KR20030055521A - Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface - Google Patents

Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface Download PDF

Info

Publication number
KR20030055521A
KR20030055521A KR1020010085536A KR20010085536A KR20030055521A KR 20030055521 A KR20030055521 A KR 20030055521A KR 1020010085536 A KR1020010085536 A KR 1020010085536A KR 20010085536 A KR20010085536 A KR 20010085536A KR 20030055521 A KR20030055521 A KR 20030055521A
Authority
KR
South Korea
Prior art keywords
silicon
billet
wire rod
layer
decarburization
Prior art date
Application number
KR1020010085536A
Other languages
Korean (ko)
Other versions
KR100544754B1 (en
Inventor
최해창
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010085536A priority Critical patent/KR100544754B1/en
Publication of KR20030055521A publication Critical patent/KR20030055521A/en
Application granted granted Critical
Publication of KR100544754B1 publication Critical patent/KR100544754B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

PURPOSE: A method for manufacturing high Si added high carbon wire rod for bolt by forming decarburized ferritic layer is provided. CONSTITUTION: The method includes the steps of heating a steel bloom comprising C 0.65 to 1.50 wt.%, Si 2.0 to 4.0 wt.%, Mn 0.1 to 0.8 wt.%, 0.01 wt.% or less of P and S, N 0.002 to 0.01 wt.%, 0.002 wt.% or less of O, one or more than two elements selected from the group consisting of Ni 0.3 to 2.0 wt.%, B 0.001 to 0.003 wt.%, V 0.01 to 0.5 wt.%, Nb 0.01 to 0.5 wt.%, Mo 0.01 to 0.5 wt.%, Ti 0.01 to 0.2 wt.%, W 0.01 to 0.5 wt.% and Cu 0.01 to 0.2 wt.%, a balance of Fe and incidental impurities at 1260±30°C for 100±20 min; hot rolling the steel bloom, wherein ferrite decarburized layer is formed on the surface of the steel billet; heating the steel billet to 1100±50°C at a rate of greater than 10°C/min; holding the steel billet at 1100±50°C for 45±15 min; and hot rolling the steel billet into wire rod.

Description

표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의 제조방법{Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface}Method for producing high silicon wire rod with low silicon decarburization depth {Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface}

본 발명은 볼트 등으로 가공되어 사용되는 선재의 제조방법에 관한 것으로, 보다 상세하게는 냉간성형성 개선 목적으로 흑연화처리가 가능한 강에서, 빌레트의 표면에 탄소고용도가 낮은 페라이트층을 형성하여 실리콘 첨가량이 높음에 따라 발생하는 표면탈탄층을 저감할 수 있는 선재의 제조방법을 제공함에 있다.The present invention relates to a method for manufacturing a wire rod that is processed by bolts and the like, and more particularly, in the steel that can be graphitized for the purpose of improving cold formability, by forming a ferrite layer having a low carbon utilization on the surface of a billet. It is to provide a method for producing a wire rod that can reduce the surface decarburization layer generated by the high amount of silicon added.

선재는 일정형상으로 가공되어 다양한 기계부품류에 이용되는데, 그 예로는 볼트, 너트, 스프링 등이 있다. 이러한 기계부품류의 경량화와 고성능화를 위해 선재의 고강도화에 대한 요구는 계속 높아지고 있다. 고강도 소재는 일정하중이 지속적으로 가해지면 수소에 의해 균열이 진전되는 '지연파괴'가 발생할 수 있다.Wire rod is processed to a certain shape and used for various mechanical parts, for example, bolts, nuts, springs and the like. In order to reduce the weight and performance of such mechanical parts, demand for increasing the strength of wire rods continues to increase. High-strength materials can cause 'delayed breakdown', in which cracks are advanced by hydrogen under constant load.

일례로, 볼트는 지연파괴저항성이 열화되는 문제점으로 현재, 인장강도130kg/mm2급이상 사용하는 것이 불가능하여 그 사용용도 및 범위가 제한되고 있는 실정이다. 지연파괴저항성이 우수하면서 고강도화가 가능한 볼트용 강을 개발할 경우 기대되는 잇점은 다음과 같다. 즉, 강구조물 측면에서 볼트체결은 용접 접합에 비해 숙련된 기술이 요구되지 않고 취약한 용접부를 대체하는 잇점 등을 고려할 때, 첫째, 볼트체결력 강화에 따른 강구조물의 안정성을 높일 수 있으며 둘째, 볼트체결 갯수의 감소에 의해 강재 사용량을 줄일 수 있다. 또한, 자동차 부품 측면에서는 셋째, 부품의 경량화에 기여하며 넷째, 부품 경량화에 따른 자동차 조립장치의 설계 다양화 및 컴팩트화(compact)가 가능한 잇점이 있다. 따라서, 소재의 지연파괴저항성의 저하없이 고강도화를 달성할 수 있다면, 사용상의 잇점과 산업계에 미치는 영향을 고려할 때 그 파급도는 상당히 클 것으로 예견되고 있다.For example, the bolt is a problem that the delayed fracture resistance is deteriorated, it is currently impossible to use more than 130kg / mm 2 grade tensile strength is the situation that its use and range is limited. The followings are the benefits of developing bolt steel with excellent delayed fracture resistance and high strength. That is, in terms of steel structure, bolt fastening does not require skilled skills compared to welding joint, and considering the advantages of replacing weak welds. By reducing the amount of steel used can be reduced. In addition, in terms of automobile parts, third, it contributes to the lightening of parts. Fourth, there is an advantage that the design diversification and compactness of the automobile assembly apparatus according to the lighter parts are possible. Therefore, if the high strength can be achieved without deteriorating the delayed fracture resistance of the material, the spreading degree is expected to be considerably large considering the advantages in use and the effect on the industry.

고강도 소재의 지연파괴저항성은 결정입계에 석출분포하고 있는 석출물이 수소의 트랩 사이트(trapped site)로 작용하여 입계의 강도를 열화시키기 때문에 저하되는 것으로 알려져 있으며, 고강도화를 달성하기 위해서는 열처리후 결정입계에 분포하게 되는 Fe계 석출물들의 분포를 최대한으로 억제시키는 것이 가장 중요하다.The delayed fracture resistance of high-strength materials is known to be lowered because the precipitates distributed at grain boundaries act as trapped sites of hydrogen and degrade the strength of grain boundaries. It is most important to suppress the distribution of Fe-based precipitates to be distributed to the maximum.

또한, 다양한 볼트의 형상은 통상 냉간성형으로 제조되는데 고강도 소재의 경우 냉간성형전 소재강도가 높아 반드시 소재 연화열처리가 필요하며 냉간성형전인장강도 60kg/mm2이하로 확보하는 것이 바람직하다. 이는 냉간성형시 다이스 마모율 증가를 최대한으로 억제하기 위한 것이다. 국내 강구조 체결용 볼트는 현재 인장강도 인장강도 60kg/mm2이하에서 볼트 냉간성형이 가능한 실정이다. 따라서 고강도 볼트소재를 사용하기 이해서는 우수한 지연파괴저항성 뿐만아니라 볼트제조시 요구되어지는 냉간성형성을 동시에 확보하여야 한다.In addition, the shape of the various bolts are usually manufactured by cold forming, high-strength material is required to soften the material heat treatment before the cold molding high strength, it is desirable to secure the cold-molding tensile strength of 60kg / mm 2 or less. This is to suppress the increase of the die wear rate during cold forming to the maximum. Domestic steel structure fastening bolts are currently capable of cold forming bolts under tensile strength of 60kg / mm 2 or less. Therefore, in order to use high-strength bolt material, it is necessary to secure not only excellent delayed fracture resistance but also cold forming required for bolt manufacturing.

본 발명자는 고강도 볼트를 냉간성형함에 있어 흑연화조직을 이용할 경우 기존 구상화 열처리 방법 대비 소재 인장강도 또는 표면경도를 합금원소 첨가 유무에 관계없이 우수한 냉간성형성을 확보할 수 있다는 것과 지연파괴저항성을 개선하기 위해 결정립에 Fe계 석출물의 석출 가능성이 전혀 없는 미세 복합조직을 갖는 고실리콘 첨가 중탄소로 조성되는 강을 개발하였다In cold forming high strength bolts, the present inventors can secure excellent cold formability in terms of material tensile strength or surface hardness with or without addition of alloying elements when using graphitized structure and improve delay fracture resistance. In order to develop a steel made of high-silicon-added heavy carbon, which has a fine composite structure with no possibility of precipitation of Fe-based precipitates in grains,

그러나, 고실리콘 첨가 고탄소강에서 실리콘강을 선재로 제조할때 선재압연공정에서 재가열시 실리콘이 소재내의 탄소의 활동도를 증가시키면서 탄소의 확산계수를 감소시키는데 영향을 크게 미친다. 이로 인해 선재압연공정에서 재가열시 탄소의 활동도 증가로 표면에서는 탈탄속도가 증가하고, 반대로 중심부에서는 확산계수의 감소로 표면으로 탄소공급이 원활치 않아 표면에서의 탄소농도 구배심화를 조장하게 된다. 표면에서 탈탄층의 깊이가 깊어질수록 볼트에서는 체결력은 떨어지고 스프링에서는 피로특성이 열악해진다. 이와 같이, 고실리콘 첨가강의 표면탈탄은 저실리콘 첨가강 대비 표면 탈탄속도가 매우 빠르기 때문인 것은 잘 알려진 사실이다. 그래서, 고실리콘 첨가강 선재를 제조할 경우, 소재의 탈탄제어가 적절하지 못할 경우 사용상의 많은 문제점이 발생할 수 있다.However, when silicon steel is manufactured from high-silicon-added high carbon steel as a wire, when reheating in the wire rolling process, silicon increases the activity of carbon in the material and greatly reduces the diffusion coefficient of carbon. As a result, the carbon deactivation rate increases at the surface due to the increase of carbon activity during reheating in the wire rod rolling process. On the contrary, the carbon supply is not smoothly supplied to the surface due to the reduction of the diffusion coefficient at the center, thereby promoting the concentration of carbon at the surface. As the depth of the decarburized layer deepens on the surface, the tightening force decreases in the bolt and the fatigue property in the spring becomes poor. As such, it is well known that the surface decarburization of the high silicon-added steel is because the surface decarburization rate is much faster than that of the low silicon-added steel. Thus, when manufacturing a high silicon-added steel wire, many problems in use may occur when the decarburization control of the material is not appropriate.

지금까지 알려진 탈탄제어방법의 대표적인 예로는 대한민국 특허공보 92-24974호, 92-24163호, 92-24161호, 일본 특허공보 (평)2-301514호, (평)1-31960, (소)63-216591호 등이 있다. 이들은 대부부은 실리콘의 함량을 낮추거나 납, 주석 등의 합금원소를 첨가하는 방법에 의해서 탈탄을 제어하는 방법이다. 그러나, 고강도화를 위해 고실리콘 첨가가 불가피한 강종에서 실리콘 함량을 낮출수는 없으며, 또한, 납, 주석 등의 합금원소를 첨가하게 되면 충격인성 등의 기계적성질이 열악해지는 문제가 있다.Representative examples of decarburization control methods known so far include Korean Patent Nos. 92-24974, 92-24163, 92-24161, Japanese Patent Publications (Pyeong) 2-301514, (Pyeong) 1-31960, (Small) 63 And -216591. These are methods of controlling decarburization by lowering the content of silicon, or adding alloying elements such as lead and tin. However, it is not possible to lower the silicon content in steel grades in which high silicon addition is inevitable for high strength, and when alloying elements such as lead and tin are added, mechanical properties such as impact toughness become poor.

본 발명은 냉간성형성 개선 목적으로 흑연화처리가 가능한 고실리콘 첨가 고탄소강의 선재가열공정에서 표면에 탈탄층이 발생을 방지하기 위한 연구과정에서 안출된 것으로, 선재가열전의 빌레트의 표면에 탄소고용도가 낮은 페라이트 탈탄층을 형성하여 이 페라이트층을 산화시켜 빌레트 표면의 탈탄속도를 현저하게 줄임으로써 표면탈탄층의 두께를 저감할 수 있는 선재의 제조방법을 제공함에 있다.The present invention was devised in the course of research for preventing decarburization layer on the surface in the wire heating process of high-silicon-added high carbon steel which can be graphitized for the purpose of improving the cold forming property, and the carbon on the surface of the billet before the wire heating. The present invention provides a method for producing a wire rod that can reduce the thickness of the surface decarburization layer by forming a ferrite decarburization layer having a low solubility and oxidizing the ferrite layer to significantly reduce the decarburization speed of the billet surface.

상기 목적을 달성하기 위한 본 발명의 선재제조방법은, 중량%로, 탄소:0.65-1.50%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 인 및 황 0.01% 이하, 질소 0.002-0.01%, 산소 0.002% 이하를 함유하고, 여기에 니켈 0.3-2.0%, 보론 0.001-0.003%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%의 그룹중에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되는 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하고 강편압연하여 표면에 페라이트 탈탄층이 형성된 빌레트를 얻고, 이 빌레트를 평균 10℃/분 이상의 가열속도로 1100±50℃의 가열온도로 승온하여 45±15분간 유지하고 선재압연하는 것이다.Wire rod manufacturing method of the present invention for achieving the above object, in weight%, carbon: 0.65-1.50%, silicon 2.0-4.0%, manganese 0.1-0.8%, phosphorus and sulfur 0.01% or less, nitrogen 0.002-0.01%, Oxygen 0.002% or less, including nickel 0.3-2.0%, boron 0.001-0.003%, vanadium: 0.01-0.5%, niobium: 0.01-0.5%, molybdenum 0.01-0.5%, titanium 0.01-0.2%, tungsten 0.01 Bloom, composed of one or two or more selected from the group of -0.5%, 0.01-0.2% copper, and the remaining Fe and other impurities, is reheated and rolled into a range of 100 ± 20 minutes in the range of 1260 ± 30 ℃ A billet on which a ferrite decarburized layer was formed was obtained, and the billet was heated to a heating temperature of 1100 ± 50 ° C. at a heating rate of 10 ° C./min or more, maintained for 45 ± 15 minutes and rolled.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자는 고실리콘 첨가 고탄소 볼트용강 선재의 탈탄저감을 위해 다각도로 연구한 결과, 고실리콘 첨가 고탄소강의 선재가열공정전에 빌레트(billet)의 표면에 페라이트 층을 균일하게 분포시키면, 초기 빌레트 표면에 분포하는 표면 페라이트층이 매우 낮은 탄소 고용도를 갖는 이유로 페라이트층 내를 통과하는 탄소원자의 확산이 매우 늦어지기 때문에 선재가열로 가열중 빌레트 표면의 탈탄속도를 현저하게 감소시킬 수 있다는 사실을 알게 되었다. 또한, 이러한 페라이트층은 빌레트 가열시 산화되어(scale out) 점점 감소됨으로서 선재가열로 추출시 빌레트 표면의 탈탄층을 현저하게 개선할 수 있다는 결과를 얻고 본 발명을 완성하게 된 것이다. 이러한 본 발명의 대상이 되는 고실리콘 첨가 고탄소강에 대해서 먼저 설명한 다음, 이 강의 탈탄을 제어하면서 선재로 제조하는 방법을 설명한다.The present inventors conducted a multi-angle study to reduce the decarburization of high-silicon-added high carbon bolted steel wires. Because the surface ferrite layer distributed at, has a very low carbon solubility, diffusion of carbon atoms through the ferrite layer is very slow, which leads to a significant reduction in the decarburization rate of the billet surface during heating. . In addition, the ferrite layer is oxidized (scale out) during the heating of the billet and is gradually reduced, thereby obtaining a result of remarkably improving the decarburized layer on the surface of the billet when extracted by wire heating, thereby completing the present invention. The high silicon-added high carbon steel which is the object of the present invention will be described first, and then a method of manufacturing the wire while controlling the decarburization of the steel will be described.

[고실리콘 첨가 고탄소강 조성][High-silicon-added high carbon steel composition]

·탄소(C):0.65-1.50%Carbon (C): 0.65-1.50%

탄소의 함량이 0.65%미만에서는 페라이트+베이나이트 복합조직강 제조를 위한 열처리후 복합조직내에 적정한 잔류 오스테나이트양, 형상 및 크기를 얻기가 곤란하고 또한, 기계적, 열적 안정성과 고강도 볼트용강으로서의 충분한 인장강도와 항복강도를 확보하기 어렵기 때문이다. 또한, 탄소의 함량이 1.50% 보다 많아지면 열처리후 단면감소율, 연신율과 충격인성 등의 특성이 저하되고, 선재제조시 편석 및 표면흠이 발생하며, 가열로 장입시 표면탈탄이 심화되고, 볼트 체결시 영구변형성 및 정적 피로특성이 열화하며, 미세복합 조직의 적절한 형상과 크기 그리고, 지연파괴저항성에 유효한 복합조직을 확보하기 위한 변태 소요시간이 길어지며, 잔류 오스테나이트내의 탄소농도 및 계면농도구배 등에 좋지 않은 영향을 미치기 때문이다.If the carbon content is less than 0.65%, it is difficult to obtain an adequate amount of retained austenite, shape and size in the composite structure after heat treatment for the production of ferritic + bainite composite steel, and it is mechanically, thermally stable and has sufficient tensile strength as a high strength bolt steel. This is because it is difficult to secure strength and yield strength. In addition, when the carbon content is more than 1.50%, characteristics such as cross-sectional reduction rate, elongation rate and impact toughness decrease after heat treatment, segregation and surface flaws occur during wire rod manufacturing, and surface decarburization deepens when charging furnace, and bolts are fastened. Permanent deformation and static fatigue characteristics deteriorate at the same time, the proper shape and size of microcomposite tissues, the transformation time required to secure a composite structure effective in delayed fracture resistance, the carbon concentration in the retained austenite, and the interfacial concentration tool Because it has a bad effect.

·실리콘(Si):2.0-4.0%Silicon (Si): 2.0-4.0%

실리콘이 2.0%미만에서는 냉간성형성 개선을 위한 흑연화 열처리시간이 길어지는 단점이 있으며, 미세조직의 기계적, 열적 안정성이 저하되어 지연파괴저항성에 유효한 복합조직과 적정 상분율을 확보하기 어려우며 또한, 페라이트의 고용강화 효과가 미흡하여 강도확보에 어려움이 있고, 또한 지연파괴저항성, 표면 부식특성, 충격인성, 볼트 체결시 영구변형성 등에 영향을 미치고, 또한 선재 탈탄제어를 위한 선재가열로내에서의 표면 페라이트 탈탄층의 균일성 및 적정두께를 확보하기가 어려워 탈탄이 심화되고, 선재냉각시 소입성 증가로 표면 스케일 특성의 제어가 어려운 단점이 있기 때문이다. 실리콘이 4.0%를 초과하는 경우에는 상기 언급한 효과가 포화되고 소입성, 복합조직강의 구성, 충격인성, 피로특성 등에 좋지 않은 영향을 미치며, 선재제조를 위한 부룸(bloom) 또는 빌레트(billet)제조시 실리콘 편석에 의한 미세조직의 불균질화를 초래하여 최종 제품에서의 품질특성이 저하되기 때문이며, 또한 열처리시 표면 페라이트층의 두께가 증가하여 균질 표면 탈탄제어가 어렵기 때문이다. 본 발명에서의 보다 바람직한 실리콘 성분범위는 2.8-3.3%로, 베이나이트조직(페라이트+잔류 오스테나이트)을 제조하기 위한 등온 열처리시간 및 잔류 오스테나이트 분율 및 크기, 형상, 페라이트+잔류 오스테나이트 복합조직의 고강도화 및 고인성화, 지연파괴저항성(확산성 수소량, 입계석출물의 석출제어), 표면 탈탄, 볼트체결후 응력이완성(stress relaxation) 또는 영구변형저항성, 동적 및 정적 피로특성등을 고려하여 매우 효과적으로 개선할 수 있기 때문이다.If the silicon is less than 2.0%, the graphitization heat treatment time for improving the cold forming property is long, and the mechanical and thermal stability of the microstructure is degraded, so that it is difficult to secure a complex structure and an appropriate phase ratio effective for the delayed fracture resistance. Insufficient solid-solution strengthening effect of ferrite makes it difficult to secure strength, and also affects delayed fracture resistance, surface corrosion characteristics, impact toughness, permanent deformation during bolting, and the surface of wire furnace for wire decarburization control. This is because it is difficult to secure uniformity and proper thickness of the ferrite decarburization layer, so that decarburization is intensified, and it is difficult to control surface scale characteristics due to an increase in hardenability during wire cooling. If the silicon exceeds 4.0%, the above-mentioned effect is saturated and adversely affects the hardenability, the composition of the composite tissue steel, the impact toughness, the fatigue characteristics, and the production of bloom or billet for wire rod manufacturing. This is because the quality characteristics in the final product are deteriorated due to the inhomogeneity of the microstructure due to the segregation of silicon at the same time, and it is difficult to control the homogeneous surface decarburization because the thickness of the surface ferrite layer increases during heat treatment. More preferred silicon component range in the present invention is 2.8-3.3%, isothermal heat treatment time and residual austenite fraction and size, shape, ferrite + residual austenite composite structure for producing bainite structure (ferrite + residual austenite) Strength, high toughness, delayed fracture resistance (diffuse hydrogen content, precipitation control of grain boundary precipitates), surface decarburization, stress relaxation or permanent deformation resistance after bolting, and dynamic and static fatigue characteristics This can be effectively improved.

·망간(Mn):0.1~0.8%Manganese (Mn): 0.1% to 0.8%

망간(Mn)은 기지조직내에 치환형 고형체를 형성하여 고용강화하는 원소로 고장력볼트 특성에 매우 용용하므로 그 함량은 모재의 강도, 열처리시 소입성, 응력이완성, 편석대 생성에 따른 유해한 영향 등을 고려하여 0.1-0.8%로 하는 것이 바람직하다. 이는 망간의 함량이 0.8%를 초과할 경우 고용강화 효과보다는 주조시 망간편석으로 인한 국부소입성이 증대하고 편석대의 형성으로 조직이방성이 심화되어 조직이 불균질하게 되어 볼트 특성에 더 유해한 영향을 미치기 때문이다.Manganese (Mn) is an element that forms a solid solution to form a solid to form a solid solution, and is very soluble in high-strength bolt characteristics. Therefore, its content is detrimental to the strength of the base metal, hardenability during heat treatment, stress relaxation, and segregation. It is preferable to set it as 0.1-0.8% in consideration of these. If the content of manganese exceeds 0.8%, local quenchability due to manganese segregation is increased rather than solid solution strengthening effect. Because it is crazy.

·인(P) 및 황(S): 각각 0.01%이하Phosphorus (P) and sulfur (S): 0.01% or less each

인은 결정입계에 편석되어 인성을 저하시키므로 그상한을 0.01%로 제한하는 것이며, 황은 저융점 원소로 입계 편석되어 인성을 저하시키고 유화물을 형성시켜 지연파괴저항성 및 응력이완특성에 유해한 영향을 미치므로 그상한을 0.01%로 제한하는 것이다.Phosphorus segregates at grain boundaries and degrades its toughness, limiting its upper limit to 0.01%. Sulfur is a low melting point element that segregates grain boundaries to reduce toughness and form an emulsion, which has a detrimental effect on delayed fracture resistance and stress relaxation characteristics. The upper limit is limited to 0.01%.

·질소(N):0.002-0.01%Nitrogen (N): 0.002-0.01%

질소의 함량이 0.002%미만에서는 비확산성 수소 트랩 사이트로 작용하는 바나듐 및 니요븀계 질화물의 형성이 어렵기 때문이며, 0.01%를 초과하는 경우에는 그 효과가 포화되기 때문이다.This is because when the nitrogen content is less than 0.002%, it is difficult to form vanadium and niobium-based nitrides that act as non-diffusion hydrogen trap sites, and when the content exceeds 0.01%, the effect is saturated.

·산소(O):0.0020%이하Oxygen (O): 0.0020% or less

산소의 함량이 0.0020%를 초과하면 조대한 산화물계 비금속개재물이 용이하게 형성되어 피로수명이 저하되기 때문이다.This is because when the content of oxygen exceeds 0.0020%, coarse oxide-based nonmetallic inclusions are easily formed and fatigue life is reduced.

상기와 같은 조성에, 니켈 0.3-2.0%, 보론 0.001-0.003%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%의 그룹에서 선택된 1종 또는 2종이상을 첨가한다.In the above composition, nickel 0.3-2.0%, boron 0.001-0.003%, vanadium: 0.01-0.5%, niobium: 0.01-0.5%, molybdenum 0.01-0.5%, titanium 0.01-0.2%, tungsten 0.01-0.5%, One or more selected from the group of 0.01-0.2% copper is added.

·바나듐(V) 또는 니요븀(Nb):각각 0.01~0.5%Vanadium (V) or niobium (Nb): 0.01 to 0.5% each

바나듐(V) 또는 니요븀(Nb)은 지연파괴저항성 및 응력이완성 개선원소이다. 이들의 함량이 0.01%미만에서는 모재내 바나듐 또는 니요븀계 석출물들의 분포가 적어짐에 따라 비확산성 수소 트랩사이트(trap site)로의 역할이 미흡하여 지연파괴저항성 개선효과를 기대하기 어려우며, 또한 석출강화를 기대하기 어려워 응력이완저항성에 대한 개선효과가 충분하지 못하며, 오스테나이트 결정립 미세화를 기대하기 어려워 페라이트+잔류 오스테나이트 복합조직의 구성시 조직 미세화에 영향을 미치기 때문이다. 또한, 0.5%를 초과하면 흑연화열처리 시간이 길어지는 단점이 있으며 V 또는 Nb계 석출물들에 의한 지연파괴저항성 및 응력이완저항성에 대한 개선 효과가 포화하고 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물양이 증가하여 비금속 개재물과 같은 작용을 하므로 피로특성의 저하를 초래하기 때문이다.Vanadium (V) or niobium (Nb) is an element that improves delayed fracture resistance and stress relaxation. If the content is less than 0.01%, the distribution of vanadium or niobium-based precipitates in the base material decreases, and thus the role of the non-diffusible hydrogen trap site is insufficient. Therefore, it is difficult to expect the effect of improving the delayed fracture resistance and the precipitation strengthening is expected. This is because it is difficult to improve the stress relaxation resistance is not sufficient, and it is difficult to expect attenuation of austenite grains, which affects the microstructure of the ferrite + residual austenite composite. In addition, if it exceeds 0.5%, the graphitization heat treatment time is long, and the improvement effect on delayed fracture resistance and stress relaxation resistance by V or Nb-based precipitates is saturated and coarse that is not dissolved in the base material during austenite heat treatment. This is because the amount of alloy carbide increases and acts like a non-metallic inclusion, leading to a decrease in fatigue properties.

·니켈(Ni):0.3~2.0%Nickel (Ni): 0.3 to 2.0%

니켈(Ni)은 흑연화 촉진원소이며, 열처리시 표면에 니켈 농화층을 형성하여 외부수소의 투과(permeation)를 억제하여 지연파괴저항성을 개선하는 원소이다. 니켈의 함량이 0.3%미만에서는 표면농화층 형성이 불완전하여 지연파괴저항성의 개선효과를 기대하기 어려우며, 또한 탈탄제어, 인성 및 냉간성형성 향상을 위한 구상화 또는 흑연화처리시 열처리시간이 길어지며, 볼트성형시의 냉간성형성의 개선효과가 없기 때문이다. 2.0%를 초과하는 경우에는 그 효과가 포화되고 잔류 오스테나이트량의 적정한 양, 크기 및 형상 등에 부정적인 영향을 미치기 때문이다.Nickel (Ni) is an element for promoting graphitization and is an element that improves delayed fracture resistance by forming a nickel enriched layer on the surface during heat treatment to suppress permeation of external hydrogen. If the nickel content is less than 0.3%, the formation of the surface thickening layer is incomplete, so it is difficult to expect the effect of improving the delayed fracture resistance, and the heat treatment time is increased during the spheroidization or graphitization treatment to improve the decarburization control, toughness and cold forming. This is because there is no improvement effect of cold forming during bolt forming. If it exceeds 2.0%, the effect is saturated and negatively affects the appropriate amount, size and shape of the amount of retained austenite.

·보론(붕소,B):0.001~0.003%Boron (B, B): 0.001% to 0.003%

붕소(보론,B)는 본 발명에서 흑연화 촉진원소이며 또한 소입성 및 지연파괴저항성 개선을 위한 입계강화원소로, 그 함량은 0.0010∼0.003%로 하는 것이 바람직하다. 붕소의 함량이 0.0010%미만에서는 열처리시 보론원자들의 입계편석에 의한 입계강화에 따른 입계강도 개선효과가 미흡하고, 또한 냉간성형성 개선을 위한 흑연화 처리시 흑연화 촉진 효과가 미흡하기 때문이다. 붕소의 함량이 0.003%를 초과할 경우에는 그 효과가 포화되고 오히려 입계에 보론계 질화물의 석출로 입계강도의 저하를 초래하기 때문이다.Boron (boron, B) is a graphitization promoting element in the present invention and is a grain boundary strengthening element for improving quenching and delayed fracture resistance, and the content thereof is preferably 0.0010 to 0.003%. If the content of boron is less than 0.0010%, the effect of improving grain boundary strength due to grain boundary strengthening of boron atoms due to grain boundary segregation during heat treatment is insufficient, and the graphitization promoting effect is insufficient during graphitization treatment to improve cold forming. If the content of boron exceeds 0.003%, the effect is saturated, rather, the precipitation of boron nitride at the grain boundary leads to a decrease in grain boundary strength.

·몰리브덴(Mo), 텅스텐(W): 각각 0.01-0.5%Molybdenum (Mo), Tungsten (W): 0.01-0.5% each

이들의 함량이 0.01%미만에서는 페라이트와 잔류 오스테나이트의 입계강화 효과가 미흡하고 또한 열처리시 소입성, 페라이트의 고용강화, Mo 및 W계 석출강화 효과가 미흡하기 때문이다. 0.5%를 초과할 경우에는 그 효과가 포화되고, 소입성의 증가로 선재제조시 저온조직(마르텐사이트+베이나이트)의 생성이 용이하고 냉간성형성 개선을 위한 구상화 또는 흑연화처리시 열처리 시간이 길어지는 단점이 있기 때문이다.If the content is less than 0.01%, the grain boundary strengthening effect of the ferrite and the retained austenite is insufficient, and the hardenability during the heat treatment, the solid solution strengthening of the ferrite, and the Mo and W system precipitation strengthening effects are insufficient. If it exceeds 0.5%, the effect is saturated, and as the hardenability is increased, it is easy to form low-temperature structure (martensite + bainite) during wire rod manufacturing, and the heat treatment time during spheroidization or graphitization treatment to improve cold formability This is because there is a disadvantage.

·구리(Cu): 0.01-0.2%Copper (Cu): 0.01-0.2%

구리의 함량이 0.01%미만에서는 흑연화 촉진 및 부식저항에 대한 개선효과가미흡하며, 0.2%초과할 경우에는 그 개선효과가 포화되고 입계 편석시 녹는점(melting point)이 낮아져 선재압연을 위한 가열로 장입시 결정입계 취화에 따른 표면흠 발생 가능성이 높고, 최종 제품에서의 충격인성이 저하되기 때문이다.If the copper content is less than 0.01%, the effect of promoting graphitization and corrosion resistance is insufficient. If the copper content is more than 0.2%, the improvement effect is saturated, and the melting point is lowered during the grain boundary segregation. This is because surface flaw is more likely to occur due to grain embrittlement during charging, and impact toughness of the final product is lowered.

·티타늄: 0.01-0.2%Titanium: 0.01-0.2%

티타늄의 함량이 0.01%미만에서는 흑연화 촉진 및 오스테나이트 결정입자 미세화 효과가 미흡하며, 지연파괴저항성에 유효한 결정입계내의 티타늄계 탄,질화물의 석출분포가 미흡하여 그 개선효과를 기대하기 어렵기 때문이며, 0.2%를 초과할 경우에는 그 첨가효과가 포화되고 조대한 티타늄계 탄, 질화물을 형성하여 기계적 성질에 영향을 미치기 때문이다.If the content of titanium is less than 0.01%, the effect of promoting graphitization and miniaturizing austenite grains is insufficient, and the precipitation distribution of titanium-based carbon and nitride in the grain boundary effective for delayed fracture resistance is insufficient, so that improvement effect is difficult to expect. This is because when it exceeds 0.2%, the additive effect is saturated, and coarse titanium-based carbon and nitride are formed to affect the mechanical properties.

[선재의 제조방법][Manufacturing method of wire rod]

상기와 같이 조성되는 강은 선재로 제조하기 위한 가열공정에서 표면에 탈탄층이 발생하는데, 이를 방지하기 위해서는 빌레트의 표면에 페라이트 탈탄층을 형성하고, 선재압연을 위한 가열조건을 조절하는 것이 중요하다.In the steel formed as described above, a decarburized layer is formed on the surface of the heating process for manufacturing the wire rod. In order to prevent this, it is important to form a ferrite decarburized layer on the surface of the billet and to control heating conditions for the wire rod rolling. .

먼저, 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하여 강편압연하여 빌레트의 표면에 페라이트층을 형성하는데, 이때의 페라이트층의 두께는 0.05∼0.20mm로 형성하는 것이 바람직하다. 블룸의 가열온도가 1230℃미만에서는 강편가열로에서 페라이트층의 두께가 필요 이상으로 커지게 되며, 가열온도가1290℃초과의 경우는 산화속도가 매우 증가하여 표면에 적정 페라이트층 두께를 확보하기 어렵고 산화량이 증가하여 강편압연시 표면흠이 발생할 가능성이 높기 때문이다. 가열유지시간이 80분미만에서는 시간부족으로 적정 페라이트층의 두께를 확보할 수 없고, 120분 초과의 경우는 그 효과가 포화되고 고도한 산화량으로 표면품질이 저하되기 때문이다.First, the bloom is reheated in the range of 1260 ± 30 ° C. within a range of 100 ± 20 minutes and rolled into steel to form a ferrite layer on the surface of the billet, wherein the thickness of the ferrite layer is preferably 0.05 to 0.20 mm. . If the heating temperature of BLUM is less than 1230 ℃, the thickness of ferrite layer becomes larger than necessary in the steel slab heating furnace. If the heating temperature is over 1290 ℃, the oxidation rate is increased so that it is difficult to secure the proper ferrite layer thickness on the surface. This is because the amount of oxidation is increased and the surface flaw is more likely to occur during rolling. If the heating holding time is less than 80 minutes, the thickness of the ferrite layer cannot be secured due to lack of time, and if the heating time is over 120 minutes, the effect is saturated and the surface quality is deteriorated due to the high oxidation amount.

본 발명에서는 상기한 바와 같이 페라이트 탈탄층은 빌레트의 표면에 0.05∼0.20mm로 형성하는 것이 바람직하다. 그 이유는 페라이트층이 0.05mm미만에서는 빌레트 가열중 대부분 페라이트층이 산화되어 페라이트층의 존재로 탈탄개선 효과를 도모하기가 어렵고, 페라이트 층의 두께가 0.20mm를 초과할 경우에는 가열시간이 너무 길어져서 비경제적이다.In the present invention, as described above, the ferrite decarburized layer is preferably formed at 0.05 to 0.20 mm on the surface of the billet. The reason is that when the ferrite layer is less than 0.05 mm, most of the ferrite layer is oxidized during heating of the billet, so that the decarburization improvement effect is difficult due to the presence of the ferrite layer, and when the thickness of the ferrite layer exceeds 0.20 mm, the heating time is too long. It is uneconomical to lose.

상기와 같이 표면에 페라이트층이 형성된 빌레트는 선재압연한다. 먼저, 빌레트를 10℃/분이상으로 승온한다. 이는 승온속도가 10℃/분미만의 경우 빌레트 표면의 산화층(scale층)이 두꺼워지고 이후 산화층이 성장하면서 산화층내에 다랑의 공공(porosity)들이 생성되어 이후 산화 속도를 급격히 감소시키기 때문이다. 산화속도의 감소는 페라이트 탈탄층의 두께를 제어를 어렵게하기 때문에 바람직스럽지 않다.As described above, the billet having the ferrite layer formed on the surface is wire rolled. First, a billet is heated up at 10 degree-C / min or more. This is because when the temperature increase rate is less than 10 ° C./minute, the oxide layer (scale layer) on the surface of the billet becomes thick, and after that, as the oxide layer grows, pores of the pores are generated in the oxide layer, thereby rapidly decreasing the oxidation rate. Reduction of the oxidation rate is undesirable because it makes it difficult to control the thickness of the ferrite decarburized layer.

상기와 같은 승온속도로 1100±50℃의 범위까지 승온한 다음, 이 온도구간에서 45±15분간 유지한다. 이는 가열온도가 1050℃미만의 경우 탈탄제어를 위한 빌레트 표면 페라이트층의 두께제어가 어렵고, 빌레트 제조시 조대하게 석출된 바나듐계 또는 니요븀계 석출물들의 재고용이 용이하지 않다는 점 그리고, 열간변형저항성의 증가로 압연시 과부하로 인해 작업성이 열악해지기 때문이다. 또한, 가열온도가 1150℃를 초과하는 경우에는 탈탄제어를 위한 균일한 페라이트층을 유지할 수 없기 때문이다. 즉 탄소 고용도가 매우 낮은 표면 페라이트층을 석출시켜 탈탄반응을 급격히 감소시키기 위해서는 가열 유지온도에서 표면 페라이트층이 잔존하여야 가능하나 가열온도가 1150℃를 초과할 경우에는 표면의 페라이트층이 오스테나이트로 변태하기 때문에 탈탄속도가 급격히 증가하며 이로 인해 표면탈탄이 심화되기 때문이다.The temperature is raised to a range of 1100 ± 50 ° C. at the same rate of temperature increase, and then maintained at this temperature range for 45 ± 15 minutes. This is because it is difficult to control the thickness of the billet surface ferrite layer for the decarburization control when the heating temperature is less than 1050 ° C, and it is not easy to re-use the coarse precipitated vanadium- or niobium-based precipitates during the manufacture of the billet, and to increase the thermal strain resistance. This is because the workability becomes poor due to the overload during furnace rolling. When the heating temperature exceeds 1150 ° C., it is not possible to maintain a uniform ferrite layer for decarburization control. In other words, in order to precipitate the surface ferrite layer having a very low carbon solubility, the surface ferrite layer should remain at the heating and maintaining temperature, but if the heating temperature exceeds 1150 ℃, the ferrite layer on the surface will be austenite. Because of the metamorphosis, the decarburization rate increases rapidly, which intensifies surface decarburization.

상기와 같이 빌레트를 가열하여 선재하는데, 이때 가열로에서 추출되는 빌레의 탈탄면적은 선재압연후에 선재의 탈탄면적과 동일하기 때문에 선경이 클 수록 탈탄층이 증가하게 된다. 따라서, 본 발명에서는 이러한 점을 고려하여 선재의 선경을 지름30mm까지로 하여 선재압연하는 것이 좋다.As described above, the billet is heated and wired, but the decarburized area of the billet extracted from the heating furnace is the same as the decarburized area of the wire after rolling. Accordingly, in the present invention, the wire rod of the wire rod is preferably rolled up to 30 mm in diameter in view of such a point.

이하,본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

아래 표 1과 같은 성분계를 갖는 고실리콘 첨가 고탄소 브룸을 대상으로 본 발명에 따라 강편압연과 선재압연하여 발명예(1-14)로 하고, 본 발명을 벗어나는 조건으로 강편압연과 선재압연하여 비교예(1-5)로 하였다.In accordance with the present invention, a high-silicon-added high carbon broth having a component system as shown in Table 1 below was rolled and rolled in accordance with the present invention to the invention example (1-14). It was set as the example (1-5).

화학성분Chemical composition CC SiSi MnMn CrCr VV NiNi MoMo TiTi WW BB CuCu PP SS N2N2 O2O2 발명강Invention steel 1One 0.800.80 3.063.06 0.530.53 -- 0.050.05 -- -- -- -- -- 0.030.03 0.0090.009 0.0090.009 0.0040.004 0.00130.0013 22 0.700.70 3.443.44 0.520.52 -- 0.060.06 -- -- 0.020.02 -- 0.0010.001 0.040.04 0.0070.007 0.0080.008 0.0040.004 0.00140.0014 33 0.890.89 3.133.13 0.580.58 -- 0.070.07 0.720.72 -- -- 0.060.06 -- 0.120.12 0.0060.006 0.0090.009 0.0050.005 0.00150.0015 44 0.850.85 2.252.25 0.870.87 -- Nb:0.01Nb: 0.01 -- 0.230.23 0.040.04 0.150.15 -- 0.030.03 0.0060.006 0.0090.009 0.0040.004 0.00160.0016 55 0.830.83 3.903.90 0.550.55 -- 0.040.04 -- -- -- 0.00200.0020 0.030.03 0.0070.007 0.0060.006 0.0050.005 0.00170.0017 66 1.241.24 3.223.22 0.640.64 -- -- -- 0.050.05 0.030.03 0.070.07 0.00230.0023 0.020.02 0.0070.007 0.0070.007 0.0050.005 0.00170.0017 77 1.391.39 2.572.57 0.820.82 -- -- 1.201.20 0.200.20 0.090.09 -- -- 0.150.15 0.0090.009 0.0080.008 0.0050.005 0.00180.0018

상기 발명예(1-14)는 1260±30℃범위에서 100 ± 20분 범위내로 재가열하고 강편압연한 다음, 평균 15℃/분의 가열속도로 1100±50℃ 범위까지 가열하고, 이 온도구간에 30-40분간 유지하고 선재압연하여 지름 12mm의 선재를 제조하였다. 상기 비교예(1-5)는 1230℃미만 또는 1290℃ 초과하는 온도에서 80분미만 또는 120분초과하는 시간동안 재가열하여 강편압연하고, 여기서 얻어진 빌레트를 8~15℃/분의 가열속도로 1050℃미만 또는 1150℃초과하는 온도로 승온하고, 이 온도구간에서 30분간 유지하여 선재압연하여 지름 16mm의 선재를 제조하였다.Inventive Example (1-14) is reheated and rolled into a range of 100 ± 20 minutes in the range of 1260 ± 30 ℃, and then heated to a range of 1100 ± 50 ℃ at a heating rate of 15 ℃ / min on average, After maintaining for 30-40 minutes, the wire rod was rolled to prepare a wire rod having a diameter of 12 mm. The comparative example (1-5) is reheated and rolled in a steel strip for a time of less than 80 minutes or more than 120 minutes at a temperature of less than 1230 ℃ or more than 1290 ℃, the billet obtained here 1050 at a heating rate of 8 ~ 15 ℃ / min The temperature was raised to a temperature lower than or equal to 1150 ° C, and the wire rod was rolled by maintaining the temperature for 30 minutes in this temperature section to prepare a wire rod having a diameter of 16 mm.

상기 발명재와 비교재 모두 고속선재압연한 다음에 950℃로 물분사에 의해 급속 냉각하여 권취하고 600℃까지 1.0C/sec로 서냉한 다음에 이후에는 공냉하였다. 상기와 같이 제조된 발명재와 비교재의 표면 탈탄층 깊이는 KS규격(KD D 0216)에 의하여 측정하였다. 이규격에 의하면 광학 현미경 관찰법과 미소경도 측정법등이 제안되고 있는데, 본 실시예에서는 미소경도 측정법을 이용하였다. 상기와 같이 측정된 탈탄층 깊이는 표 2에 나타내었다. 측정위치는 선재단면을 8등분한 위치에서 측정하였으며 측정값은 평균값을 기준으로 하였다.Both the invention material and the comparative material were rolled by high speed wire, then rapidly cooled by water spraying at 950 ° C., wound up, and slowly cooled to 1.0 C / sec up to 600 ° C., followed by air cooling. The surface decarburized layer depth of the inventive material and the comparative material prepared as described above was measured by the KS standard (KD D 0216). According to this standard, an optical microscope observation method and a microhardness measuring method are proposed, but the microhardness measuring method was used in the present Example. The decarburized layer depth measured as described above is shown in Table 2. The measurement position was measured at 8 equal sections of wire rod section, and the measured value was based on the average value.

표 2에 나타난 바와 같이, 본 발명에 따라 제조된 선재들(본발명재 1~14)의 표면탈탄 깊이는 0.03-0.06mm범위를 보이는 반면, 비교예(1-5)의 경우에는 0.13-0.24mm범위로, 본 발명은 표면탈탄의 개선에 매우 효과적임을 알 수 있다.As shown in Table 2, the surface decarburization depth of the wire rods prepared according to the present invention (the invention 1 to 14) shows a range of 0.03-0.06mm, while in the case of Comparative Example (1-5) 0.13-0.24 In mm range, it can be seen that the present invention is very effective in improving surface decarburization.

상술한 바와 같이, 본 발명은 냉간성형성 개선 목적으로 흑연화처리가 가능한 강의 빌레트에 적정 페라이트층을 분포시켜서 선재가열로에서 탈탄반응을 억제시킴으로서 볼트 등에 사용될 수 있는 고실리콘 첨가 고탄소강 선재를 제공하는 유용한 효과가 있는 것이다.As described above, the present invention provides a high-silicon-added high carbon steel wire that can be used in bolts and the like by distributing a proper ferrite layer in a billet of steel capable of graphitization for the purpose of improving cold formability and suppressing decarburization in a wire furnace. It has a useful effect.

Claims (2)

중량%로, 탄소:0.65-1.50%, 실리콘 2.0-4.0%, 망간 0.1-0.8%, 인 및 황 0.01% 이하, 질소 0.002-0.01%, 산소 0.002% 이하를 함유하고, 여기에 니켈 0.3-2.0%, 보론 0.001-0.003%, 바나듐:0.01∼0.5%, 니오븀:0.01∼0.5%, 몰리브덴 0.01-0.5%, 티타늄 0.01-0.2%, 텅스텐 0.01-0.5%, 구리 0.01-0.2%의 그룹중에서 선택된 1종 또는 2종 이상, 나머지 Fe 및 기타 불순물로 조성되는 블룸을 1260±30℃의 범위에서 100±20분의 범위내로 재가열하고 강편압연하여 표면에 페라이트 탈탄층이 형성된 빌레트를 얻고, 이 빌레트를 평균 10℃/분 이상의 가열속도로 1100±50℃의 가열온도로 승온하여 45±15분간 유지하고 선재압연하는 것을 특징으로 하는 표면 탈탄깊이가 적은 고실리콘 첨가 고탄소강 선재의 제조방법.By weight, carbon: 0.65-1.50%, silicon 2.0-4.0%, manganese 0.1-0.8%, phosphorus and sulfur 0.01% or less, nitrogen 0.002-0.01%, oxygen 0.002% or less, and nickel 0.3-2.0 %, Boron 0.001-0.003%, vanadium: 0.01-0.5%, niobium: 0.01-0.5%, molybdenum 0.01-0.5%, titanium 0.01-0.2%, tungsten 0.01-0.5%, copper 0.01-0.2% Blooms composed of two or more species or the remaining Fe and other impurities are reheated and rolled into a range of 100 ± 20 minutes in the range of 1260 ± 30 ° C to obtain a billet with a ferrite decarburized layer formed on the surface, and the billet is averaged. A method for producing a high-silicon-added high carbon steel wire having a low surface decarburization depth, which is heated at a heating temperature of 1100 ± 50 ° C. at a heating rate of 10 ° C./min or more and maintained for 45 ± 15 minutes. 제 1항에 있어서, 상기 빌레트의 페라이트층 탈탄층은 표면으로 부터 0.05-0.20mm의 두께로 형성됨을 특징으로 하는 표면 탈탄깊이가 적은 고실리콘첨가 고탄소강 선재의 제조방법.The method of manufacturing a high silicon-added high carbon steel wire having a low surface decarburization depth according to claim 1, wherein the ferrite layer decarburization layer of the billet has a thickness of 0.05-0.20 mm from the surface.
KR1020010085536A 2001-12-27 2001-12-27 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface KR100544754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010085536A KR100544754B1 (en) 2001-12-27 2001-12-27 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010085536A KR100544754B1 (en) 2001-12-27 2001-12-27 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface

Publications (2)

Publication Number Publication Date
KR20030055521A true KR20030055521A (en) 2003-07-04
KR100544754B1 KR100544754B1 (en) 2006-01-24

Family

ID=32213787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010085536A KR100544754B1 (en) 2001-12-27 2001-12-27 Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface

Country Status (1)

Country Link
KR (1) KR100544754B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100891867B1 (en) 2002-12-20 2009-04-08 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod free from low temperature annealing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267420A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of high tension and high toughness wire rod having superior delayed fracture resistance
JPH0665642A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Production of high corrosion resistant super fine steel wire
KR970033116A (en) * 1995-12-30 1997-07-22 김종진 High carbon hot rolled steel sheet manufacturing method with excellent bending workability
KR100435481B1 (en) * 1999-12-28 2004-06-10 주식회사 포스코 Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
KR100431847B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer

Also Published As

Publication number Publication date
KR100544754B1 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
KR102020385B1 (en) Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
KR102335655B1 (en) Steel parts and methods of manufacturing the steel parts
KR20160010579A (en) High-carbon hot-rolled steel sheet and production method for same
KR100435481B1 (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
KR100544752B1 (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
KR100431847B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
KR100544754B1 (en) Method for high carbon wire rod containing high silicon to reducing decarburization depth of its surface
KR100554751B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
KR100900646B1 (en) Method of manufacturing high Si added high carbon wire rod
KR20120126961A (en) Material having high strength and toughness and method for forming tower flange using the same
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR100544744B1 (en) Method for manufacturing high Si added high carbon wire rod by forming decarburinized ferritic layer
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100544743B1 (en) Method for manufacturing high Si added medium carbon wire rod by forming decarburinized ferritic layer
KR100544753B1 (en) Method of manufacturing medium carbon wire rod having superior cold formability for bolt
KR20040054987A (en) Method of manufacturing high Si added medium carbon wire rod
KR100352607B1 (en) Manufacturing method of high stress spring steel wire
JP6519025B2 (en) Low alloy high strength seamless steel pipe for oil well
KR100928783B1 (en) Wire rod for high strength tire cord with excellent freshness
KR20010060701A (en) High strength steel having a superior delayed fracture resistance and bolt made of the steel and method for manufacturing working product by using it
KR100891867B1 (en) Method for manufacturing high Si added medium carbon wire rod free from low temperature annealing
KR20230016218A (en) Heat-treated cold-rolled steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15