KR20030061219A - An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same - Google Patents

An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20030061219A
KR20030061219A KR1020020001780A KR20020001780A KR20030061219A KR 20030061219 A KR20030061219 A KR 20030061219A KR 1020020001780 A KR1020020001780 A KR 1020020001780A KR 20020001780 A KR20020001780 A KR 20020001780A KR 20030061219 A KR20030061219 A KR 20030061219A
Authority
KR
South Korea
Prior art keywords
electrolyte
lithium secondary
secondary battery
formula
battery
Prior art date
Application number
KR1020020001780A
Other languages
Korean (ko)
Other versions
KR100804689B1 (en
Inventor
최상훈
김호성
노형곤
이하영
김준호
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020020001780A priority Critical patent/KR100804689B1/en
Publication of KR20030061219A publication Critical patent/KR20030061219A/en
Application granted granted Critical
Publication of KR100804689B1 publication Critical patent/KR100804689B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: Provided are an electrolyte for lithium secondary battery which is safe when being overcharged, and shows excellent electrochemical property, for example high temperature and life properties, and a lithium secondary battery containing the electrolyte. CONSTITUTION: The electrolyte contains a nonaqueous organic solvent, a lithium salt, and an electrolyte additive, wherein the electrolyte additive is a compound of formula 1. In the formula 1, R1 is C3-C10 cycloalkyl group or substituted cycloalkyl group, R2 is hydrogen, C1-C10 alkyl group, alkoxy group, C6-C10 aryl group, or halogen, m is an integer of 1-6, and n is an integer of 0-6. The compound of formula 1 is cyclohexyl benzene. The electrolyte contains 0.1-10 wt% of the compound of formula 1.

Description

리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지{AN ELECTROLYTE FOR A LITHIUM SECONDARY BATTERY AND A LITHIUM SECONDARY BATTERY COMPRISING THE SAME}TECHNICAL FIELD The electrolyte for a lithium secondary battery and a lithium secondary battery including the same TECHNICAL FIELD

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 과충전시에도 안전하고 고온 특성 및 수명 특성 등 전기화학적 특성이 우수한 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery electrolyte and a lithium secondary battery comprising the same, and more particularly, to a lithium secondary battery electrolyte and a lithium secondary battery comprising the same, which is safe even when overcharged and has excellent electrochemical characteristics such as high temperature and life characteristics. It is about.

[종래 기술][Prior art]

최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 현재 상업화되어 사용 중인 리튬 이차 전지는 평균 방전 전위가 3.7V, 즉 4V대의 전지로서 3C라 일컬어지는 휴대용 전화, 노트북 컴퓨터, 캠코더 등에 급속도로 적용되고 있는 디지털 시대의 심장에 해당하는 요소이다.Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing. Lithium secondary batteries, which are commercially available and currently used, correspond to the heart of the digital era, which is rapidly being applied to portable phones, notebook computers, camcorders, and the like, which have an average discharge potential of 3.7V, that is, 4C.

전지의 용량, 성능 특성의 개선과 함께 과충전 특성과 같은 안전성을 향상시키기 위한 연구도 활발하게 진행되고 있다. 전지가 과충전되면 충전상태에 따라 양극에서는 리튬이 과잉 석출되고, 음극에서는 리튬이 과잉 삽입되어 양극 및 음극이 열적으로 불안정해져 전해액의 유기용매가 분해되는 등 급격한 발열반응이 일어나고, 또한 열폭주 현상이 발생하여 전지의 안전성에 심각한 문제점이 발생한다.In addition to improving battery capacity and performance characteristics, studies are being actively conducted to improve safety such as overcharging characteristics. When the battery is overcharged, depending on the state of charge, lithium is excessively precipitated at the positive electrode, lithium is excessively inserted at the negative electrode, and the positive electrode and negative electrode are thermally unstable, causing rapid exothermic reactions such as decomposition of the organic solvent in the electrolyte and thermal runaway phenomenon. Occurs, a serious problem occurs in the safety of the battery.

이러한 문제점을 해결하기 위하여, 전해액 중에 레독스 셔틀(redox shuttle) 첨가제로서 방향족 화합물을 첨가하는 방법이 이용되고 있다. 예를 들어 미국특허 제5,709,968호는 2,4-디플루오로아니솔(2,4-difluoroanisole)과 같은 벤젠 화합물을 첨가하여 과충전 전류 및 이로 인한 열폭주 현상을 방지할 수 있는 비수계 리튬 이온 전지를 개시하고 있다. 제5,879,834호에는 바이페닐(biphenyl), 3-클로로티오펜(3-chlorothiophene), 퓨란 등의 방향족 화합물을 소량 첨가하여 비정상적인 과전압 상태에서 전기화학적으로 중합되어 내부저항을 증가시킴으로써 전지의 안전성을 향상시키기 위한 방법이 기재되어 있다. 이들 레독스 셔틀 첨가제들은 산화발열 반응에 의해 발생되는 열에 의해 전지 내부 온도를 조기에 상승시켜 세퍼레이터의 기공을 빠르고 균일하게 차단(shut-down)시킴으로써 과충전 반응을 억제하는작용을 한다. 또한 과충전시 양극 표면에서 첨가제의 중합반응이 과충전 전류를 소비하여 전지를 보호하는 기능도 한다.In order to solve this problem, the method of adding an aromatic compound as a redox shuttle additive in the electrolyte solution is used. For example, U.S. Patent No. 5,709,968 adds a benzene compound such as 2,4-difluoroanisole to prevent overcharge currents and the resulting thermal runaway phenomenon. It is starting. No. 5,879,834 add a small amount of aromatic compounds such as biphenyl, 3-chlorothiophene, furan and the like to electrochemically polymerize at abnormal overvoltage conditions to increase the internal resistance to improve battery safety. A method is described. These redox shuttle additives act to suppress the overcharge reaction by prematurely raising the temperature inside the battery due to the heat generated by the oxidative heating reaction to quickly and uniformly shut down the pores of the separator. In addition, the polymerization reaction of the additive on the surface of the anode during overcharging also functions to protect the battery by consuming the overcharging current.

그러나 첨가제의 중합반응으로는 과충전 전류를 충분히 제거할 수 없고 산화반응에 의한 분해로 가스가 다량 발생하여 전지의 스웰링(swelling) 현상이 심화되는 등 상기와 같은 레독스 셔틀 첨가제로 전지의 안전성을 개선하는 데에는 한계가 있다. 상기 스웰링 현상은 전지가 특정 방향으로 부풀어오르는 등 특정면의 중심부가 변형되는 현상을 의미한다. 또한 이들 첨가제들은 전지의 고온 특성이나 수명 특성 등 전지의 전기화학적 특성에 나쁜 영향을 주는 문제점이 있다.However, it is not possible to sufficiently remove the overcharge current by the polymerization reaction of the additive, and the gas swelling phenomenon is intensified due to the decomposition of the oxidation reaction. There is a limit to improvement. The swelling phenomenon refers to a phenomenon in which a central portion of a specific surface is deformed, such as a battery swelling in a specific direction. In addition, these additives have a problem that adversely affect the electrochemical properties of the battery, such as high temperature characteristics or life characteristics of the battery.

스웰링 현상을 해결하기 위한 방법으로 일정 수준 이상의 전지의 내압 상승시 내부의 가스를 분출시키기 위한 벤트 또는 전류 차단기(current breaker)를 장착하여 이차 전지의 안전성을 개선하는 방법이 있다. 그러나 이 방법은 내압 상승으로 인하여 오작동의 위험까지 야기시키는 문제점이 있다.As a method for solving the swelling phenomenon, there is a method of improving the safety of the secondary battery by installing a vent or a current breaker for ejecting the internal gas when the internal pressure of the battery rises above a certain level. However, this method has a problem of causing a risk of malfunction due to the internal pressure rise.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 과충전시에도 안전하고 고온 특성 및 수명 특성 등 전기화학적 특성이 우수한 리튬 이차 전지용 전해액을 제공하기 위한 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrolyte solution for a lithium secondary battery that is safe even when overcharged and has excellent electrochemical characteristics such as high temperature and lifespan characteristics.

본 발명의 다른 목적은 상기 전해액을 포함하는 리튬 이차 전지를 제공하기 위한 것이다.Another object of the present invention is to provide a lithium secondary battery including the electrolyte.

도 1은 리튬 이차 전지의 단면도.1 is a cross-sectional view of a lithium secondary battery.

도 2a 내지 도 2c는 각각 실시예 1 내지 2 및 비교예 3의 사이클릭 볼타그램 측정결과를 나타낸 도면.Figures 2a to 2c is a view showing the cyclic voltagram measurement results of Examples 1 and 2 and Comparative Example 3, respectively.

도 3a 내지 3c는 각각 실시예 1, 비교예 1 및 3의 과충전시 전류, 전압, 온도 특성을 나타낸 도면.3A to 3C are diagrams showing current, voltage, and temperature characteristics during overcharging of Example 1, Comparative Examples 1 and 3, respectively.

상기한 목적을 달성하기 위하여, 본 발명은 비수성 유기용매; 리튬염; 및 하기 화학식 1의 전해액 첨가제를 포함하는 리튬 이차 전지용 전해액을 제공한다.In order to achieve the above object, the present invention is a non-aqueous organic solvent; Lithium salts; And it provides a lithium secondary battery electrolyte comprising an electrolyte additive of the formula (1).

[화학식 1][Formula 1]

(상기 화학식 1에서,(In Formula 1,

R1은 탄소수 3 내지 10 사이클로 알킬 또는 치환된 사이클로 알킬기이고,R 1 is a C3-10 cycloalkyl or substituted cycloalkyl group,

R2는 수소, 탄소수 1 내지 10의 알킬기, 알콕시기, 탄소수 6 내지 10의 아릴기 또는 할로겐이고,R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an aryl group having 6 to 10 carbon atoms, or halogen,

m은 1 내지 6의 정수이고,m is an integer from 1 to 6,

n은 0 내지 6의 정수이고,n is an integer from 0 to 6,

m+n은 6 이하이다.)m + n is 6 or less.)

본 발명은 또한, 상기 전해액을 포함하는 리튬 이차 전지를 제공한다.This invention also provides the lithium secondary battery containing the said electrolyte solution.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

일반적인 비수계 리튬 이차 전지(1)의 구조는 도 1에 도시된 바와 같다. 상기 전지는 리티에이티드 인터칼레이션 화합물을 양극(2) 및 음극(4)으로 사용하고 양극(2)과 음극(4) 사이에 세퍼레이터(6)를 삽입하여 이를 권취하여 전극조립체(8)를 형성한 다음 케이스(10)에 넣어 제조된다. 상기 전지의 상부는 캡플레이트(12)와 가스켓(14)으로 밀봉한다. 상기 캡플레이트(12)에는 전지의 과압 형성을 방지하는 안전밸브(safety vent)(16)가 설치될 수 있다. 상기 양극(2) 및 음극(4)에 각각 양극 탭(18)과 음극 탭(20)을 설치하고 절연체(22, 24)는 전지의 내부 단락을 방지하기 위하여 삽입된다. 전지를 밀봉하기 전에 전해액(26)을 주입한다. 주입된 전해(26)액을 세퍼레이터(6)에 함침된다.The structure of the general non-aqueous lithium secondary battery 1 is as shown in FIG. The battery uses a lithiated intercalation compound as a positive electrode (2) and a negative electrode (4), inserts a separator (6) between the positive electrode (2) and the negative electrode (4) and wound the electrode assembly (8). After forming it is put into the case 10 is manufactured. The top of the battery is sealed with a cap plate 12 and a gasket 14. The cap plate 12 may be provided with a safety vent (16) to prevent the formation of overpressure of the battery. The positive electrode tab 18 and the negative electrode tab 20 are respectively provided on the positive electrode 2 and the negative electrode 4 and the insulators 22 and 24 are inserted to prevent internal short circuit of the battery. The electrolyte 26 is injected before sealing the battery. The injected electrolytic 26 liquid is impregnated into the separator 6.

리튬 이차 전지는 오용 및 충전기 등의 고장에 의해 과충전 및 전지 자체의 설계상의 결함에 의한 단락(short) 등으로 전지의 온도가 급격히 상승하는 열폭주 현상이 일어날 수 있다. 특히, 과충전되는 동안 과량의 리튬이 양극으로부터 빠져나와 음극 표면에 석출되어 두 전극이 열적으로 매우 불안정한 상태가 되어 전해액의 열분해, 전해액과 리튬과의 반응, 양극에서의 전해액 산화반응, 양극 활물질의 열분해에 의해 발생하는 산소와 전해액의 반응 등에 의해 발열반응이 급격하게 진행되어 전지의 온도가 급상승하는 소위, 열폭주 현상이 발생하여 전지의 최고 허용 온도를 초과하여 전지의 발화 및 발연으로 이어지게 된다.The lithium secondary battery may have a thermal runaway phenomenon in which the temperature of the battery rapidly rises due to overcharge or short circuit due to a design defect of the battery itself due to misuse or failure of a charger. In particular, during overcharging, excess lithium is released from the positive electrode and precipitated on the surface of the negative electrode, resulting in thermally unstable state of the two electrodes. The exothermic reaction proceeds abruptly by the reaction of oxygen and electrolyte generated by the so-called so-called thermal runaway phenomenon in which the temperature of the battery rises rapidly, leading to the ignition and smoke of the battery exceeding the maximum allowable temperature of the battery.

본 발명에서는 하기 화학식 1의 화합물을 전해액 첨가제로 사용함으로써 전지의 과충전시 안정성을 향상시키고 스웰링 현상을 억제할 수 있는 전해액을 제공한다. 하기 화학식 1의 화합물 중 가장 바람직한 것은 사이클로헥실 벤젠이다.In the present invention, by using the compound of the formula (1) as an electrolyte additive, it provides an electrolyte that can improve the stability during overcharging of the battery and suppress the swelling phenomenon. Most preferred among the compounds of the formula (1) is cyclohexyl benzene.

[화학식 1][Formula 1]

(상기 화학식 1에서,(In Formula 1,

R1은 탄소수 3 내지 10의 사이클로 알킬 또는 치환된 사이클로 알킬기이고,R 1 is a cycloalkyl or substituted cycloalkyl group having 3 to 10 carbon atoms,

R2는 수소, 탄소수 1 내지 10의 알킬기, 알콕시기, 탄소수 6 내지 10의 아릴기 또는 할로겐이고,R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an aryl group having 6 to 10 carbon atoms, or halogen,

m은 1 내지 6의 정수이고,m is an integer from 1 to 6,

n은 0 내지 6의 정수이고,n is an integer from 0 to 6,

m+n은 6 이하이다.)m + n is 6 or less.)

상기 화학식 1의 화합물 중 가장 바람직한 예로는 사이클로헥실 벤젠을 들 수 있다.Most preferred examples of the compound of Formula 1 include cyclohexyl benzene.

상기 전해액 첨가제는 리튬염을 포함하는 비수성 유기용매에 첨가된다. 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하며, 비수성 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.The electrolyte additive is added to a non-aqueous organic solvent containing a lithium salt. Lithium salt acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery, the non-aqueous organic solvent serves as a medium to move the ions involved in the electrochemical reaction of the battery.

종래 통상적으로 사용되어 온 전해액 첨가제의 경우에는 산화개시 전위가 4.2-4.5V의 범위로서 평상시의 전지 사용 조건인 전압범위에서도 전해액 첨가제가 전기화학적으로 불안정하여 산화반응을 하게 되므로 전지의 표준용량이 저하될 수 밖에 없는 문제점이 있었다.In the case of the electrolyte additive that has been conventionally used, the standard capacity of the battery is lowered because the oxidation start potential is 4.2-4.5V, and the electrolyte additive is electrochemically unstable in the voltage range which is the normal battery use condition. There was nothing but a problem.

본 발명에서 전해액 첨가제로 사용되는 상기 화학식 1의 화합물은 4.5V 이상에서 산화반응에 의한 발열이 진행되면서 전해액의 온도를 급상승 시켜주어, 과충전에 의한 전극재료 및 전해액의 산화반응에 의한 발열로 열폭주가 일어나기 전에전해액의 온도만으로 세퍼레이터를 셧다운시켜 주므로 열폭주가 제어된다. 즉, 본첨가제는 산화시 다른 어떤 물질보다 발열량이 커서 전해액의 온도상승에 매우 효과가 있다. 또한, 상기 전해액 첨가제는 전기화학적으로 및 열적으로도 매우 안정하여 표준용량, 고율특성 및 수명특성 등 전지특성 저하와 같은 부작용을 제거하므로 매우 유용한 전해액 첨가제가 될수 있다.The compound of Chemical Formula 1 used as an electrolyte additive in the present invention rapidly increases the temperature of the electrolyte as the heat is generated by the oxidation reaction at 4.5 V or higher, and thermal runaway due to the heat generated by the oxidation reaction of the electrode material and the electrolyte due to overcharging. The thermal runaway is controlled because the separator is shut down only by the temperature of the electrolyte before it occurs. That is, the present additive has a large calorific value than any other material during oxidation, which is very effective in raising the temperature of the electrolyte. In addition, the electrolyte additive is very stable electrochemically and thermally to remove side effects such as deterioration of battery characteristics such as standard capacity, high rate characteristics, and life characteristics, and thus may be a very useful electrolyte additive.

상기 화학식 1의 전해액 첨가제는 비수성 유기용매에 첨가시켜 사용하는 것이 바람직하다.The electrolyte additive of Chemical Formula 1 is preferably used after being added to a non-aqueous organic solvent.

상기 비수성 유기용매로는 카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC) 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르는 n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있다.상기 비수성 유기용매 중 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다.As the non-aqueous organic solvent, carbonate, ester, ether or ketone may be used. The carbonate may be dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ethylene carbonate (EC), Propylene carbonate (PC), butylene carbonate (BC), and the like may be used, and the ester may be n-methyl acetate, n-ethyl acetate, n-propyl acetate, or the like. Carbonate solvent in the non-aqueous organic solvent. In this case, it is preferable to use a mixture of cyclic carbonate and chain carbonate.

또한 본 발명의 전해액은 상기 카보네이트계 용매에 방향족 유기용매를 더 포함할 수도 있다. 상기 방향족 유기용매로는 하기 화학식 2의 방향족 화합물이 사용될 수 있다.In addition, the electrolyte solution of the present invention may further include an aromatic organic solvent in the carbonate solvent. As the aromatic organic solvent, an aromatic compound represented by Chemical Formula 2 may be used.

[화학식 2][Formula 2]

(상기 화학식 2에서,(In Formula 2,

R3는 할로겐 또는 탄소수 1 내지 10의 알킬기이고,R 3 is halogen or an alkyl group having 1 to 10 carbon atoms,

q는 0 내지 6의 정수이다.)q is an integer from 0 to 6.

벤젠계 유기용매의 구체적인 예로는 벤젠, 플루오로벤젠, 톨루엔, 트리플루오로톨루엔, 자일렌 등이 있다.Specific examples of the benzene organic solvent include benzene, fluorobenzene, toluene, trifluorotoluene, xylene and the like.

상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수임), LiCl, 및 LiI으로 이루어진 군에서 선택되는 1 종 또는 2 종 이상을 혼합시켜 사용가능하다.The lithium salt may be LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CxF 2x + 1 SO 2 ) (CyF 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, and LiI can be used by mixing one or two or more selected from the group consisting of Do.

본 발명의 상기 화학식 1의 화합물의 첨가량은 전해액에 대하여 0.1 내지 50중량%인 것이 바람직하다. 상기 화학식 1의 화합물의 첨가량이 전해액에 대하여 0.1 중량% 미만이면 첨가제를 첨가한 효과가 미비하여 전지의 과충전에 따른 열폭주현상을 방지할 수 없고, 화학식 1의 화합물의 첨가량이 전해액에 대하여 50중량%를 초과하면 고율특성 감소 등의 문제점이 있어 바람직하지 않다.The amount of the compound of Formula 1 of the present invention is preferably 0.1 to 50% by weight based on the electrolyte. If the amount of the compound of Formula 1 is less than 0.1% by weight with respect to the electrolyte, the effect of adding the additive is insufficient to prevent thermal runaway phenomenon due to overcharging of the battery, and the amount of the compound of Formula 1 is 50% by weight of the electrolyte If it exceeds%, there is a problem such as a decrease in high rate characteristics is not preferable.

본 발명에서는 상기 전해액을 포함하는 리튬 이차 전지를 제공한다.The present invention provides a lithium secondary battery comprising the electrolyte solution.

상기 리튬 이차 전지의 양극 활물질로는 통상적으로 사용되는 전이금속산화물 또는 리튬 칼코게나이드 화합물을을 모두 사용할 수 있으며, 그 대표적인 예로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4등의 금속 산화물을 사용할 수 있다.As the positive electrode active material of the lithium secondary battery, all of transition metal oxides or lithium chalcogenide compounds that are commonly used may be used, and representative examples thereof include metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 . Can be used.

또한, 음극 활물질로는 리튬 금속 또는 통상적으로 사용되는 탄소재 물질을 모두 사용할 수 있으며, 그 대표적인 예로는 전위 평탄성이 양호할 뿐만 아니라 상대적으로 충방전 과정의 가역성이 양호한 결정성 흑연을 사용할 수 있다.Also, Lithium metal or a commonly used carbonaceous material may be used as the negative electrode active material, and representative examples thereof may include crystalline graphite having good dislocation flatness and relatively good reversibility in charge and discharge processes.

상기 본 발명의 리튬 이차 전지는 방전 용량, 효율, 사이클 수명 등의 전기화학적 특성 저하가 없이, 안전성이 우수하다. 즉, 과충전, 외부단락, 압축 및 과충전 관통 등의 조건하에서 안전성을 확보할 수 있다.The lithium secondary battery of the present invention is excellent in safety without deteriorating electrochemical characteristics such as discharge capacity, efficiency, and cycle life. That is, safety can be ensured under conditions such as overcharge, external short circuit, compression, and overcharge penetration.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC):플로피렌 카보네이트(PC): 플로로 벤젠(FB)를 30 : 55 : 5: 10의 부피비로 혼합한 혼합용매에 전해질염으로서 1.15M LiPF6를 첨가하여 전해액을 제조하였다. 상기 전해액에 사이클로헥실벤젠을 전해액에 대하여 3 중량% 첨가하였다. 양극 활물질인 LiCoO2, 도전제(수퍼 P) 및 바인더 폴리비닐리덴 플루오라이드(PVDF)를 94 : 3 : 3의 중량비로 N-메틸피롤리돈(NMP)에 녹여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 호일위에 도포하고 건조한 후 롤프레스로 압연하여 두께가 0.147 ㎜인 양극 극판을 제조하였다. 음극 활물질인 흑연(Petoca사) 및 바인더(PVDF)를 NMP에 녹여 슬러리를제조하고, 이 슬러리를 동집전체에 도포하고 건조한 후 롤프레스로 압연하여 두께가 0.178 ㎜인 음극 극판을 제조하였다. 상기 양극 극판 및 음극 극판의 사이에 폴리에틸렌(PE)의 다공성 필름으로 만든 두께 0.025 ㎜의 세퍼레이터를 삽입하고 전해액을 주입하여 각형의 전지를 제조하였다.Ethylene carbonate (EC): ethyl methyl carbonate (EMC): flopyrene carbonate (PC): 1.15M LiPF 6 as an electrolyte salt in a mixed solvent in which fluorobenzene (FB) was mixed in a volume ratio of 30: 55: 5: 10. It was added to prepare an electrolyte solution. Cyclohexylbenzene was added to the electrolyte by 3% by weight based on the electrolyte. A slurry was prepared by dissolving LiCoO 2 , a conductive material (super P), and a binder polyvinylidene fluoride (PVDF) as a positive electrode active material in N-methylpyrrolidone (NMP) at a weight ratio of 94: 3: 3. The slurry was coated on aluminum foil, dried, and rolled into a roll press to prepare a positive electrode plate having a thickness of 0.147 mm. Graphite (Petoca Co., Ltd.) and binder (PVDF), which are negative electrode active materials, were dissolved in NMP to prepare a slurry. The slurry was applied to a copper current collector, dried, and rolled in a roll press to prepare a negative electrode plate having a thickness of 0.178 mm. A rectangular battery was prepared by inserting a separator having a thickness of 0.025 mm made of a porous film of polyethylene (PE) between the positive electrode plate and the negative electrode plate and injecting an electrolyte solution.

(실시예 2)(Example 2)

사이클로헥실벤젠을 전해액에 대하여 5 중량% 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Except for adding 5% by weight of cyclohexylbenzene to the electrolyte solution it was carried out in the same manner as in Example 1.

(실시예 3)(Example 3)

사이클로헥실벤젠을 전해액에 대하여 7 중량% 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Except for adding 7% by weight of cyclohexyl benzene to the electrolyte solution it was carried out in the same manner as in Example 1.

(비교예 1)(Comparative Example 1)

사이클로헥실벤젠을첨가하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that no cyclohexylbenzene was added.

(비교예 2)(Comparative Example 2)

전해액 첨가제로서 사이클로헥실벤젠을 대신 2,4-디를루오로아니솔을 5 중량% 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that 5% by weight of 2,4-diluoroanisole was added instead of cyclohexylbenzene as an electrolyte additive.

(비교예 3)(Comparative Example 3)

전해액 첨가제로서 사이클로헥실벤젠을 대신 바이페닐(biphenyl)을 5 중량% 첨가한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Except for adding 5% by weight of biphenyl (biphenyl) instead of cyclohexylbenzene as an electrolyte solution was carried out in the same manner as in Example 1.

상기 실시예 1 내지 3 및 비교예 1 내지 3의 각형 전지에 대하여 0.2C에서 7시간 충방전을 실시한 경우의 화성효율, 표준용량(mAh), 2C에서의 고율용량(mAh), 1C 및 12V에서의 과충전시험 및 300 사이클 후의 수명유지율을 평가하여 하기 표 1에 나타내었다.When the charge and discharge of the rectangular batteries of Examples 1 to 3 and Comparative Examples 1 to 3 for 7 hours at 0.2C, the conversion efficiency, standard capacity (mAh), high rate capacity (mAh) at 2C, at 1C and 12V The overcharge test and the life retention rate after 300 cycles were evaluated in Table 1 below.

[표 1]TABLE 1

화성효율(%)Chemical Efficiency (%) 표준용량(mAh)Standard capacity (mAh) 고율용량(mAh)High capacity capacity (mAh) 과충전(1C, 12V)Overcharge (1C, 12V) 수명유지율(%)Life retention rate (%) 실시예 1Example 1 9595 970970 930930 셧-다운shut down 8585 실시예 2Example 2 9595 972972 925925 셧-다운shut down 8484 실시예 3Example 3 9595 970970 920920 셧-다운shut down 8383 비교예 1Comparative Example 1 9595 960960 920920 발화(단락)Fire (paragraph) 8080 비교예 2Comparative Example 2 9393 968968 910910 발화(단락)Fire (paragraph) 8282 비교예 3Comparative Example 3 9393 948948 900900 발화(단락)Fire (paragraph) 7070

상기 표 1에 나타난 바와 같이, 실시예 1 내지 3의 경우 비교예 1 내지 3보다 화성효율, 표준용량 및 수명유지율이 더 높은 것으로 나타났고, 과충전시에도 더 안전한 것으로 나타났다.As shown in Table 1, Examples 1 to 3 were found to have higher chemical conversion efficiency, standard capacity, and lifetime retention than Comparative Examples 1 to 3, and were found to be safer even when overcharged.

도 2a 내지 도 2c는 각각 실시예 1 내지 2 및 비교예 2의 전지의 사이클릭 볼타그램 측정결과를 나탄내 것이다. 사이클릭 볼타그램 측정은 삼극셀을 사용하여 실험하였고, 기준전극으로 리튬메탈, 대극과 작용전극에 백금전극을 사용하여, 주사속도 10mV/s로 약 2.75V- 5.0V 전위범위에서 실험하였다. 2A to 2C show cyclic voltammograms of the batteries of Examples 1 and 2 and Comparative Example 2, respectively. The cyclic voltagram measurement was performed using a tripolar cell, and lithium metal was used as a reference electrode, and a platinum electrode was used as a counter electrode and a working electrode. The cyclic voltagram was measured at a potential of about 2.75 V to 5.0 V at a scanning speed of 10 mV / s.

실시예 1의 전지는 4.8V의 산화개시전위를 보였으며 비교예 2의 전지는 4.5V의 산화개지전위를 나타내었다. 산화개시전위의 상승은 산화환원반응에 참여하는 물질이 안정하다는 것을 나타내는 것이며 상기와 같은 결과로부터 실시에 1의 전지가 더 안정하다는 사실을 알 수 있다.The battery of Example 1 exhibited an oxidation initiation potential of 4.8V and the battery of Comparative Example 2 exhibited an oxidation potential of 4.5V. The increase in the oxidation initiation potential indicates that the material participating in the redox reaction is stable, and it can be seen from the above results that the battery of Example 1 is more stable.

실시예 1과 비교예 1 및 3의 전지를 1C에서 12V의 전압으로 과충전하여 시간에 따른 전지의 전압 및 온도의 변화를 측정하여 그 결과를 도 3a 내지 3c에 나타내었다. 도 3a에 나타난 바와 같이, 실시예 1의 전지는 과충전 후 20 분이 지난 다음부터 온도가 상승하는 것으로 나타났다. 이는 사이클로헥실벤젠이 과충전 전류를 소비했기 때문인 것으로 판단된다. 전지의 온도가 점진적으로 상승하고 전압이 12V에서 떨어지지 않고 안정적으로 유지되었다. 이에 반하여 비교예 1 및 3의 경우에는 전지의 온도가 급격히 상승하였으며 전압도 12V까지 올라간 후 0V로 떨어졌다.The battery of Example 1 and Comparative Examples 1 and 3 were overcharged with a voltage of 12V at 1C to measure the change in voltage and temperature of the battery over time, and the results are shown in FIGS. 3A to 3C. As shown in FIG. 3A, the battery of Example 1 was found to increase in temperature after 20 minutes after overcharging. This may be because cyclohexylbenzene consumed an overcharge current. The temperature of the battery gradually increased and the voltage remained stable without dropping at 12V. On the contrary, in Comparative Examples 1 and 3, the temperature of the battery rapidly increased, and the voltage rose to 12V and then dropped to 0V.

이와같이 본 첨가제를 전해액에 첨가하여 각형셀에 적용시, 과충전후 약 20 여분 후 첨가제의 산화반응에 의해 전류가 소비 될뿐만 아니라 반응열에 의해 전해액 자체의 온도를 상승시켜 위협적인 열폭주 반응을 억제시키고 세퍼레이터를를 안전하게 셧다운시키므로 전지의 안전성이 크게 향상됨을 알수 있다. Thus, when this additive is added to the electrolyte solution and applied to the square cell, the current is consumed by the oxidation reaction of the additive after about 20 excess after overcharging, and the temperature of the electrolyte solution itself is increased by the reaction heat to suppress threatening thermal runaway reaction. It can be seen that the safety of the battery is greatly improved by shutting down the separator safely.

본 발명의 전해액을 포함하는 리튬 이차 전지는 과충전시에도 안전하고 고온 특성 및 수명 특성 등 전기화학적 특성이 우수하다.The lithium secondary battery including the electrolyte of the present invention is safe even when overcharged, and has excellent electrochemical characteristics such as high temperature and life characteristics.

Claims (4)

비수성 유기용매; 리튬염; 및 전해액 첨가제를 포함하고,Non-aqueous organic solvents; Lithium salts; And electrolyte additives, 상기 전해액 첨가제는 하기 화학식 1의 화합물인 리튬 이차 전지용 전해액.The electrolyte additive is a lithium secondary battery electrolyte solution of the formula (1). [화학식 1][Formula 1] (상기 화학식 1에서,(In Formula 1, R1은 탄소수 3 내지 10의 사이클로 알킬 또는 치환된 사이클로 알킬기이고,R 1 is a cycloalkyl or substituted cycloalkyl group having 3 to 10 carbon atoms, R2는 수소, 탄소수 1 내지 10의 알킬기, 알콕시기, 탄소수 6 내지 10의 아릴기 또는 할로겐이고,R 2 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an aryl group having 6 to 10 carbon atoms, or halogen, m은 1 내지 6의 정수이고,m is an integer from 1 to 6, n은 0 내지 6의 정수이고,n is an integer from 0 to 6, m+n은 6 이하이다.)m + n is 6 or less.) 제 1항에 있어서, 상기 화학식 1의 화합물은 사이클로헥실벤젠인 것인 리튬 이차 전지용 전해액.The electrolyte of claim 1, wherein the compound of Formula 1 is cyclohexylbenzene. 제 1항에 있어서, 상기 화학식 1의 화합물의 함량은 전해액에 대하여 0.1 내지 10 중량%인 리튬 이차 전지용 전해액.According to claim 1, wherein the content of the compound of Formula 1 is 0.1 to 10% by weight of the electrolyte for lithium secondary battery electrolyte. 제 1항 내지 제 3항 중 어느 한 항의 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지.The lithium secondary battery containing the electrolyte solution for lithium secondary batteries in any one of Claims 1-3.
KR1020020001780A 2002-01-11 2002-01-11 An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same KR100804689B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020001780A KR100804689B1 (en) 2002-01-11 2002-01-11 An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020001780A KR100804689B1 (en) 2002-01-11 2002-01-11 An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20030061219A true KR20030061219A (en) 2003-07-18
KR100804689B1 KR100804689B1 (en) 2008-02-18

Family

ID=32217787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020001780A KR100804689B1 (en) 2002-01-11 2002-01-11 An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR100804689B1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709206B1 (en) * 2003-10-31 2007-04-19 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR100866766B1 (en) * 2006-10-16 2008-11-04 주식회사 엘지화학 Electrolyte of High Temperature Property and Overcharge-prevention Property and Secondary Battery Employed with the Same
US7745054B2 (en) 2003-04-03 2010-06-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
US7745055B2 (en) 2003-10-31 2010-06-29 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR101156251B1 (en) * 2004-06-19 2012-06-13 삼성에스디아이 주식회사 Lithium ion battery
KR20220010200A (en) 2020-07-17 2022-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220021424A (en) 2020-08-13 2022-02-22 주식회사 엘지에너지솔루션 Additive for non-aqueous electrolyte, non-aqueous electrolyte and lithium secondary battery comprsing same
KR20220030908A (en) 2020-09-03 2022-03-11 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220031290A (en) 2020-09-04 2022-03-11 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220033455A (en) 2020-09-09 2022-03-16 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220042594A (en) 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220048776A (en) 2020-10-13 2022-04-20 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220065686A (en) 2020-11-13 2022-05-20 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220103640A (en) 2021-01-15 2022-07-22 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20220120202A (en) 2021-02-23 2022-08-30 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220129492A (en) 2021-03-16 2022-09-23 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220133135A (en) 2021-03-24 2022-10-04 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230021371A (en) 2021-08-05 2023-02-14 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230027909A (en) 2021-08-20 2023-02-28 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230039255A (en) 2021-09-14 2023-03-21 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230049022A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230048938A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230055990A (en) 2021-10-19 2023-04-26 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20230093850A (en) 2021-12-20 2023-06-27 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230141627A (en) 2022-03-30 2023-10-10 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240008253A (en) 2022-07-11 2024-01-18 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240008797A (en) 2022-07-12 2024-01-19 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240020658A (en) 2022-08-08 2024-02-15 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240034595A (en) 2022-09-07 2024-03-14 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20240034596A (en) 2022-09-07 2024-03-14 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20240047147A (en) 2022-10-04 2024-04-12 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3113652B1 (en) * 1999-06-30 2000-12-04 三洋電機株式会社 Lithium secondary battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745054B2 (en) 2003-04-03 2010-06-29 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
US7968234B2 (en) 2003-04-03 2011-06-28 Samsung Sdi Co., Ltd. Non-aqueous electrolyte and lithium secondary battery comprising same
KR100709206B1 (en) * 2003-10-31 2007-04-19 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7745055B2 (en) 2003-10-31 2010-06-29 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US8530098B2 (en) 2003-10-31 2013-09-10 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
KR101156251B1 (en) * 2004-06-19 2012-06-13 삼성에스디아이 주식회사 Lithium ion battery
KR100866766B1 (en) * 2006-10-16 2008-11-04 주식회사 엘지화학 Electrolyte of High Temperature Property and Overcharge-prevention Property and Secondary Battery Employed with the Same
US8632919B2 (en) 2006-10-16 2014-01-21 Lg Chem, Ltd. Electrolyte of high temperature property and overcharge-prevention property and secondary battery employed with the same
KR20220010200A (en) 2020-07-17 2022-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220021424A (en) 2020-08-13 2022-02-22 주식회사 엘지에너지솔루션 Additive for non-aqueous electrolyte, non-aqueous electrolyte and lithium secondary battery comprsing same
KR20220030908A (en) 2020-09-03 2022-03-11 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220031290A (en) 2020-09-04 2022-03-11 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220033455A (en) 2020-09-09 2022-03-16 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220042594A (en) 2020-09-28 2022-04-05 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220048776A (en) 2020-10-13 2022-04-20 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220065686A (en) 2020-11-13 2022-05-20 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20220103640A (en) 2021-01-15 2022-07-22 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20220120202A (en) 2021-02-23 2022-08-30 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220129492A (en) 2021-03-16 2022-09-23 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20220133135A (en) 2021-03-24 2022-10-04 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230021371A (en) 2021-08-05 2023-02-14 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
US12027668B2 (en) 2021-08-20 2024-07-02 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20230027909A (en) 2021-08-20 2023-02-28 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230039255A (en) 2021-09-14 2023-03-21 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230049022A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230048938A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230055990A (en) 2021-10-19 2023-04-26 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20230093850A (en) 2021-12-20 2023-06-27 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20230141627A (en) 2022-03-30 2023-10-10 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240008253A (en) 2022-07-11 2024-01-18 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240008797A (en) 2022-07-12 2024-01-19 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240020658A (en) 2022-08-08 2024-02-15 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20240034595A (en) 2022-09-07 2024-03-14 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20240034596A (en) 2022-09-07 2024-03-14 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR20240047147A (en) 2022-10-04 2024-04-12 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR100804689B1 (en) 2008-02-18

Similar Documents

Publication Publication Date Title
KR100804689B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
KR100515332B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR100463189B1 (en) A lithium secondary battery and a method for preparing the same
KR100463188B1 (en) An electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR100536252B1 (en) Electrolyte for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
EP1657775B1 (en) Electrolyte for lithium battery and lithium battery comprising same
JP4727387B2 (en) Lithium battery electrolyte and lithium battery including the same
KR20050096401A (en) Electrolyte for lithium battery and lithium battery comprising same
EP1653548B1 (en) Electrolyte for lithium battery and lithium battery comprising same
KR100766930B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
US7238452B2 (en) Electrolyte for lithium battery and lithium battery comprising same
JP4754323B2 (en) Lithium battery electrolyte and lithium battery
KR100458570B1 (en) Electrolyte for a lithium secondary battery and lithium secondary battery comprising the same
KR100467451B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR100471984B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100471979B1 (en) An electrolyte for a lithium battery and a lithium battery comprising the same
KR100982323B1 (en) An electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same
KR101156251B1 (en) Lithium ion battery
KR101135480B1 (en) Electrolyte for lithium ion battery and lithium ion battery comprising the same
KR20050048935A (en) An electrolyte for a lithium battery and a lithium battery comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130122

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee