KR20030061108A - Triple pitot assembly for flow measurement - Google Patents

Triple pitot assembly for flow measurement Download PDF

Info

Publication number
KR20030061108A
KR20030061108A KR1020020001480A KR20020001480A KR20030061108A KR 20030061108 A KR20030061108 A KR 20030061108A KR 1020020001480 A KR1020020001480 A KR 1020020001480A KR 20020001480 A KR20020001480 A KR 20020001480A KR 20030061108 A KR20030061108 A KR 20030061108A
Authority
KR
South Korea
Prior art keywords
pitot
voltage
fluid
inner cylindrical
cylindrical body
Prior art date
Application number
KR1020020001480A
Other languages
Korean (ko)
Other versions
KR100433719B1 (en
Inventor
김기현
Original Assignee
주식회사 서진인스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 서진인스텍 filed Critical 주식회사 서진인스텍
Priority to KR10-2002-0001480A priority Critical patent/KR100433719B1/en
Priority to PCT/US2003/000651 priority patent/WO2003089883A1/en
Priority to AU2003239115A priority patent/AU2003239115A1/en
Priority to CNA038020904A priority patent/CN1615429A/en
Publication of KR20030061108A publication Critical patent/KR20030061108A/en
Application granted granted Critical
Publication of KR100433719B1 publication Critical patent/KR100433719B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: A pitot tube assembly is provided to reduce a measuring error caused by a pitot tube being moved or bent by precisely detecting mean static pressure and total pressure of fluid even if fluid irregularly flows in the pitot tube. CONSTITUTION: A pitot tube assembly(10) includes an inner cylindrical member(11) having an inner diameter identical to a diameter of a pipe path. A total pressure passage and a static pressure passage are formed along an outer peripheral portion of the inner cylindrical member(11). A plurality of perforation holes is formed in the inner cylindrical member(11) while being spaced from each other at an angle of 120 degrees. A pitot head(15) is inserted into the perforation holes. A part of the pitot head(15) is position in the inner cylindrical member(11) and an upper surface of the pitot head(15) is aligned in line with an outer surface of the inner cylindrical member. The pitot head(15) is formed with a total pressure hole and a static pressure hole.

Description

유량측정용 피토조립체{TRIPLE PITOT ASSEMBLY FOR FLOW MEASUREMENT}PITTO ASSEMBLY FOR FLOW MEASUREMENT {TRIPLE PITOT ASSEMBLY FOR FLOW MEASUREMENT}

본 발명은 관로내의 유체 전압과 유체 정압의 차이를 이용하여 유량을 측정하는 유량측정용 피토조립체에 관한 것이다.The present invention relates to a flow measurement phyto assembly for measuring the flow rate using the difference between the fluid voltage and the fluid static pressure in the conduit.

일반적으로 피토관은 관로내에 흐르는 유체 전압(total pressure)과 유체 정압(static pressure)의 차압을 이용하여 유량을 측정하는 것으로 잘 알려져 있다. 피토관은 관로내에 설치되는 전압관과 정압관을 일체형 또는 분리형으로 구성하고 있으며, 전압관의 전압공은 유체의 흐름방향에 마주하는 반대방향으로 개구되어 있고, 정압관의 정압공은 유체의 흐름방향과 수직 또는 동일방향으로 개구되어 있다. 따라서 상기 전압공과 정압공을 통해 검출된 관로내에 흐르는 유체의 유체 전압과 유체 정압이 이와 연결된 유량측정장치로 보내지고, 유량측정장치에서는 상기 유체 전압과 유체 정압의 압력차를 이용하여 유량을 측정하게 된다.In general, the pitot tube is well known to measure the flow rate using the differential pressure of the fluid voltage (total pressure) and the fluid static pressure flowing in the pipeline. The pitot tube is composed of a voltage tube and a positive pressure tube installed in the pipeline in one piece or a separate type, the voltage hole of the voltage tube is opened in the opposite direction facing the flow direction of the fluid, the positive pressure hole of the positive pressure tube is the flow direction of the fluid The opening is perpendicular or in the same direction as the opening. Therefore, the fluid voltage and the fluid static pressure of the fluid flowing in the conduit detected through the voltage hole and the positive pressure hole are sent to the flow measurement device connected thereto, and the flow rate measuring device measures the flow rate using the pressure difference between the fluid voltage and the fluid static pressure. do.

그런데, 관로내에 흐르는 유체의 속도분포는 관로내의 위치에 따라 각각 다르기 때문에 유량을 보다 정확하게 측정하기 위해서는 관로내의 여러곳에 전압공과 정압공을 위치시켜 이들의 평균유속을 구하는 것이 바람직하다.However, since the velocity distribution of the fluid flowing in the conduit varies depending on the position in the conduit, in order to more accurately measure the flow rate, it is preferable to obtain voltage averages and constant pressure holes in various places in the conduit to obtain their average flow rates.

도 1은 상기한 바와 같이 평균유속을 구하여 유량측정의 정확도를 높일 수있도록 한 종래의 평균 피토관을 관로에 설치한 상태를 나타낸 것이다.1 shows a state in which a conventional average pitot tube is installed in a pipe line to obtain an average flow rate as described above to increase the accuracy of flow measurement.

피토관(1)은 관로(2)의 일측에 형성한 구멍(3)을 통해 관로(2)내의 중심을 지나는 수직방향으로 설치되고, 피토관(1)의 끝단은 관통시킨 구멍(3)측의 반대쪽 안둘레면에 근접하게 위치되며, 피토관(1)과 관로(2)는 용접등으로 밀봉이 이루어지도록 하여 고정되어 있다.The pitot tube 1 is installed in the vertical direction passing through the center in the duct 2 through the hole 3 formed on one side of the duct 2, and the end of the pitot tube 1 is opposite to the side of the hole 3 through It is located close to the inner circumference, and the pitot pipe 1 and the pipe line 2 are fixed by sealing by welding or the like.

피토관(1)의 전압공(4)은 유체의 흐름방향에 마주하는 반대방향을 향하여 개구되는 것으로, 관로(2)내의 중심을 지나는 수직방향으로 특정의 위치에 복수개 개구되어 있고, 정압공(5)은 전압공(4)의 대향위치에 유체의 흐름방향과 동일한 방향으로 각각 개구되어 있다. 전압공(4)과 정압공(5)은 각각 하나의 전압통로(6)와 정압통로(7)를 통해 도시하지 않은 유량측정장치에 연결되어 있다.The voltage holes 4 of the pitot tube 1 are opened in the opposite direction to face the flow direction of the fluid. The voltage holes 4 are opened at a specific position in the vertical direction passing through the center in the pipeline 2, and the positive pressure holes 5 Are respectively opened in opposite directions of the voltage holes 4 in the same direction as the flow direction of the fluid. The voltage hole 4 and the positive pressure hole 5 are respectively connected to a flow rate measuring device (not shown) through one voltage passage 6 and a constant pressure passage 7.

따라서 각각의 전압공(4)에 의한 유체 전압은 전압통로(6)를 통해 평균유체 전압이 되어 유량측정장치로 전달되고, 각각의 정압공(5)에 의한 유체 정압은 정압통로(7)를 통해 평균유체 정압이 되어 유량측정장치로 전달되며, 유량측정장치는 이들 평균유체 전압과 평균유체 정압의 차를 이용하여 관로(2)내에 흐르는 유량을 측정하게 된다.Therefore, the fluid voltage by each of the voltage holes (4) is the average fluid voltage through the voltage passage (6) to be transmitted to the flow rate measuring device, the fluid static pressure by each of the positive pressure holes (5) to the positive pressure passage (7) Through the average fluid static pressure is transmitted to the flow rate measuring device, the flow measuring device measures the flow rate flowing in the conduit (2) by using the difference between the average fluid voltage and the average fluid static pressure.

그런데 관로(2)내에 흐르는 유체의 속도분포가 항상 일정하지 않기 때문에, 도 1에 도시된 바와 같이 유체의 속도분포가 피토관(1)의 설치방향과 일치하는 경우, 비교적 정확한 평균유체 전압 및 평균유체정합을 검출하여 정확한 유량측정이 가능하지만, 도 3의 (가),(나)에 도시된 바와 같이 유체의 속도분포가 피토관(1)의 설치방향과 일치하지 않는 경우에는 오차가 발생할 수 있고, 이로써 정확한 평균유체 전압 및 평균유체 정압을 검출하기 어렵다는 문제가 있었다.However, since the velocity distribution of the fluid flowing in the conduit 2 is not always constant, as shown in FIG. 1, when the velocity distribution of the fluid coincides with the installation direction of the pitot tube 1, a relatively accurate average fluid voltage and an average fluid are shown. Accurate flow rate measurement is possible by detecting the match, but as shown in (a) and (b) of FIG. 3, an error may occur when the velocity distribution of the fluid does not coincide with the installation direction of the pitot tube 1. As a result, there is a problem that it is difficult to detect the correct average fluid voltage and average fluid static pressure.

또한 종래의 피토관(1)은 관로(2)에 구멍(3)을 뚫어 관통시킨 후, 용접으로 고정하여 설치되는 것이므로, 피토관(1)의 설치가 용이하지 않고, 관로(2)내로 길게 설치된 것이므로 유동압에 의해 진동되어 파손되거나 휘어져 수직상태를 지속적으로 유지하기 어려울 수도 있다. 따라서 이에 의해서도 오차가 발생할 수 있어 정확한 평균유체 전압 및 평균유체 정압을 검출하기 어려우며, 또 피토관(1)은 관로(2)내에 차지하는 면적이 크기 때문에 유체의 흐름에 큰저항력으로 작용하게 되고, 이로써 펌프용량이 커지고 또 이 펌프를 구동하기 위한 소비전력도 커지는 등 제반비용이 증가하게 되는 문제가 있다.In addition, since the conventional pitot tube 1 is installed by fixing the hole 3 through the pipe line 2 and then fixing it by welding, the pitot tube 1 is not easily installed and is installed in the line 2 long. It may be difficult to maintain a vertical state due to vibration, breakage or bending due to flow pressure. As a result, errors may occur, making it difficult to detect an accurate average fluid voltage and an average fluid static pressure, and the pitot pipe 1 has a large area occupied in the conduit 2, thus acting as a large resistance to the flow of the fluid. There is a problem that the overall cost increases, such as a large capacity and a large power consumption for driving the pump.

본 발명은 상기의 문제점을 해결하기 위한 것으로, 그 목적은 관로내에 흐르는 유체의 속도분포가 불규칙한 경우에도 보다 정확한 평균유체 전압 및 평균유체 정압을 검출할 수 있고, 피토관의 길이를 짧게하여 피토관의 유동이나 휘어짐에 의한 오차발생을 방지할 수 있는 유량측정용 피토조립체를 제공하는데 있다.The present invention has been made to solve the above problems, and its object is to detect more accurate average fluid voltage and average fluid static pressure even when the velocity distribution of the fluid flowing in the pipeline is irregular, and to shorten the length of the pitot tube to flow the pitot tube. Another object is to provide a phyto-assembly for measuring the flow rate, which can prevent the occurrence of errors due to bending.

또한 관로에 설치하는 작업이 용이하게 이루어지며, 관로내에 차지하는 면적을 줄여 유체흐름에 대한 저항력이 작아지게 함으로써 펌프용량 및 전력소비를 줄일 수 있는 유량측정용 피토조립체를 제공하는데 있다.In addition, it is easy to install the work in the pipeline, and by reducing the area occupied in the pipeline to reduce the resistance to fluid flow to provide a phyto assembly for flow measurement that can reduce the pump capacity and power consumption.

도 1은 종래의 평균 피토관 설치상태를 나타낸 정면도.1 is a front view showing a conventional average pitot tube installation state.

도 2는 도 1의 C-C선 단면도.2 is a cross-sectional view taken along the line C-C of FIG.

도 3은 유체의 흐름압력분포도 상태도.3 is a state diagram of flow pressure distribution of a fluid;

도 4는 본 발명에 따른 유량측정용 피토조립체를 나타낸 정면도.Figure 4 is a front view showing a phyto assembly for flow measurement according to the present invention.

도 5는 도 4의 A-A선 단면도.5 is a cross-sectional view taken along the line A-A of FIG.

도 6은 도 4의 B-B선 단면도.6 is a cross-sectional view taken along the line B-B in FIG. 4.

도 7의 (가),(나)는 본 발명의 내측원통체와 피토헤드의 조립상태를 나타낸 사시도.Figure 7 (a), (b) is a perspective view showing the assembled state of the inner cylinder and the pitot head of the present invention.

도 8은 본 발명에 따른 유량측정용 피토조립체를 관로에 설치한 상태를 나타낸 단면도.8 is a cross-sectional view showing a state in which the pitot assembly for flow measurement according to the present invention is installed in a pipeline.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 피토조립체11 : 내측원통체10: pitot assembly 11: inner cylinder

12 : 전압통로13 : 정압통로12: voltage path 13: static pressure path

14 : 관통구멍15 : 피토헤드14 through hole 15 pitto head

16 : 전압공17 : 정압공16: voltage ball 17: positive pressure ball

18 : 외측원통부19 : 전압포트18: outer cylinder portion 19: voltage port

20 : 정압포트30 : 관로20: static pressure port 30: pipeline

31,32 : 플랜지33 : 보울트31,32: Flange 33: Bolt

34 : 너트35 : 패킹34: Nut 35: Packing

상기의 목적은, 측정하고자 하는 관로와 동일한 안지름을 가지고 바깥둘레면에는 바깥둘레를 따라 전압통로 및 정압통로가 형성된 원통형상의 내측원통체와,상기 내측원통체의 둘레방향을 따라 등간격으로 배치되어 내측원통체를 관통하여 설치되고 상기 내측원통체의 전압통로 및 정압통로와 각각 연통되는 전압공 및 정압공이 형성된 복수개의 피토헤드와, 상기 내측원통체의 바깥둘레에 끼워져 고정되고 내측원통체의 전압통로 및 정압통로에 각각 연통되는 전압포트 및 정압포트가 형성된 외측원통체로 이루어짐을 특징으로 하는 유량측정용 피토조립체에 의해 달성될 수 있다.The above object is a cylindrical inner cylindrical body having the same inner diameter as the pipe to be measured and having a voltage passage and a positive pressure passage formed on the outer circumferential surface thereof, and are disposed at equal intervals along the circumferential direction of the inner cylindrical body. A plurality of pitot heads installed through the inner cylinder and formed with voltage and positive pressure holes communicating with the voltage passage and the positive pressure passage of the inner cylinder, respectively, and are fixed to the outer circumference of the inner cylinder and fixed to the voltage of the inner cylinder. It can be achieved by the flow rate measuring pitto assembly, characterized in that the outer cylinder formed with a voltage port and a constant pressure port communicated with the passage and the positive pressure passage, respectively.

이때, 상기 피토헤드의 전압공 및 정압공은, 관로의 반경비(r/R)가 0.76이 되는 지점에 위치되도록 하고, 피토헤드는 120°등간격으로 3개를 설치하는 것이 바람직하다.At this time, it is preferable that the voltage holes and the positive pressure holes of the pitot head are positioned at a point where the radius ratio (r / R) of the pipe is 0.76, and three pitot heads are provided at equal intervals of 120 °.

이하, 첨부도면을 참조하면서 본 발명의 유량측정용 피토조립체에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the flow rate measuring phyto assembly of this invention is demonstrated in detail, referring an accompanying drawing.

도 4는 본 발명의 유량측정용 피토조립체를 나타낸 정면도이고, 도 5 및 도 6은 도4의 A-A선 및 B-B선 단면도이고, 도 7의 (가),(나)는 피토조립체의 내측원통체와 피토헤드의 조립상태를 나타낸 사시도로서, 피토조립체(10)는 측정하고자 하는 관로(30)와 동일한 안지름을 가지는 원통형상의 내측원통체(11)를 구비하고 있으며, 이 내측원통체(11)의 바깥둘레면에는 둘레방향을 따라 전압통로(12)와 정압통로(13)가 일정간격 유지되어 각각 독립적으로 형성되어 있다.4 is a front view showing a flow measurement pitot assembly of the present invention, Figures 5 and 6 is a cross-sectional view of the line AA and BB of Figure 4, Figure 7 (a), (b) is an inner cylinder of the pitot assembly Is a perspective view showing the assembling state of the pitot head, the pitot assembly 10 includes a cylindrical inner cylindrical body 11 having the same inner diameter as the pipeline 30 to be measured. In the outer circumferential surface, the voltage passage 12 and the constant pressure passage 13 are maintained at regular intervals along the circumferential direction, and are formed independently of each other.

또한 내측원통체(11)에는 둘레방향으로 120°등간격의 위치에 관통구멍(14)이 형성되어 있고, 이 관통구멍(14)에 피토헤드(15)가 각각 끼워져 조립되어 있다. 이때 피토헤드(15)는 관통구멍(14)을 관통하여 일부가 내측원통체(11)내에 위치하게 되고, 피토헤드(15)의 상면은 내측원통체(11)의 바깥둘레면과 일치하도록 형성된다.Further, through-holes 14 are formed in the inner cylindrical body 11 at positions equal to 120 ° in the circumferential direction, and the pitot heads 15 are fitted into the through-holes 14, respectively. At this time, the pitot head 15 penetrates the through-hole 14 so that a part thereof is located in the inner cylindrical body 11, and the upper surface of the pitot head 15 is formed to coincide with the outer circumferential surface of the inner cylindrical body 11. do.

각각의 피토헤드(15)에는 전압공(16)과 정압공(17)이 형성된 것으로, 전압공 (16)은 유체의 흐름방향의 반대방향을 향하여 마주보도록 개구되어 있고, 정압공 (17)은 유체의 흐름방향과 동일방향을 향하여 개구되어 있으며, 모든 전압공(16)은 내측원통체(11)의 전압통로(12)에 연결되고, 모든 정압공(17)은 내측원통체(11)의 정압통로(13)에 연결되어 있다.Each pit head 15 has a voltage hole 16 and a positive pressure hole 17, the voltage hole 16 is opened to face in the opposite direction of the flow direction of the fluid, the positive pressure hole 17 is Opened in the same direction as the flow direction of the fluid, all voltage holes 16 are connected to the voltage passage 12 of the inner cylinder 11, all the positive pressure holes 17 of the inner cylinder 11 It is connected to the positive pressure passage 13.

통상, 관로(30)내에 흐르는 유체의 평균유속은 상사의 법칙에 의해 관로(30)의 안지름 크기에 관계없이 항상 반경비(r/R)가 0.76이 되는 지점에 일어난다. 따라서 상기 전압공(16)과 정압공(17)의 위치는, 도 4에 도시된 바와 같이 반경비 (r/R)가 0.76인 지점에 위치되도록 설치하는 것이 바람직하다.Normally, the average flow velocity of the fluid flowing in the conduit 30 always occurs at a point where the radius ratio r / R becomes 0.76 regardless of the inner diameter of the conduit 30 according to the law of the similarity. Therefore, the position of the voltage hole 16 and the positive pressure hole 17, it is preferable to be installed so that the position of the radial ratio (r / R) is 0.76 as shown in FIG.

상기 피토헤드(15)는, 90°간격으로 4개 설치할 수도 있고, 180°간격으로 2개 설치할 수도 있으나, 피토헤드(15)를 3개 이상 설치하는 경우, 관로(30)내에 점유하는 면적의 증대로 유체의 흐름저항력이 커지게 되고, 3개 이하로 설치하는 경우, 유체의 속도분포가 불규칙한 것에 대응하여 정확한 측정을 하기 어렵다는 점을 감안할 때, 피토헤드(15)는 본 실시예에서와 같이 120°등간격으로 3개 설치하는 것이 바람직하다.Four pitot heads 15 may be installed at intervals of 90 degrees, or two may be installed at intervals of 180 degrees. However, when three or more pitot heads 15 are installed, the pitot head 15 may have an area occupied by the conduit 30. In consideration of the fact that the flow resistance of the fluid is increased due to the increase, and when it is installed at three or less, it is difficult to make accurate measurement in response to the irregular velocity distribution of the fluid, the pitot head 15 is the same as in this embodiment. It is preferable to install three at equal intervals of 120 °.

상기 내측원통체(11)의 바깥둘레에는 외측원통체(18)가 끼워져 조립되는 것으로, 외측원통체(18)의 안둘레면은 내측원통체(11)의 바깥둘레면 및 피토헤드(15)의 상면과 일치하고 있다. 또한 내측원통체(11)의 바깥둘레면 및 피토헤드(15)의상면은 계단형상으로 가공되어 있고, 외측원통체(18)의 안둘레면도 이에 일치하도록 계단형상으로 가공되어 있다.The outer cylinder 18 is fitted to the outer periphery of the inner cylindrical body 11, the inner circumferential surface of the outer cylindrical body 18 is the outer circumferential surface of the inner cylindrical body 11 and the pitot head 15 It coincides with the upper surface of. The outer circumferential surface of the inner cylindrical body 11 and the upper surface of the pitot head 15 are processed in a step shape, and the inner circumferential surface of the outer cylindrical body 18 is also processed in a step shape so as to correspond thereto.

따라서 피토헤드(15)를 내측원통체(11)의 관통구멍(14)에 끼워 조립한 후, 내측원통체(11)를 외측원통체(18)에 끼워 고정함으로써 피토조립체가 간단하게 조립되고, 내측원통체(11) 및 피토헤드(15)는 외측원통체(18)와 억지끼워맞춤으로 고정한다. 이로써 내측원통체(11)의 전압통로(12) 및 정압통로(13)의 상부는 외측원통체(18)의 안둘레면에 의해 막히게 되어 각각 독립적인 통로를 형성하게 된다.Therefore, the pitot assembly 15 is assembled by inserting the pitot head 15 into the through-hole 14 of the inner cylindrical body 11, and then fitting the inner cylindrical body 11 to the outer cylindrical body 18 to fix it. The inner cylindrical body 11 and the pitot head 15 are fixed to the outer cylindrical body 18 by interference fit. As a result, the upper portion of the voltage passage 12 and the positive pressure passage 13 of the inner cylinder 11 is blocked by the inner circumferential surface of the outer cylinder 18 to form independent passages.

또한 외측원통체(18)는 내측원통체(11)의 전압통로(12)와 정압통로(13)에 각각 연통하는 전압포트(19)와 정압포트(20)가 형성되어 있고, 이 전압포트(19) 및 정압포트(20)는 도시하지 않은 유량측정장치에 각각 연결된다.In addition, the outer cylindrical body 18 is provided with a voltage port 19 and a constant pressure port 20 communicating with the voltage passage 12 and the constant pressure passage 13 of the inner cylinder 11, respectively. 19) and the constant pressure port 20 are respectively connected to a flow measurement device not shown.

이러한 구성의 피토조립체(10)는 도 8에 도시된 바와 같이, 유량을 측정하고자 하는 관로(30)에 플랜지이음으로 간단하게 설치될 수 있다. 즉 유량 측정을 위한 관로(30)의 마주하는 양끝단에 형성된 플랜지(31,32) 사이에 피토조립체(10)를 끼운 후, 보울트(33) 및 너트(34)로 체결함으로써 간단하게 설치되고, 플랜지(31, 32)와 피토조립체(10) 사이에는 패킹(35)을 개재하여 이들 사이로 유체가 누출되는 것을 방지한다.As illustrated in FIG. 8, the pitot assembly 10 having such a configuration may be simply installed as a flanged joint in the conduit 30 to measure the flow rate. That is, the pitto assembly 10 is sandwiched between the flanges 31 and 32 formed at opposite ends of the conduit 30 for measuring the flow rate, and then simply installed by fastening with the bolt 33 and the nut 34. A fluid is prevented from leaking between the flanges 31 and 32 and the pitot assembly 10 through the packing 35.

이와 같이 설치되는 피토조립체(10)는, 각각의 피토헤드(15)에 형성된 전압공(16)에 의해서 이 전압공(16)이 위치한 지점으로 흐르는 유체의 유체 전압을 검출할 수 있고, 정압공(17)에 의해서는 이 정압공(17)이 위치한 지점으로 흐르는 유체의 유체 정압을 검출할 수 있게 된다. 3개의 전압공(16)에 의해 검출된 유체 전압은 이에 연통된 하나의 전압통로(12)에서 합류함으로써 평균화된 유체 전압이 되어 전압포트(19)를 통해 도시하지 않은 유량측정장치로 전달되고, 3개의 정압공 (17)에 의해 검출된 유체 정압은 이에 연통된 하나의 정압통로(13)에서 합류함으로써 평균화된 유체 정압이 되어 정압포트(20)를 통해 도시하지 않은 유량측정장치로 전달된다.The pitot assembly 10 installed in this way can detect the fluid voltage of the fluid flowing to the point where the voltage hole 16 is located by the voltage holes 16 formed in the respective pitot heads 15, By (17), it is possible to detect the fluid static pressure of the fluid flowing to the point where the static pressure hole 17 is located. The fluid voltage detected by the three voltage holes 16 becomes the averaged fluid voltage by joining in one voltage path 12 connected thereto, and is transferred to the flow measuring device (not shown) through the voltage port 19. The fluid static pressure detected by the three static pressure holes 17 becomes an averaged fluid static pressure by joining in one positive pressure passage 13 communicated thereto, and is transmitted to the flow measuring device not shown through the constant pressure port 20.

따라서 유량측정장치는 각 전압공(16)으로부터 검출되어 평균화된 유체 전압과 각 정압공(17)으로부터 검출되어 평균화된 유체 정압의 압력차를 이용하여 관로 (30)내에 흐르는 유량을 측정할 수 있게 된다.Therefore, the flow rate measuring device can measure the flow rate flowing in the conduit 30 using the pressure difference between the fluid voltage detected and averaged from each of the voltage holes 16 and the hydrostatic pressure detected and averaged from each of the positive pressure holes 17. do.

이와 같이 유량측정에 사용되는 본 발명의 피토조립체(10)는, 피토헤드(15)의 전압공(16) 및 정압공(17)이 관로(30)의 반경비(r/R)가 0.76인 지점에 위치되고, 관로(30)내에 흐르는 유체의 평균유속은 상사의 법칙에 의해 관로(30)의 안지름 크기에 관계없이 항상 반경비(r/R)가 0.76이 되는 지점에 일어나므로, 관로(30)내의 평균유체 전압 및 평균유체 정압을 정확히 검출할 수 있다.Thus, the pitot assembly 10 of the present invention used for the flow rate measurement, the voltage hole 16 and the positive pressure hole 17 of the pitot head 15 has a radial ratio (r / R) of the conduit 30 is 0.76 Since the average flow velocity of the fluid which is located at the point and flows in the conduit 30 always occurs at the point where the radial ratio r / R becomes 0.76 regardless of the inner diameter of the conduit 30 according to the law of similarity, The average fluid voltage and the average fluid static pressure in 30 can be detected accurately.

또한 3개의 전압공(16) 및 정압공(17)이 120°등간격으로 배치되어 있는 것이므로 관로(30)내에 흐르는 유체의 속도분포가 도 1 및 도 3의 (가)(나)에 도시된 바와 같이 불규칙한 경우에도 평균유체 전압 및 평균유체 정압을 보다 정확하게 검출할 수 있게 된다.In addition, since the three voltage holes 16 and the positive pressure holes 17 are disposed at equal intervals of 120 °, the velocity distribution of the fluid flowing in the conduit 30 is shown in FIGS. 1 and 3 (a). As described above, even in an irregular case, the average fluid voltage and the average fluid static pressure can be detected more accurately.

또한 피토헤드(15)의 길이가 짧아짐에 따라 유체압에 의해 피토헤드(15)가 진동으로 인해서 파손되거나 휘어질 염려가 없고, 이로써 평균유체 전압 및 평균유체 정압의 검출시 이로인한 오차발생이 방지되며, 피토헤드(15)가 관로(30)내에서차지하는 면적이 감소되므로 유체의 흐름을 방해하는 저항력이 줄어들게 되고, 이로써 펌프용량 및 이의 사용전력을 줄일 수 있게 된다.In addition, as the length of the pitot head 15 is shortened, there is no fear that the pitot head 15 may be broken or bent due to vibration due to the fluid pressure, thereby preventing an error caused by the detection of the average fluid voltage and the average fluid static pressure. In addition, since the area occupied by the phytohead 15 in the conduit 30 is reduced, the resistance to interrupt the flow of the fluid is reduced, thereby reducing the pump capacity and the power used thereof.

이상 설명한 바와 같이 본 발명에 의한 유량측정용 피토조립체에 의하면, 관로내에 흐르는 유체의 평균유체 전압 및 평균유체 정압을 보다 정확하게 검출할 수 있음과 동시에, 검출오차가 최소화됨으로써 보다 정확한 유량측정이 가능하게 되고, 관로에 설치하는 방법이 간단하여 작업이 매우 용이하게 이루어지며, 유체의 흐름 저항이 최소화됨으로써 펌프용량 및 사용전력이 감소되는 효과가 있다.As described above, according to the phyto-assembly for flow measurement according to the present invention, the average fluid voltage and the average fluid static pressure of the fluid flowing in the pipe can be detected more accurately, and the detection error is minimized, thereby enabling more accurate flow measurement. In addition, since the method of installation in the pipeline is simple, the operation is made very easy, and the flow resistance of the fluid is minimized, thereby reducing the pump capacity and power consumption.

Claims (3)

측정하고자 하는 관로(30)와 동일한 안지름을 가지고 바깥둘레면에는 바깥둘레를 따라 전압통로(12) 및 정압통로(13)가 형성된 원통형상의 내측원통체(11)와,A cylindrical inner cylindrical body 11 having the same inner diameter as the pipeline 30 to be measured and having a voltage passage 12 and a positive pressure passage 13 formed on the outer circumferential surface thereof; 상기 내측원통체(11)의 둘레방향을 따라 등간격으로 배치되어 내측원통체 (11)를 관통하여 설치되고 상기 내측원통체(11)의 전압통로(12) 및 정압통로(13)와 각각 연통되는 전압공(16) 및 정압공(17)이 형성된 복수개의 피토헤드(15)와,Arranged at equal intervals along the circumferential direction of the inner cylindrical body 11 and installed through the inner cylindrical body 11 and communicating with the voltage passage 12 and the constant pressure passage 13 of the inner cylindrical body 11, respectively. A plurality of pitot heads 15 in which voltage holes 16 and positive pressure holes 17 are formed; 상기 내측원통체(11)의 바깥둘레에 끼워져 고정되고 내측원통체(11)의 전압통로(12) 및 정압통로(13)에 각각 연통되는 전압포트(19) 및 정압포트(20)가 형성된 외측원통체(18)로 이루어짐을 특징으로 하는 유량측정용 피토조립체.An outer side of the inner cylindrical body 11, the voltage port 19 and the positive pressure port 20, which is fixed to the outer periphery of the inner cylindrical body 11 and connected to the voltage passage 12 and the positive pressure passage 13, respectively Flow rate phyto assembly, characterized in that consisting of a cylindrical body (18). 제 1 항에 있어서, 상기 피토헤드(15)의 전압공(16) 및 정압공(17)은, 관로 (30)의 반경비(r/R)가 0.76인 지점에 위치됨을 특징으로 하는 유량측정용 피토조립체.The flow rate measurement according to claim 1, wherein the voltage hole (16) and the positive pressure hole (17) of the pitot head (15) are located at a point where the radius ratio (r / R) of the conduit (30) is 0.76. For phytoassembly. 제 1 항 또는 제 2 항에 있어서, 상기 피토헤드(15)는 120°등간격으로 3개 설치됨을 특징으로 하는 유량측정용 피토조립체.The pitot assembly for flow measurement according to claim 1 or 2, wherein three pitot heads are installed at equal intervals of 120 degrees.
KR10-2002-0001480A 2002-01-10 2002-01-10 Triple pitot assembly for flow measurement KR100433719B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2002-0001480A KR100433719B1 (en) 2002-01-10 2002-01-10 Triple pitot assembly for flow measurement
PCT/US2003/000651 WO2003089883A1 (en) 2002-01-10 2003-01-09 Multi-point averaging flow meter
AU2003239115A AU2003239115A1 (en) 2002-01-10 2003-01-09 Multi-point averaging flow meter
CNA038020904A CN1615429A (en) 2002-01-10 2003-01-09 Multi-point averaging flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0001480A KR100433719B1 (en) 2002-01-10 2002-01-10 Triple pitot assembly for flow measurement

Publications (2)

Publication Number Publication Date
KR20030061108A true KR20030061108A (en) 2003-07-18
KR100433719B1 KR100433719B1 (en) 2004-05-31

Family

ID=29244682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0001480A KR100433719B1 (en) 2002-01-10 2002-01-10 Triple pitot assembly for flow measurement

Country Status (4)

Country Link
KR (1) KR100433719B1 (en)
CN (1) CN1615429A (en)
AU (1) AU2003239115A1 (en)
WO (1) WO2003089883A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063399A (en) * 2013-01-09 2013-04-24 浙江大学 Framed bent device for wind tunnel flow field

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089805B2 (en) 2004-04-06 2006-08-15 Korea Atomic Energy Research Institute Average bidirectional flow tube
EP2626148B1 (en) 2012-02-13 2019-03-27 Alfa Laval Corporate AB Monitoring of systems for internal cleaning of containers
CN103148978A (en) * 2013-02-04 2013-06-12 扬州大学 Even pressure sleeve for measurement of static pressure of pipeline fracture surface
US9574438B2 (en) 2014-04-15 2017-02-21 Baker Hughes Incorporated Fluid velocity flow meter for a wellbore
GB201500257D0 (en) 2015-01-08 2015-02-25 Univ Surrey A flow meter
CN106768088A (en) * 2016-11-17 2017-05-31 江苏智石科技有限公司 A kind of household gas intelligent mobile monitoring system
LT3333551T (en) 2016-12-09 2019-12-10 Lindinvent Ab Device for measuring gas flow in a duct
CN107063551B (en) * 2017-04-10 2024-02-02 北京天立成信机械电子设备有限公司 A first part seed species wind power dynamic pressure acquisition device and method for controlling the same
CN110763278A (en) * 2019-11-14 2020-02-07 上海权宥环保科技有限公司 Measuring method for measuring fluid medium parameters in pipeline
KR102627338B1 (en) * 2020-02-20 2024-01-24 충청대학교 산학협력단 Inspection device of flight instruments for pitot and static system
EP3985360B1 (en) * 2020-10-19 2023-12-13 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Flow measurement using multiple pitot tubes and multiple sensing units
DE102022100862A1 (en) 2022-01-14 2022-03-03 FEV Group GmbH Device for measuring pressure in pipelines

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590637A (en) * 1969-12-17 1971-07-06 William R Brown Flow meter
US3685355A (en) * 1970-04-13 1972-08-22 Air Monitor Corp Air monitoring system
US4297900A (en) * 1978-10-26 1981-11-03 Brandt Industries, Inc. Averaging pitot primary system
JPS5562312A (en) * 1978-11-02 1980-05-10 Shisaka Kenkyusho:Kk Flowmeter of pitot orifice
US4453419A (en) * 1982-11-26 1984-06-12 Barber-Colman Company Device for sensing the volmetric flow rate of air in a duct
DE3336911A1 (en) * 1983-10-11 1985-04-18 Ferdinand Schad KG, 7201 Kolbingen DEVICE FOR MEASURING THE VOLUME FLOW OF A GAS IN A CHANNEL
US4959990A (en) * 1989-04-10 1990-10-02 Morris Robert H Combined mass flow/pitot tube meter
US5481925A (en) * 1994-09-09 1996-01-09 Environmental Technologies, Inc. Low turbulence airflow sensor
JPH09101186A (en) * 1995-10-05 1997-04-15 Mitsubishi Heavy Ind Ltd Pitot-tube type mass flowmeter
US5736651A (en) * 1996-05-23 1998-04-07 Bowers; James R. High temperature gas flow sensing element
US6237426B1 (en) * 1999-02-12 2001-05-29 E.H. Price Limited Airflow sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063399A (en) * 2013-01-09 2013-04-24 浙江大学 Framed bent device for wind tunnel flow field

Also Published As

Publication number Publication date
WO2003089883A1 (en) 2003-10-30
CN1615429A (en) 2005-05-11
KR100433719B1 (en) 2004-05-31
AU2003239115A1 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
KR100433719B1 (en) Triple pitot assembly for flow measurement
US7357040B2 (en) Torus wedge flow meter
CA2481869C (en) Averaging orifice primary flow element
US6672173B2 (en) Flow meter
US4696194A (en) Fluid flow measurement
RU2262081C2 (en) Flow meter
US7047822B2 (en) Devices, installations and methods for improved fluid flow measurement in a conduit
US20170009788A1 (en) Pipe Assembly With Stepped Flow Conditioners
KR20090048333A (en) Flow measurement valve
US6923074B2 (en) Ball valve with flow-rate gauge incorporated directly in the ball
US5728942A (en) Fluid pressure measuring system for control valves
US5617899A (en) Orifice metering apparatus and method of fabricating same
CN110132366B (en) Flowmeter and orifice plate carrier assembly thereof
KR100500532B1 (en) Pitot cone assembly for flow measurement
JPS587183Y2 (en) Double pipe connection structure
JP3122984B2 (en) Throttle flow meter
JPS63246618A (en) Flow rate detector
JP2002081976A (en) Constriction structure of differential pressure type flowmeter
WO2020091384A1 (en) Venturi flowmeter
CN213956479U (en) Pitot flowmeter
JPS622495Y2 (en)
CN117906770A (en) Mounting structure of sensor
JPS6119839B2 (en)
CN117759769A (en) Flow valve
JPS60164218A (en) Pitot tube type flowmeter

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090520

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee