generation system and generator
CN102518563A (en) * 2011-12-23 2012-06-27 浙江大学 Power generating set
CN102803711A (en) * 2009-06-19 2012-11-28 新世界能源企业有限公司 A Pressure Controlled Wind Turbine Enhancement System
CN103925165A (en) * 2014-04-09 2014-07-16 天津网士通科技有限公司 Wind power generation assembly capable of generating power by aid of air outlet of outdoor unit of air conditioner
CN104104122A (en) * 2013-04-12 2014-10-15 纳米新能源(唐山)有限责任公司 Power generation system
CN104153604A (en) * 2014-08-18 2014-11-19 无锡市翱宇特新科技发展有限公司 Wind power generation board house
US20160003217A1 (en) * 2013-02-25 2016-01-07 Sunjade Investment Ltd System for producing electrical energy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023777A (en) * 2005-07-12 2007-02-01 Aiwa Sangyo Kk Wind power generating device for outdoor unit
US7538447B1 (en) * 2008-03-05 2009-05-26 Berenda Robert M Energy recovery system including a flow guide apparatus
US7683501B2 (en) 2008-03-05 2010-03-23 Robert M Berenda Energy recovery system including a flow guide apparatus
CN101749186A (en) * 2008-12-08 2010-06-23 王晓川 Wing tip jet energizing speed-regulating wind power generation
WO2010130965A1 (en) * 2009-05-14 2010-11-18 Kerting Air purification device
FR2945450A1 (en) * 2009-05-14 2010-11-19 Kerting DEVICE FOR PURIFYING AIR.
CN102803711A (en) * 2009-06-19 2012-11-28 新世界能源企业有限公司 A Pressure Controlled Wind Turbine Enhancement System
CN102312790A (en) * 2010-05-05 2012-01-11 冯刚克 Novel ventilating pipeline wind power generation system and generator
CN101943124A (en) * 2010-08-28 2011-01-12 沈群华 Wind-driven generating device and air conditioner using same
CN102518563A (en) * 2011-12-23 2012-06-27 浙江大学 Power generating set
US20160003217A1 (en) * 2013-02-25 2016-01-07 Sunjade Investment Ltd System for producing electrical energy
US9631604B2 (en) * 2013-02-25 2017-04-25 Sunjade Investment Ltd System for producing electrical energy
CN104104122A (en) * 2013-04-12 2014-10-15 纳米新能源(唐山)有限责任公司 Power generation system
CN104104122B (en) * 2013-04-12 2016-10-19 纳米新能源(唐山)有限责任公司 Electricity generation system
CN103925165A (en) * 2014-04-09 2014-07-16 天津网士通科技有限公司 Wind power generation assembly capable of generating power by aid of air outlet of outdoor unit of air conditioner
CN104153604A (en) * 2014-08-18 2014-11-19 无锡市翱宇特新科技发展有限公司 Wind power generation board house

Similar Documents

Publication Publication Date Title
JP2005016452A (en) Wind power generation system, wind power generation method and wind power generation device for artificial airflow
WO2019083134A1 (en) Power generation system with non-powered fans and ventilator utilizing rudder-induced wind power
KR20090019880A (en) A closed-type tunnel way power generation system
GB2481033A (en) Wind turbine with battery-powered motor to assist the rotor in low wind conditions
KR20100002479U (en) Wind turbines with integrated wind turbines to produce renewable energy electricity from exhaust air.
JP3152090U (en) Ventilation fan wind power generator
JP2002054553A (en) Energy recovering system by utilization of air exhausted from plant
KR20190014827A (en) Small Wind Power System Developed by Fan Wind
WO2013067698A1 (en) Combined power generating device using solar and wind energy
CN203962308U (en) The air-duct apparatus of solar heat air-flow generating
CA3195142A1 (en) Energy capture device
KR20150075990A (en) Wind power generation machine using natural wind or wind from exhaust duct for a building
JP3207631U (en) Axial flow exhaust generator
KR20170084773A (en) Apparatus for generating using ventilation system of structure
CN101127446A (en) A wind power generation method
KR100994293B1 (en) Wind power apparatus integrated in building and Building having wind power apparatus
US20110215579A1 (en) Green power generator device
JP2019183750A (en) Wind generator system for exhaust fan
KR20130124035A (en) Small wind generating system using air of parking station
CN206221157U (en) A kind of wind generator system
CN213540624U (en) Building windmill cluster wind power generation device utilizing variable inertia disc
CN206190454U (en) A go up wind generator system for wind generator system
KR101353951B1 (en) A wind power generator
CN209001756U (en) A kind of Wind turbines carbon powder collecting device based on bernoulli principle
CN201116515Y (en) Artificial wind electric system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090701