KR20030059730A - A method of producing the alloy powder by super low temperature cooling system - Google Patents

A method of producing the alloy powder by super low temperature cooling system Download PDF

Info

Publication number
KR20030059730A
KR20030059730A KR1020020000474A KR20020000474A KR20030059730A KR 20030059730 A KR20030059730 A KR 20030059730A KR 1020020000474 A KR1020020000474 A KR 1020020000474A KR 20020000474 A KR20020000474 A KR 20020000474A KR 20030059730 A KR20030059730 A KR 20030059730A
Authority
KR
South Korea
Prior art keywords
gas
low temperature
powder
cooling
ultra low
Prior art date
Application number
KR1020020000474A
Other languages
Korean (ko)
Inventor
병 선 천
연규엽
홍순직
Original Assignee
(주) 대덕 R.S.M.
병 선 천
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 대덕 R.S.M., 병 선 천 filed Critical (주) 대덕 R.S.M.
Priority to KR1020020000474A priority Critical patent/KR20030059730A/en
Publication of KR20030059730A publication Critical patent/KR20030059730A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE: Provided is a production process of high alloy by quick condensation spray method using an ultra low temperature cooling system which lowers temperature of spray gas to ultra low temperature, with preventing oxidation and increasing cooling speed so that it contributes to produce alloy powder with excellent mechanical property. CONSTITUTION: The production process of the high alloy by quick condensation spray method using the ultra low temperature cooling system comprises the steps of: (i) keeping a chamber in a vacuum state partially or under nitrogen air; and (ii) spraying ultra low temperature liquefied nitrogen gas through a cooler for ultra low temperature to produce circular high alloy powder with high quality, with inhibiting rise of temperature within the chamber to prevent oxidation on the surface of the produced powder.

Description

초 저온 냉각시스템을 이용한 급속응고 분무법에 의한 고합금 분말 제조{A method of producing the alloy powder by super low temperature cooling system}A method of producing the alloy powder by super low temperature cooling system

본 발명은 초저온 가스를 이용한 급속응고 가스분무법에 의한 고합금(스테인레스강, Co기지 합금, Ni기지 합금) 분말제조에 관한 것으로, 특히 초 저온(-90 ∼ -130℃)의 질소가스 급속냉각 방식을 적용, 조성이 균일하고 표면 산화가 없는 구상 분말제조 방법에 관한 것이다.The present invention relates to the production of high alloy (stainless steel, Co-base alloy, Ni-base alloy) powder by rapid solidification gas spraying method using ultra-low temperature gas, especially nitrogen gas rapid cooling method at ultra low temperature (-90 ~ -130 ℃) The present invention relates to a spherical powder production method having a uniform composition and no surface oxidation.

고합금 분말은 스테인레스강, Co기지 합금, Ni기지 합금 계 등의 다품종이 있으며, 이들 대부분의 분말은 수 분사(Water-Atomizing) 방식으로 제조되는 불규칙형상 분말과 가스분무(Gas-Atomizing)방식으로 제조되는 구형형상 분말등의 제조공법으로 제조되고 있다. 이들 고합금 분말은 우수한 내식성, 내산화성, 기계적 특성, 시장성 등이 뛰어나 분말압출, 금속사출성형(MiM), HiP등의 방법으로 성형되어 제품에 응용되고 있으며 그 수요도 계속 증대되고 있다. 또한 국내에서 이용되는 급속응고 분말의 거의 전량은 수입에 의존하고 있는 실정이며, 종래의 가스분무법의 분말제조는 상온의 가스 리싸이클링 냉각방식으로 거대한 설비투자로 인한 다품종소량생산의 원가상승 및 미세한 분말의 혼입 등 품질향상에 어려움이 있고, 일정크기 ( 250μm ) 이상의 분말은 제조하기 어렵다는 단점이 있었다.High alloy powders include stainless steel, Co-based alloys, and Ni-based alloys. Many of these powders are made of water-atomizing, irregularly shaped powders, and gas-atomizing. It is manufactured by the manufacturing method, such as spherical powder manufactured. These high alloy powders are excellent in corrosion resistance, oxidation resistance, mechanical properties, marketability, etc., and are molded into products such as powder extrusion, metal injection molding (MiM), and HiP, and are being applied to products. In addition, almost all of the rapid coagulation powders used in Korea depend on imports, and the conventional gas spraying powder manufacturing method is a gas recycling cooling method at room temperature, which increases the cost of producing small quantities of small products due to huge facility investment and fine powder. There is a difficulty in improving the quality, such as mixing, there was a disadvantage that a powder of a predetermined size (250μm) or more is difficult to manufacture.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서,The present invention is to solve the problems of the prior art as described above,

종래 가스분사법에 의한 분말의 제조에서는 상온의 가스 리싸이클링과 쳄버내의 진공 및 불활성 분위기를 통하여 분말의 산화방지를 통하여 분말을 제조하였으나, 본 발명은 쳄버 내의 진공+불활성 분위기를 종래의 공법보다도 산소함량을 낮게 유지하면서, 분사가스의 온도를 초저온으로 낮추어서 바로 냉각시킴으로써 산화를 방지하고 냉각속도가 크기 때문에 기계적 성질이 우수한 분말을 제조하는 방법 및 또한 다품종의 고합금 분말을 저비용으로 쉽게 제조할 수 있는 방법을 제공함에 그 목적이 있다In the preparation of the powder by the conventional gas injection method, the powder was prepared by the gas recycling at room temperature and the oxidation prevention of the powder through the vacuum and inert atmosphere in the chamber. However, in the present invention, the oxygen content of the vacuum + inert atmosphere in the chamber is higher than that of the conventional method. To keep the temperature of injection gas low and cool down immediately to prevent oxidation, and to produce powder with excellent mechanical properties because of its high cooling rate, and also a method for easily producing a large variety of high alloy powders at low cost. Its purpose is to provide

도 1 은 본 발명에 사용되는 냉각시스템 개략도.1 is a schematic diagram of a cooling system used in the present invention.

도 2 는 본 발명에 사용되는 가스 냉각 시스템의 상세도, 그리고2 is a detailed view of a gas cooling system used in the present invention, and

도 3 은 본 발명의 분사를 나타내는 도면3 is a view showing the injection of the present invention

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

1 : 합금 용융장치.2 : 턴디쉬1 alloy melting device 2 tundish

22 : 냉각렬23 : 기화기22: cooling column 23: vaporizer

본 발명은 초저온 가스분사에 의한 고합금 분말제조방법으로 구성은크게 합금을 용융, 가스냉각시스템, 분사 그리고 포집으로 구성되어 있으며, 이들에 대한상세한 설명은 도 1과 도 2 그리고 도 3에 나타내었다.The present invention is composed of a high alloy powder manufacturing method by cryogenic gas spraying is composed of a large alloy melting, gas cooling system, injection and collection, the details of these are shown in Figures 1 and 2 and 3.

본 발명은 고합금 분말을 제조하기 위한 급속응고방법으로 먼저 합금을 용융시킬 수 있는 고주파유도방식의 합금용융장치(1)가 있고, 이 용융장치 내부는 마그네시야 건식축로 방식의 라이닝으로 되어있다. 또한 이렇게 용융된 용탕을 일정속도로 흘려보내는 동안 용탕의 온도와 용탕 유지를 위한 턴디쉬(2)가 있으며, 내부에는 알루미나(Alumina) 또는 마그네시아도가니(4)등을 사용하여 카본(C)등의 혼입을 방지하고 있다. 또한 턴디쉬의 가열 및 온도유지를 위하여 LPG 또는 LNG 버너가스가열방식으로 가열하고 있으며 이들 가스분위기는 용탕표면이 대기중에 노출되어 산화를 방지하는 가스분위기의 영역을 형성하므로써 용탕의 산화를 방지할 수 있다.The present invention is a rapid solidification method for producing a high alloy powder, there is a high-frequency induction alloy melting apparatus (1) capable of melting the alloy first, the inside of the melting apparatus is a line of a magnetic dry shaft type . In addition, there is a tundish (2) for maintaining the temperature of the molten metal and the molten metal while flowing the molten molten metal at a constant speed, and inside the alumina (Alumina) or magnesia crucible (4), such as carbon (C) It prevents mixing. In addition, it is heated by LPG or LNG burner gas heating method to heat tundish and maintain temperature, and these gas atmosphere can prevent oxidation of molten metal by forming the area of gas atmosphere that prevents oxidation by exposing molten surface to the atmosphere. have.

이렇게 용용되어 턴디쉬에서 유지된 용탕은 마그네시아도가니(4) 하부의 세라믹 오리피스(5)를 통하여 일정한 두께의 용탕줄기로 분사노즐에 유입시키게 된다. 오리피스를 통하여 유입된 용탕은 가스분사노즐(3)을 통하여 극저온 액체질소가스로 분사되어 분말이 된다.The molten metal thus melted and maintained in the tundish is introduced into the spray nozzle through the ceramic orifice 5 under the magnesia crucible 4 with a molten stem of a constant thickness. The molten metal introduced through the orifice is injected into the cryogenic liquid nitrogen gas through the gas injection nozzle 3 into powder.

(18)은 가스분사가스인 액체질소 공급용 통이며, 이들 가스는 가스레귤레이터(16)와 압력게이지(17)을 통하여 분사노즐로 유입되게 된다.Numeral 18 denotes a liquid nitrogen supply cylinder that is a gas injection gas, and these gases are introduced into the injection nozzle through the gas regulator 16 and the pressure gauge 17.

위에서와 같이 제조된 분말은 분사챔버에서 비해하여 최종 응고되어 포집되게 되며, 챔버는 일정분위기가 유지될수 있도록 봉입(sealing)이 완벽해야하며 자체 냉각을 위하여 Water Jacket(6)이 설치되어야 한다.The powder prepared as described above is finally solidified and collected in comparison with the injection chamber, and the chamber must be completely sealed to maintain a constant atmosphere and a water jacket 6 must be installed for self cooling.

챔버 상단에는 압력게이지(7), 산소농도게이지(8), 온도계(9), 진공펌프(10)등이 설치되어 체버내의 산소농도, 온도 및 진공도를 측정하게 된다. 챔버하단에는 수집용기(11)가 설치되고, 중간부분에는 배기가스 배출구(12)가 설치되고, 싸이클론 하부에 2차 수집용기(13)가 설치된다.A pressure gauge 7, an oxygen concentration gauge 8, a thermometer 9, a vacuum pump 10, and the like are installed at the upper end of the chamber to measure oxygen concentration, temperature, and vacuum degree in the chamber. A collection vessel 11 is installed at the bottom of the chamber, an exhaust gas outlet 12 is installed at the middle portion, and a secondary collection vessel 13 is installed at the lower portion of the cyclone.

이상은 분말제조장치 전반에 대한 구성요소에 대하여 설명을 하였으며, 다음으로는 본 특허에서 중요한 구성요소가 되는 가스 냉각시스템에 관하여 설명하겠다.The above has been described with respect to the components for the overall powder manufacturing apparatus, next will be described with respect to the gas cooling system that is an important component in the present patent.

도 2의 초저온 냉각장치는 크게 가스냉각코일(22)와 공냉기화기(23), 팬히터(24)으로 구성되어지며, 가스냉각코일(22)은 2중 구조로 되어이지며 외부는 단열처리되었다. 액체질소 통(21)에서 나온 액체질소는 (30)에서와 같이 2중 구조로 되어있는 관을 통하여 냉각코일(22)로 유입되어 (31)의 관을 통하여공냉기화기(23)에서 액체질소가 기체가스로 기화되어 가스관(32), (33)을 지나 이중 구조로 되어있는 냉각코일(22)의 내부 관을 통하여 다시 가스냉각코일을 통과하게 된다. 이렇게 통과된 질소가스는 이중관 외부의 극저온(-195℃)의 액체질소에 의하여 초 저온 (-90 ∼ -130℃)으로 냉각된다.The cryogenic cooling apparatus of FIG. 2 is mainly composed of a gas cooling coil 22, an air cooler 23, and a fan heater 24, and the gas cooling coil 22 has a double structure, and the outside is insulated. The liquid nitrogen from the liquid nitrogen cylinder 21 is introduced into the cooling coil 22 through the double structured tube as in (30), and the liquid nitrogen in the air cooler 23 is passed through the tube of (31). The gas is passed through the gas cooling coil through the inner tube of the cooling coil 22 which is vaporized with gas gas and passes through the gas pipes 32 and 33 in a double structure. Nitrogen gas thus passed is cooled to ultra low temperature (-90 to -130 ° C) by cryogenic (-195 ° C) liquid nitrogen outside the double tube.

이렇게 초 냉각된 질소가는 다시 용탕을 냉각시키는 관과 쳄버내부를 냉각시킬 수 있는 관으로 분리되어 유입되게 된다. 각각의 가스는 가스조절 벨브(26), (27)을 거쳐 노즐에 유입되게 되는데, 쳄버내부의 온도를 줄이기 위한 가스는 직접 유입되지만 오리피스의 용탕을 부사하게 되는 가스는 너무 차가운 경우 오리피스에 문제가 있어 공냉코일(25)을 통하여 -25∼-40℃의 온도를 상승시켜 용탕에 분사하게 된다. 이때 냉각가스의 온도는 액상의 질소내부를 통과하는 시간·량에 의하여초 저온의 온도 조절이 가능하다.The ultra-cooled nitrogen gas is again introduced into the tube for cooling the molten metal and the tube for cooling the inside of the chamber. Each gas is introduced into the nozzle through the gas control valves 26 and 27. The gas to reduce the temperature inside the chamber is directly introduced, but the gas that sprays the orifice melt is too cold. It raises the temperature of -25-40 degreeC through the air cooling coil 25, and injects into a molten metal. At this time, the temperature of the cooling gas can be controlled at an ultra-low temperature by the amount of time passing through the inside of the liquid nitrogen.

이렇게 유입된 가스는 도 3의 가스분사노즐에 이르게된다. 먼저 극저온 질소가스는 노즐 하단부의 공간을 통하여 쳄버에 분사하게 되며, 공냉코일(25)를 거친 가스는 오리피스를 통하여 유입되는 용탕을 분사하게 된다.The gas thus introduced reaches the gas injection nozzle of FIG. 3. First, cryogenic nitrogen gas is injected into the chamber through the space of the lower end of the nozzle, the gas passed through the air cooling coil 25 is injected into the molten metal flowing through the orifice.

이때, 노즐에서 분사되는 가스와 노즐 밑에서 분사되는 가스에 의하여 오리피스(34) 바로 아래부분(점선으로 표시)에서는 초 냉각영역(37)이 형성되어 초 급속응고 효과를 얻을 수 있다.(도3)At this time, an ultra-cooling area 37 is formed in the portion just below the orifice 34 (indicated by the dashed line) by the gas injected from the nozzle and the gas injected from the nozzle to obtain a super rapid solidification effect (FIG. 3).

본 특허기술에서는 상기와 같이 극저온 냉각시스템을 거쳐 초저온 ( -90 ∼ -130℃)질소가스의 급속냉각에 의한 가스분무법을 사용하여 표면산화도 100ppM 이하, 편석등이 없는 균질한 성분의 고순도 분말제조가 가능하며, 10 ∼ 1000μm 의 다양한 입도의 구형분말을 제조할 수 있으며, 다품종 소량생산의 제조단가도 절감할 수 있는 특징이 있다.In this patent technology, a high-purity powder is produced using a gas spray method by rapid cooling of ultra-low temperature (-90 to -130 ° C) nitrogen gas through a cryogenic cooling system as described above using a homogeneous component having a surface oxidation degree of 100 ppm or less and no segregation. It is possible to manufacture a spherical powder of various particle sizes of 10 ~ 1000μm, there is a feature that can reduce the manufacturing cost of small quantity production of a variety of varieties.

< 실예 ><Example>

본 특허기술을 이용하여 Austenite계의 316L 합금 및 Ni기지 합금, Co기지에 응용한 결과는 아래와 같다. 먼저 모합금을 고주파 유도로 상부를 불활성 질소가스 분위기로 하여 Cr 등의 용질의 산화를 방지하면서 융융한 후 용융금속을 턴디쉬 도가니에 출탕 주입한다. 이때 턴디쉬 도가니의 상부에 LPG & LNG 등의 환원성 불꽃으로 용탕의 산화를 방지하였다. 턴디쉬의 도가니와 오리피스를 통하여 유입된 용탕줄기는 본 특허기술에서 개발된 극저온 냉각장치를 통하여 냉각된 극저온 냉각가스의 분사에 의하여 분말을 제조하였다. 분말제조 쳄버내의 온도 상승을 방지하기위하여 초 저온 질소가스를 오리피스 하단부에 공급하여 냉각효과를 상승시켜서 급속응고된 분말을 제조 할 수 있었다.The results of applying this patented technology to Austenite-based 316L alloys, Ni-based alloys, and Co-bases are as follows. First, the mother alloy is melted while the upper portion of the master alloy is inert nitrogen gas atmosphere to prevent oxidation of solutes such as Cr, and then molten metal is poured into a tundish crucible. At this time, the oxidation of the molten metal was prevented by a reducing flame such as LPG & LNG on the top of the tundish crucible. The molten stem introduced through the crucible and the orifice of the tundish was prepared by the injection of the cryogenic cooling gas cooled through the cryogenic cooling apparatus developed in the present patent technology. In order to prevent the temperature rise in the powder manufacturing chamber, ultra-low temperature nitrogen gas was supplied to the lower end of the orifice to increase the cooling effect, thereby preparing a rapidly solidified powder.

이때 챔버 내부의 산소함량은 200 PPM 이내로 유지되어야 하며, 분사 질소가스와 충동한 분말은 - 130℃의 초저온 질소냉각가스에 의하여 급속히 냉각, 챔버 내부에서 낙하, 수집용기에 포집된다. 배기가스와 함께 유출된 미세분말은 싸이클론의 2차 수집용기에 포집되어 진다.At this time, the oxygen content in the chamber should be maintained within 200 PPM, and the injected nitrogen gas and the impulse powder are rapidly cooled by the ultra-low temperature nitrogen cooling gas of -130 ° C, and are dropped in the chamber and collected in the collecting container. The fine powder with the exhaust gas is collected in the cyclone secondary collection vessel.

상기와 같이 제조된 고합금(스테인레스강, Co기지 합금, Ni기지 합금) 분말은 10 ∼ 1000μm 크기로, 조성이 균일하고 표면산화도 100 PPM의 고순도 분말을 얻을 수 있다.The high alloy (stainless steel, Co base alloy, Ni base alloy) powder prepared as described above has a size of 10 to 1000 μm, and a high purity powder having a uniform composition and a surface oxidation degree of 100 PPM can be obtained.

이상에서 설명한바와 같이 새로운 가스 냉각방법으로 초저온 ( -90 ∼ -130℃ ) 의 질소가스를 이용한 가스분무법으로 고합금 분말을 제조하여 표면산화도 100PPM 이하의 조성이 균일한 10 - 1000 μm 입도의 다품종 스테인레스 구상분말( Flow rate 50 이상, Apprent density 5g/sec : -150 mesh )을 제조비용이 저렴하고, 산화도가 적고, 급속응고에 의하여 조직이 미세하며, 화학조성이 균일한 고합금 분말을 제조할 수 있었다.As described above, high alloy powder is manufactured by gas spraying method using nitrogen gas of ultra low temperature (-90 ~ -130 ℃) by a new gas cooling method, and has a uniform composition of 10-1000 μm particle size with surface oxidation degree of 100PPM or less Stainless steel spherical powder (flow rate over 50, Apprent density 5g / sec: -150 mesh) is manufactured with high alloy powder with low cost, low oxidation rate, fine structure by chemical solidification and uniform chemical composition Could.

상기에서는 본 발명의 바람직한 실시의 예를 참조하여 설명하였지만 해당기술분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (2)

액체질소를 2중 관으로 형성된 냉각코일(22)장치를 통하여 냉각 가스로 만드는 방법과 이렇게 냉각된 가스를 기화시키는 공랭식 기화기(23)를 통하여 다시 냉각코일을 거쳐 초저온으로 냉각되는 각각의 장치.Each method of making liquid nitrogen into a cooling gas through a cooling coil (22) device formed of a double tube and an air cooling vaporizer (23) for vaporizing the gas thus cooled, and then again cooled to cryogenic temperature through the cooling coil. 챔버 내를 일부 진공+질소분위기를 한 후, 초저온(-90∼-130℃) 질소가스 냉각 매체를 이용해서 오리피스를 통해서 나오는 용탕에 분사 충돌시켜서 입자크기 10∼1000㎛ 표면산화가 없는 산소함량 100ppm 이하의 고합금(스테인레스강, Co기지 합금, Ni기지 합금) 분말을 제조하는 방법.Particular vacuum + nitrogen atmosphere in the chamber, then spray impingement on the molten metal exiting through the orifice using an ultra-low temperature (-90 ~ -130 ℃) nitrogen gas cooling medium, the particle size of 10 ~ 1000㎛ oxygen content without surface oxidation 100ppm The method of manufacturing the following high alloy (stainless steel, Co base alloy, Ni base alloy) powder.
KR1020020000474A 2002-01-04 2002-01-04 A method of producing the alloy powder by super low temperature cooling system KR20030059730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020000474A KR20030059730A (en) 2002-01-04 2002-01-04 A method of producing the alloy powder by super low temperature cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020000474A KR20030059730A (en) 2002-01-04 2002-01-04 A method of producing the alloy powder by super low temperature cooling system

Publications (1)

Publication Number Publication Date
KR20030059730A true KR20030059730A (en) 2003-07-10

Family

ID=32216981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020000474A KR20030059730A (en) 2002-01-04 2002-01-04 A method of producing the alloy powder by super low temperature cooling system

Country Status (1)

Country Link
KR (1) KR20030059730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210620A (en) * 2021-05-16 2021-08-06 江苏萌达新材料科技有限公司 Preparation method and equipment of superfine low-oxygen tin powder
KR102409670B1 (en) * 2021-03-25 2022-06-17 (주)월드신소재 Non-magnetic stainless steel 304 powder manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409670B1 (en) * 2021-03-25 2022-06-17 (주)월드신소재 Non-magnetic stainless steel 304 powder manufacturing method
CN113210620A (en) * 2021-05-16 2021-08-06 江苏萌达新材料科技有限公司 Preparation method and equipment of superfine low-oxygen tin powder

Similar Documents

Publication Publication Date Title
US4652305A (en) Preparation of iron powder
CN110181069A (en) Using the method for gas atomization preparation high nitrogen powdered steel
Miura et al. Preparation of Fe-based monodisperse spherical particles with fully glassy phase
JPS583471B2 (en) Method and apparatus for casting molded parts from refractory composite materials
CN103894617A (en) Metal powder atomization device and method for the device to prepare FeCoTaZr alloy powder
CN103143698B (en) Flowability testing method and device for zirconium base block amorphous alloy melt
JPH01100211A (en) Method and apparatus for producing powder from molten substance
US5101636A (en) Cryogen delivery apparatus and method for regulating the cooling potential of a flowing cryogen
Bewlay et al. The relationship between thermal history and microstructure in spray-deposited tin-lead alloys
KR20030059730A (en) A method of producing the alloy powder by super low temperature cooling system
CN101450377B (en) Device for manufacture porous material
Rasooli et al. Kinetics and mechanism of titanium hydride powder and aluminum melt reaction
CN1052908A (en) Make the method on efficient heat transfer surface and the surface of manufacturing
JPS5871306A (en) Production of powder
CN102219180B (en) Method for synthesizing one-dimensional inorganic nano cone structure material by pressure control in VLS process
AU596478B2 (en) Process for manufacturing glass objects
CN110453155A (en) A kind of spherical ferrozirconium eutectic superalloy and preparation method thereof
CN109182878A (en) A kind of preparation method of pre-alloyed high-entropy alloy porous material
US5255525A (en) System and method for atomization of liquid metal
TWM632164U (en) Metal vapor nucleation device for use in preparing ultrafine powder material with physical vapor deposition
Krasnov et al. Characteristic features of the vaporization mechanism in the crucible-free production of aerosol particles
US5482744A (en) Production of heat transfer element
CN103436753B (en) The alterant of silumin alloy melt and utilize the silumin preparation method of this alterant
Del Rio et al. Laboratory-scale gas atomizer for the manufacturing of metallic powders
KR20020096491A (en) METHOD OF PRODUCING THERMOELECTIRCALLY TRANSFORMED MATERIALS Bi2Te3 SERIES USING RAPID COOLING AND HOT FORGING PROCESS

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination